

Impact of AI: What to expect in the Next Decade?

Panel at CSL Student Conference 2020

Moderator: Klara Nahrstedt, Director of CSL

Impact of AI – Why is it Important?

Current Advances of Al

 Machine learning, robotics, computer vision, natural language processing, inference, decision-making and planning

Impact of AI in Current applications

• Navigation systems, web search, speech recognition, machine translation, face recognition and recommender systems

Impact of AI in Upcoming applications:

 Semi-autonomous and autonomous ground and air vehicles, systems that harness planning and scheduling, intelligent tutoring, robotics.

20 Years National Al Roadmap (CRA/AAAI)

- Societal Benefits
 - Boost health and quality of life
 - Provide lifelong education and training
 - Reinvent business innovation and competitiveness
 - Accelerate scientific discovery and technical innovation
 - Expand evidence-driven social opportunity and policy
 - Transform national defense and security

Need fundamental research advances in key areas of AI!

CRA – Computing Research Association; AAAI – Association for the Advancement of Artificial Intelligence

Major Research Priorities (CRA/AAAI Roadmap)

Integrated intelligence

- Develop science of integrated intelligence
- Develop contextualized AI to suit specific uses
- Create open shared repositories of machine understandable world knowledge
- <u>Understand human intelligence</u> to inspire novel AI and develop models of human cognition

Meaningful interaction

- Comprise techniques for productive collaboration in <u>mixed teams</u> of human and machines
- Combine <u>diverse communication modalities</u>
- Provide <u>privacy</u>, <u>responsible and trustworthy behaviors</u>
- Fruitful online and real-world interaction among <u>humans and AI systems</u>

Major Research Priorities (CRA/AAAI Roadmap)

- Self-aware learning
 - Quantify uncertainty and durability,
 - Learn from small amounts of data and through instruction,
 - Incorporate prior knowledge into learning
 - Develop <u>causal and steerable models</u> from numerical data and observations
 - Learn <u>real-time behaviors</u> for intentional sensing and acting
- Reference: Y. Gil, B. Selman, "A 20 Year Community Roadmap for Artificial Intelligence Research in the USA", 2018,
 - https://cra.org/ccc/visioning/visioning-activities/2018-activities/artificial-intelligence-roadmap/

Al Research Priorities will need Advances in

Computer Systems and Hardware

- Development of methods for speeding up core computational procedures employed by AI systems (training and classification methods)
- New approaches to parallelism, smart caching, use of specialized hardware (FPGA, Loihi)

Theoretical computer science

 Combinatorial challenges, computational complexity theory, studies of computability

Future Advances (2)

Cybersecurity

 Understanding new attack surfaces; understanding and hardening against machine learning attacks

Formal Methods

- Define and constrain AI systems ensure that their behavior conforms to specification
- Enable real-time verification of AI programs through new kinds of monitoring

• Programming languages, tools and environments

 Higher level languages for new kinds of abstractions to enable vision, speech recognition, NLP for multiple AI analytical pipelines

Future Advances (3)

- Human-Computer interaction
 - Explain-ability of AI systems to people
 - Ability of people to work interactively with AI systems (e.g., interactive machine learning) that help with
 - specifications, encoding, understanding of implications of different policies, values, preferences assumed by automated systems
 - Support of AI-human collaboration including mixed initiative interaction and augmented human cognition
- Reference: G. Hager et al., Advances in Artificial Intelligence Require Progress Across all of Computer Science, CCC (Computing Community Consortium) White Paper, February 2017 (https://arxiv.org/abs/1707.04352)

Panel Organization

- The moderator introduces the topic and panelists.
- Each panelist presents his/her position to "Impact of AI in Next Decade" (5 minutes)
- We open the discussion to the audience for Q & A.
- Moderator injects questions if needed.

Panelists

Ellick Chan

- Lead of University Relations and research Intel Al Academy at Intel Corporation
- Adjunct Faculty at Northwestern University
- Research Interests: operating systems and security, advanced AI technology, optimization of AI Systems

Saurabh Gupta

- Assistant Professor in the Department of Electrical and Computer Engineering at UIUC
- Member of Coordinated Science Laboratory
- Research Interests: computer vision, robotics and machine learning; investigating the interplay between action and perception

Ravi Iyer

- George and Ann Fisher Distinguished Professor of Engineering in the Department of Electrical and Computer Engineering at UIUC
- Member of Coordinated Science Laboratory, the National Center for Supercomputing Applications, the Carle Illinois College of Medicine, and the Carl R. Woese Institute for Genomic Biology
- Director of Illinois/Mayo NSF Center for Computational Biotechnology and Genomic Medicine (CCBGM)
- Research Interests: Computational Genomics, Al Analytics Framework for Health-Care

Bo Li

- Assistant Professor in the Department of Computer Science at UIUC
- Research Interests: machine learning, security, privacy, and game theory; exploring vulnerabilities of machine learning systems to various adversarial attacks, and endeavors to develop real-world robust learning systems.

Alex Schwing

- Assistant Professor in the Department of Electrical and Computer Engineering at UIUC
- Member of Coordinated Science Laboratory
- Research Interests: algorithms for prediction with and learning of non-linear (deep nets), multivariate and structured distributions, and their application in numerous tasks, e.g., for 3D scene understanding from a single image.

