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Clinical Decision-Making

Patient ‘P’ comes in 
with hypertension

The doctor 
prescribes a 
medication

The patient 
responds to the 

treatment. 



Clinical Decision-Making

 Clinical Decision Support Systems (CDSS) learn policy for choosing targeted 
treatments for patients

 However, this is not a typical supervised learning problem

Counterfactual outcome is not observed!!

 Only one of all possible outcomes is observed

 Loss function unknown at training time



Counterfactual Learning

Reason about a world that does not exist

 What if the patient was put on ventilation early?

 What if the patient was admitted longer in ICU?

 What if I gave a drug to a patient?

Counterfactual World

Ideal decision policy

Clinical Records

Clinician’s decision policy



Contextual Bandits
At each round ‘t’ (              )

The world produces 
some context ( x

t
 )

The learner chooses an 
action ( a

t 
)

The world reacts with 
reward ( r

t 
)

Patient P with hypertension 
(symptoms, medical history, 
test results etc.)

a1. Calcium channel blocker
a2. ACE inhibitor

Patient Survives/Recovers (r = 1)
Health deteroriates (r = 0)

• x
t
 : Drawn i.i.d from unknown P(X)

• a
t
 : Selected by existing system following policy π

0
: X → A

• r
t
 : Feedback from unknown function r

t
 : X  A → R

Goal: Learn a good policy π for choosing actions given context
(maximize cumulative reward for all patients)



Offline Learning

Given observation data for ‘n’ patients collected under a policy π0 

 D = (x1,a1,r1),……. , (xn,an,rn)   

Goals

Evaluation: Estimate reward R(π) of an alternate policy π offline

Optimization: Find new policy π(θ) that improves performance over π0

 Directly testing the policy π in real-world (online) is not possible

 Policy learning depends on how confidently we can evaluate π given π
0
 

Clinical Records
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Off-Policy Evaluation

 Inverse Propensity Score (IPS) Estimator

Behavior Policy
(Generally known)

 Unbiased estimate
 Prone to high variance 

Evaluation Policy

 p & p
0
 : Probabilities of selecting the action a

i
 using policies π & π

0
 respectively

 p
0
 also known as ‘propensity score’

 IPS weighs unlikely actions in observed data more compared to likely actions



Motivation

 In clinical settings, propensity score is typically unknown and is imputed 
by training a model

Behavior Policy (Clinician)

Evaluation Policy

Challenge:
● Model uncertainty (our ignorance about the correct model that generated p

0
)

● Significant variability in patient-specific predictions and optimal decisions
● Uncertainty in modeling p

0
 introduces bias & variance in reward estimates 

 Unbiased estimate
 Prone to high variance 

when 



Uncertainty of Predictive Models

 Where does uncertainty arise from in machine learning?

● How to tackle uncertainty? - Bootstrapping

M. W. Dusenberry, D. Tran, E. Choi, J. Kemp, J. Nixon, G. Jerfel,K. Heller, and A. M. Dai, “Analyzing the Role of Model Uncertainty for Electronic Health Records.” http://arxiv.org/abs/1906.03842

Data uncertainty
(epistemic)

Model 
Uncertainty 
(aleatory)

aleatory

*https://www.inovex.de

Expected-Loss Minimization

Our focus

http://arxiv.org/abs/1906.03842
https://www.inovex.de/blog/uncertainty-quantification-deep-learning/


Model Uncertainty

 Multiple ways to characterize uncertainty in neural networks

Deep Ensemble Bayesian Neural Networks

…….

 Weights as Point Estimates

NN
1

NN
M

Weights represented by probability distribution

1. Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles." NIPS. 2017.
2. Blundell, Charles, et al. "Weight uncertainty in neural networks." arXiv preprint (2015)

Sample M
networks during 

test time

Initialize ‘M’ 
networks with 
varying seeds



Proposed Method

We propose bootstrapping-based counterfactual inference framework

1. Strehl, Alex, et al. "Learning from logged implicit exploration data." NIPS 2010.
2. Dudík, Miroslav, et al. "Doubly robust policy evaluation and optimization." Statistical Science 29.4 (2014): 485-511.

Bootstrap ‘M’ models to impute clinician’s action propensity 

 ‘M’ propensity scores (π
0
[1], π

0
[2] …… π

0
[M])

Incorporate into vanilla offline policy estimators (IPS1, Doubly-Robust2)

Policy Evaluation Policy Learning

 ‘M’ propensity scores (π
0
[1], π

0
[2] …… π

0
[M])



Experiments



Clinical Setting

Warfarin Dosing

Warfarin is a widely-prescribed oral anticoagulant 
agent

Challenges

Therapeutic dosage varies widely across patients; 
incorrect dose leads to adverse side effects

Physicians currently follow fixed-dosage strategy 
(base dosage followed by adjustments)

PharmaGKB dataset
~5300 patients 

Demographic, physiological & 
genotype features with ideal 

dosage for each patient

https://www.pharmgkb.org/page/iwpc

https://www.pharmgkb.org/page/iwpc


Behavior Policy

Picks one out of 
low/med/high 
stochastically

Warfarin Dosing

Warfarin Dataset

● Action Space: Discretize therapeutic dose into low, medium and high
● Policy Task: Predict correct therapeutic dosage for each patient

However, we have access to counterfactuals in the original dataset !!

Synthetic Bandit Dataset



Experimental Setup

● Create bandit dataset using behavior policy (20 simulations)
– PHARMA : Choose action using WPDA* with probability ‘p’; otherwise choose randomly 

– LR : Train logistic regression model on 5% of classification dataset

● Train a classifier on full Warfarin dataset (evaluation policy π)

● Bootstrap 10 models for π0 using Bayesian NN and ensemble methods

● Evaluate π using proposed framework (Ravg, Rinv) and compare with vanilla IPS and 
DR estimators

● Learn π using proposed framework (πavg, πinv, πmax) and compare with vanilla IS and 
DR learners

*WPDA (Warfarin Pharmacogenetic Dosing Algorithm) is deterministic algorithm proposed by IWPC



Results – Policy Evaluation

Policy evaluated: Classifier trained on original Warfarin dataset
Reward Estimators: IPS – Inverse Propensity Score; DR – Doubly-Robust Estimator

Vanilla IPS/DR

Baseline (p
0
 estimated using single network) p

0
 bootstrapped from 10 networks

Deep Ensemble

True reward of 
policy evaluated

Reward estimates      (mean ± std. dev.)

Behaviour Policy



Results – Policy Learning

Baseline (p
0
 estimated using single network) p

0
 bootstrapped from 10 networks

Reward Estimators: IPS – Inverse Propensity Score; DR – Doubly-Robust Estimator

Actual reward of learnt policy (mean ± std. dev.)



● Clinical records of ~40000 critical care patients
● Includes demographics, laboratory tests, vital signs, medications and more

● Task: Recommend length of stay for patient on arrival in the ICU
● # patients selected : ~12000 
● Action : Length of stay buckets (2-3, 3-5, 5-8, 8+)
● Reward : 0 if re-admitted within 30 days, else 1

● ~10% patients are readmitted

● Balanced sub-sampling to counter imbalance in reward

Policy Learning – MIMIC

Reward estimates



Takeaways

 Bootstrapping leads to lower variance and improved policy learning 
 Policy with highest reward among bootstrapped samples has lower variance

 Bayesian Neural Networks achieve lower variance during learning

 Rinv policy evaluator performs better than Ravg

 Our approach can be used to derive action confidence bounds for each patient 
before policy deployment

Can we explore other paradigms to ensure robustness of policy π ?



Adversarial Policy Optimization

Optimize π for worst-case propensity scoring model π
0
  

Cross-entropy loss for 
modeling clinician’s action 
policy

IPS-based Policy
Learner

π
0
 π 

R
L

R

Maximize RMinimize R;
Minimize L

Adversarial



# patients recommended high dosage

         Adversarial Learning leads to lesser variance in recommended actions, particularly for high dosage actions

Preliminary Results – Warfarin Dosing

Vanilla IPS (Learn π
0  

; Independently learn
 
π)

Adversarial IPS

Reward

Epochs >> Epochs >> Epochs >>Epochs >>

Slightly better rewardsLower variance

Epochs >> Epochs >>Epochs >>

Patient
 count

# patients recommended low dosage # patients recommended medium dosage # patients recommended high dosage

Patient
 count

Reward# patients recommended medium dosage# patients recommended low dosage



Next Steps

 Bootstrapping
 Analyze patient-wise action uncertainty distribution for different 

learnt policies
 Policy learning and evaluation on eICU dataset

 Adversarial Learning
 Evaluate on MIMIC and eICU datasets



Thank You!

Anirudh Choudhary

Email : achoudhary46@gatech.edu

mailto:achoudhary46@gatech.edu
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