Clinical Decision Making under Uncertainity A Bootstrapped Counterfactual Inference Approach

Anirudh Choudhary, Hang Wu and May Wang

27 Feb 2020

CSL Student Conference

Clinical Decision-Making

GeorgiaInstitute of Technology

Clinical Decision-Making

- Clinical Decision Support Systems (CDSS) learn policy for choosing targeted treatments for patients
- However, this is not a typical supervised learning problem

Counterfactual outcome is not observed!!

- Only one of all possible outcomes is observed
- Loss function unknown at training time

Counterfactual Learning

Reason about a world that does not exist

Clinical Records

Clinician's decision policy

Counterfactual World

Ideal decision policy

- What if the patient was put on ventilation early?
- What if the patient was admitted longer in ICU?
- What if I gave a drug to a patient?

ute

Contextual Bandits

- x_t : Drawn i.i.d from unknown P(X)
- a_t : Selected by existing system following policy π_0 : X \rightarrow A
- r_{t} : Feedback from unknown function r_{t} : X*A \rightarrow R

Goal: Learn a good policy π for choosing actions given context (maximize cumulative reward for all patients)

Offline Learning

Given observation data for 'n' patients collected under a policy $\pi_{\scriptscriptstyle 0}$

• $D = (x_1, a_1, r_1), \dots, (x_n, a_n, r_n)$

Goals

Evaluation: Estimate reward R(π) of an alternate policy π offline Optimization: Find new policy $\pi(\theta)$ that improves performance over π_0

- Directly testing the policy π in real-world (online) is not possible
- Policy learning depends on how confidently we can evaluate π given π_0

Clinical Records

Outline

- Off-Policy Evaluation
- Motivation
- Proposed Method
- Experiments
- Results

Off-Policy Evaluation

• Inverse Propensity Score (IPS) Estimator

 $R_{ips}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{p(a_i | x_i)}{p_0(a_i | x_i)} r_i$

- Unbiased estimate
- Prone to high variance $p_0(a_i|x_i) \approx 0$

Behavior Policy (Generally known)

Evaluation Policy

- **p** & **p**₀ : Probabilities of selecting the action a_i using policies $\pi \& \pi_0$ respectively
- p₀ also known as 'propensity score'
- IPS weighs unlikely actions in observed data more compared to likely actions

Motivation

In clinical settings, propensity score is typically unknown and is imputed by training a model **Evaluation Policy**

 $R_{ips}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{p(a_i | x_i)}{p_0(a_i | x_i)} r_i$ • Unbiased estimate • Prone to high variance when $p_0(a_i | x_i) \approx 0$

- when $p_0(a_i|x_i) \approx 0$

Behavior Policy (Clinician)

Challenge:

- Model uncertainty (our ignorance about the correct model that generated p_0)
- Significant variability in patient-specific predictions and optimal decisions
- Uncertainty in modeling p_o introduces bias & variance in reward estimates

Uncertainty of Predictive Models

• Where does uncertainty arise from in machine learning?

• How to tackle uncertainty? - Bootstrapping

M. W. Dusenberry, D. Tran, E. Choi, J. Kemp, J. Nixon, G. Jerfel, K. Heller, and A. M. Dai, "Analyzing the Role of Model Uncertainty for Electronic Health Records." http://arxiv.org/abs/1906.03842

Model Uncertainty

• Multiple ways to characterize uncertainty in neural networks

dical Informatics & Bio-im

1. Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive uncertainty estimation using deep ensembles." NIPS. 2017. 2. Blundell, Charles, et al. "Weight uncertainty in neural networks." arXiv preprint (2015)

Georgialnstitute of Technology

Proposed Method

We propose **bootstrapping-based** counterfactual inference framework

Experiments

Georgialnstitute of **Technology**

Clinical Setting

Warfarin Dosing

Warfarin is a widely-prescribed oral anticoagulant agent

Challenges

Therapeutic dosage varies widely across patients; incorrect dose leads to adverse side effects

Physicians currently follow fixed-dosage strategy (base dosage followed by adjustments)

PharmaGKB dataset

~5300 patients Demographic, physiological & genotype features with **ideal dosage** for each patient

https://www.pharmgkb.org/page/iwpc

eorgialnstitute of Technology

Warfarin Dosing

- Action Space: Discretize therapeutic dose into low, medium and high
- **Policy Task**: Predict correct therapeutic dosage for each patient

However, we have access to counterfactuals in the original dataset !!

Person	x	Y _(low)	Y _(med)	Y _(high)
P1	X1	0	1	0
P2	X2	1	0	0
P3	ХЗ	0	1	0
P4	X4	0	0	1
P5	X5	1	0	0
P6	X6	0	0	1

Warfarin Dataset

Behavior Policy

Picks one out of low/med/high stochastically Synthetic Bandit Dataset

Person	х	А	R
P1	X1	med	1
P2	X2	high	0
P3	ХЗ	low	0
P4	X4	high	1
P5	X5	med	0
P6	X6	low	0

Experimental Setup

- Create bandit dataset using behavior policy (20 simulations)
 - PHARMA : Choose action using WPDA* with probability 'p'; otherwise choose randomly
 - LR : Train logistic regression model on 5% of classification dataset
- Train a classifier on full Warfarin dataset (evaluation policy π)
- Bootstrap 10 models for $\pi_{\scriptscriptstyle 0}$ using Bayesian NN and ensemble methods
- Evaluate π using proposed framework (R $_{\text{avg}}$, R $_{\text{inv}}$) and compare with vanilla IPS and DR estimators
- Learn $\pmb{\pi}$ using proposed framework ($\pi_{avg},\,\pi_{inv},\,\pi_{max}$) and compare with vanilla IS and DR learners

*WPDA (Warfarin Pharmacogenetic Dosing Algorithm) is deterministic algorithm proposed by IWPC

Results – Policy Evaluation

Baseline (p₀ estimated using single network)

p_o bootstrapped from 10 networks

Dahariann Dalian	Methods Vanilla		la IPS/DR Bayesian NN(1)	Bayesian NN(10)	Deep Ensemble	
Benaviour Policy		vanilla IPS/DR			Model	Model + Data
	IPS – avg	0.7129 ± 0.0182	0.6811 ± 0.0478	0.6318 ± 0.0064	$\textbf{0.6986} \pm \textbf{0.0048}$	0.7269 ± 0.0057
IR (0.7017)	P (0.7017) IPS - inv			0.6818 ± 0.0122	0.7101 ± 0.0054	0.7442 ± 0.0065
DR - avg	DR - avg	0.7304 ± 0.0032	0.6997 ± 0.0107	0.6935 ± 0.0006	0.7302 ± 0.0005	0.7175 ± 0.0017
	DR - inv			0.6985 ± 0.0016	0.7303 ± 0.0006	0.7183 ± 0.0016
	IPS – avg	0.7295 ± 0.0149	0.7290 ± 0.0450	0.6571 ± 0.0119	0.6998 ± 0.0033	0.6948 ± 0.0034
PHARMA (0.7031) IPS	IPS - inv			$\textbf{0.7046} \pm \textbf{0.0128}$	0.7266 ± 0.0051	0.7374 ± 0.0074
(0.7051)	DR - avg	0.7009 ± 0.0253	0.6893 ± 0.0088	0.6833 ± 0.0016	0.6889 ± 0.0013	0.6906 ± 0.0017
	DR - inv	0.7009 ± 0.0233	0.0075 ± 0.0088	0.6920 ± 0.0015	$\textbf{0.6982} \pm \textbf{0.0211}$	0.7133 ± 0.0121

True reward of policy evaluated

Reward estimates $\hat{R}\,$ (mean ± std. dev.)

Policy evaluated: Classifier trained on original Warfarin dataset **Reward Estimators**: IPS – Inverse Propensity Score; DR – Doubly-Robust Estimator

Results – Policy Learning

Robaviar Policy	Mathada	Vanilla	Bayagian NN(1)	Bayesian NN(10)	Bootstrapping	
Denavior Foncy	Methous	vanna	Dayesian INN(1)		Model	Model + Data
	IPS – avg	0.6378 ± 0.0124	0.6359 ± 0.0082	0.6439 ± 0.0064	0.6384 ± 0.0120	0.6335 ± 0.0106
	IPS – inv			$\textbf{0.6432} \pm \textbf{0.0085}$	0.6377 ± 0.0135	0.6329 ± 0.0115
ID	IPS – max			0.6467 ± 0.0064	0.6440 ± 0.0111	0.6502 ± 0.0062
LK	DR – avg	0.6726 ± 0.0032	0.6626 ± 0.0132	0.6737 ± 0.0057	0.6728 ± 0.0035	0.6710 ± 0.0058
	DR – inv			0.6682 ± 0.0063	0.6721 ± 0.0030	0.6706 ± 0.0066
	DR – max			0.6721 ± 0.0058	0.6753 ± 0.0032	0.6768 ± 0.0049
	IPS – avg			0.6480 ± 0.0022	$\textbf{0.6493} \pm \textbf{0.0040}$	0.6344 ± 0.0065
	IPS – inv	0.6469 ± 0.0061	0.6191 ± 0.0266	0.6373 ± 0.0017	$\textbf{0.6487} \pm \textbf{0.0042}$	0.6302 ± 0.0075
PHARMA	IPS – max			0.6461 ± 0.0036	$\textbf{0.6544} \pm \textbf{0.0023}$	0.6552 ± 0.0050
THANWA	DR – avg			0.6626 ± 0.0011	$\textbf{0.6634} \pm \textbf{0.0028}$	0.6575 ± 0.0047
	DR – inv	0.6633 ± 0.0027	0.6588 ± 0.0025	0.6633 ± 0.0013	$\textbf{0.6636} \pm \textbf{0.0030}$	0.6525 ± 0.0073
	DR – max			0.6649 ± 0.0009	0.6674 ± 0.0018	0.6680 ± 0.0037

dical Informatics & Bio

Baseline (p_0 **estimated using single network)** p_0 **bootstrapped from 10 networks**

Actual reward of learnt policy (mean ± std. dev.)

Reward Estimators: IPS – Inverse Propensity Score; DR – Doubly-Robust Estimator

nstitute

Policy Learning – MIMIC

- Clinical records of ~40000 critical care patients
- Includes demographics, laboratory tests, vital signs, medications and more
- Task: Recommend length of stay for patient on arrival in the ICU
 - # patients selected : ~12000
 - Action : Length of stay buckets (2-3, 3-5, 5-8, 8+)
 - Reward : 0 if re-admitted within 30 days, else 1
- ~10% patients are readmitted
- Balanced sub-sampling to counter imbalance in reward

Methods	Reward
IPS	0.5279 ± 0.0209
IPS - avg	0.5303 ± 0.0077
IPS - inv	0.5328 ± 0.0103
IPS - max	0.5541 ± 0.0129
DR	0.5129 ± 0.0070
DR - avg	0.5131 ± 0.0066
DR - inv	0.5125 ± 0.0082
DR - max	0.5284 ± 0.0065

Reward estimates \hat{R}

eorgiaInstitute of Technology

Takeaways

- Bootstrapping leads to lower variance and improved policy learning
 - Policy with highest reward among bootstrapped samples has lower variance
- Bayesian Neural Networks achieve lower variance during learning
- R_{inv} policy evaluator performs better than R_{avg}
- Our approach can be used to derive action confidence bounds for each patient before policy deployment

Can we explore other paradigms to ensure robustness of policy π ?

Adversarial Policy Optimization

Optimize π for worst-case propensity scoring model π_0

Preliminary Results – Warfarin Dosing

Adversarial Learning leads to lesser variance in recommended actions, particularly for high dosage actions

Vanilla IPS (Learn π_0 ; Independently learn π)

Next Steps

- Bootstrapping
 - Analyze patient-wise action uncertainty distribution for different learnt policies
 - Policy learning and evaluation on eICU dataset
- Adversarial Learning
 - Evaluate on MIMIC and eICU datasets

Thank You!

Anirudh Choudhary Email : <u>achoudhary46@gatech.edu</u>

GeorgiaInstitute of Technology

