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Abstract—Recent attacks against cyber-physical systems
(CPSes) show that traditional reliance on isolation for security is
insufficient. This paper develops real-time assessment and mitiga-
tion of an attack’s impact as a system’s built-in mechanisms. We
focus on a general class of attacks, which we call time delay attack,
that delays the transmissions of control data packets in a linear
CPS control. Our attack impact assessment, which is based on a
joint stability-safety criterion, consists of (i) a machine learning
(ML) based safety classification, and (ii) a tandem stability-safety
classification that exploits a basic relationship between stability
and safety, namely that an unstable system must be unsafe
whereas a stable system may not be safe. The ML addresses
a state explosion problem in the safety classification, whereas the
tandem structure reduces false negatives in detecting unsafety
arising from imperfect ML. We apply our approach to assess the
impact of the attack on power grid automatic generation control,
and accordingly develop a two-tiered mitigation that tunes the
control gain automatically to restore safety where necessary and
shed load only if the tuning is insufficient. Extensive simulations
based on a 37-bus system model are conducted to evaluate the
effectiveness of our assessment and mitigation approaches. We
also apply our attack impact assessment approach to a thermal
power plant control system consisting of two PID control loops.

I. INTRODUCTION

By integrating modern information and communication
technologies (ICTs), critical systems (e.g., power grids and
advanced manufacturing facilities) are transforming into cyber-
physical systems (CPSes). However, whereas the use of ICT
can improve system performance, it also incurs cybersecurity
risks. To date, the security of these systems has largely
relied on isolation from public networks through air gaps
and firewalls. However, the isolation is questionable, due to
insiders [1] and stepping stone attacks [2]. For instance, the
Dragonfly attack against power grids [3] compromised a third-
party virtual private network (VPN) software vendor first, and
then used the result as a stepping stone to intrude into the
grids. Once the attackers breach the isolation, they can launch
powerful data integrity attacks similar to Stuxnet [4]. They
can also build a botnet that exploits proliferating industrial
Internet-of-Things (IoT) devices to launch distributed denial-
of-service (DDoS) attacks. A prominent example is the 2016
Dyn attack launched from a massive Mirai-infected IoT bot-
net [5].

Motivated by the aforementioned security incidents, this
paper studies the assessment and mitigation of the impact of
an important and general class of attacks, which we call the
delay attack, on a CPS that employs closed-loop control [6]–
[8]. The attack maliciously delays the transmissions of control

data packets without having to temper with the data content.
Since CPS control often requires timely execution of control
actions, the attack can undermine system performance severely
and even cause catastrophic safety incidents. Compared with
data tampering that needs to break non-trivial cryptographic
protection, the delay attack can be implemented more sim-
ply using compromised routers or jamming communication
channels through an IoT botnet to increase the communica-
tion latency. Hence, it is an important threat that requires
immediate attention. However, whereas the attack can be
readily detected by trustworthy synchronization of the clocks
of coordinating CPS devices and subsequent verification of
packet timestamps, assessing and mitigating its impact in real
time are challenging due to the complexity of typical real-
world CPS control systems.

In this paper, we propose to use a joint stability-safety
criterion for the attack impact assessment and mitigation.
Stability and safety concern a system’s ability to keep its
state fluctuations bounded and moreover within a specified
safe range, respectively, in the presence of exogenous distur-
bances that are of bounded magnitudes. As the disturbances
(e.g., sensor noises and system input changes) are inevitable,
stability is a basic requirement that must be met by any
CPS. Otherwise, the system may experience unacceptable
state divergence given a possible disturbance. Besides stability,
however, the CPS must further operate within its engineered
safety limits. For instance, a 60Hz power grid must maintain
its frequency within a tight range of about 59.5Hz to 60.5Hz;
otherwise, generators/loads may trip automatically causing
blackouts. Thus, real-time knowledge of the system’s stability
and safety is critical. Based on this knowledge, if a delay
attack is assessed to destabilize the system or push it into an
unsafe region, attack mitigation must be initiated to regain the
system’s stability and safety.

This paper considers linear time-invariant (LTI) systems that
can characterize a wide range of real-world CPS systems.
From control theory, a LTI system’s stability depends on the
system model only. Simple LTI systems can have closed-form
stability conditions. The stability of more complex LTI sys-
tems can be assessed numerically by simulations. In contrast,
the safety of a system depends on its future transient trajectory,
which presents various challenges. Particularly, simulating the
transient trajectory of a complex system may be too slow
for detecting and reacting to its impending unsafety. An
alternative approach is to run offline simulations comprehen-
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sively to understand the system’s safety proactively, ahead
of actual operation. However, as the trajectory depends on
the initial system state, enumerating all the possible states
in a continuous value domain is generally impossible. On
the other hand, discretization of the value domain, even if
it is sufficiently accurate, will lead to an enumeration of
exponential complexity with respect to the dimension of the
system state. For instance, for an n-bus power system, whose
system state dimension is n, its total number of discretized
states is mn, where m is the number of quantization steps
for the state variable corresponding to each bus. The value of
n for practical systems can be in the hundreds, making the
enumeration computationally infeasible.

To address the above challenge, we propose a novel delay
attack impact assessment that features (i) a machine learning
(ML) based safety classification, and (ii) a tandem stability-
safety classification structure. First, to avoid the exponential
complexity of enumerating the system states, we adopt a
Monte Carlo method to randomly sample the state space and
run offline transient simulations to generate safety labels for
the sampled states. These states and their labels are used to
train an ML model that can classify the safety of a current
system based on its real-time state, even if this state is most
likely not in the training set. The online safety classification
based on the trained model will be fast enough to ensure the
timeliness of the impact assessment. Second, we leverage a
basic relationship between the stability and safety, namely that
an unstable system must be unsafe whereas a stable system
can be either safe or not. Based on this relationship, we design
the tandem structure to classify the system’s stability first and
then its safety only if stability is indicated. As the stability
classification is simpler, faster, and more accurate than the
safety assessment, the tandem structure can reduce (i) false
negatives in the unsafety detection due to the ML’s inaccuracy,
and (ii) average execution time for the overall attack impact
assessment since the safety classification can be skipped for a
system determined to be unstable.

This paper applies the proposed assessment approach to two
real-world CPSes: power grid automatic generation control
(AGC) [9] and power plant control (PPC). AGC which is
a critical component of existing power grids and whose
complexity is representative of actual CPSes. The goal of the
AGC is to maintain the grid frequency at a standard nominal
value (e.g., 60Hz) in the presence of load changes as primary
exogenous disturbances. As the AGC’s control signals are
transmitted over communication networks, the delay attack
is an important concern for AGC. We report extensive sim-
ulations using PowerWorld [10], an industry-strength power
system simulator used by actual grid operators. The results
show that AGC’s stability depends on the delay and the total
load only, whereas its safety additionally depends on the load
changes and detailed distribution of the load among the load
buses. While the boundary of the stable region can be obtained
easily via a small set of offline simulations, enumerating all
possible load distributions to characterize the safety boundary
faces the aforementioned state explosion problem with respect

to the number of buses. Instead, we apply the Monte Carlo
method and use the extreme learning machine (ELM) [11] to
learn the safety boundary. Furthermore, we use the achieved
stability-safety classification to develop a two-tiered mitigation
of the attack’s impact. The mitigation regains the stability
and safety of the AGC whenever needed, by tuning the
AGC gain whenever possible and resorting to shedding load
whenever the gain tuning is insufficient. We also apply our
assessment approach to a PPC system modeled in Modelica,
which consists of two PID control loops. Specifically, we
generate offline training data using a Modelica simulator to
learn the stability and safety boundaries by ELM and also
evaluate the accuracy of the trained ELMs.

The rest of this paper is organized as follows. §II reviews
related work. §III presents preliminaries and a motivating
example. §IV overviews our approach. §V and §VI present the
attack impact assessment and mitigation approaches, respec-
tively. §VII and§VIII present the evaluation results for AGC
and PPC, respectively. §IX concludes.

II. RELATED WORK

Power system stability and safety classifications are often
studied separately in the literature. In [12], a Lyapunov method
is used to classify a nonlinear system’s stability without
solving the differential equations. In [13], [14], the stability of
a system is classified based on its energy accumulated during
a certain time period. Traditional safety classification methods
often analyze post-contingency power flows [15]. They use
active power [15], [16] or composite indices based on various
physical parameters [16] to classify the safety. However, the
high computational overhead of these approaches makes them
unsuitable for real-time classification [17], [18].

To reduce the computational overhead of real-time clas-
sification, recent studies apply ML (e.g., decision tree [19],
support vector machine (SVM) [18], and artificial neural
network (ANN) [17], [20], [21]) to classify a power sys-
tem’s stability [18], [19] and safety with respect to certain
contingencies [20], based on measured physical conditions
of the system. In [18], a trained SVM classifies the power
system’s stability by using phasor measurement unit data. The
SVM will be retrained if the system condition has changed
significantly. An ANN model used in [20] takes the system
loading as input to rank the severity of the contingency in
question, in terms of a composite performance index. However,
all these studies do not address the emergent concern of
cybersecurity.

Power grid cybersecurity has received increasing research.
Chen et al. [6] study the impact on voltage and angle transient
stability of data tampering attacks against voltage support
devices. They do not study how to mitigate attack’s impact.
Farraj et al. [8] study how the delay attack on power grid
sensor measurements may affect the system’s transient stabil-
ity, and design a parametric feedback controller to adaptively
enhance the system’s tolerance to the attack. Their work is
based on a closed-form analytic model of the system, which
is often unavailable for complex systems in practice.
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Existing research on AGC’s cybersecurity only focuses on
false data injection (FDI) attacks [22]–[24], where the attacker
tampers with sensor and/or control data in the AGC control
loop. Specifically, the studies [22], [23] analyze the impacts
of cyber-attacks on a two-area system’s safety by reachability
analysis. In [24], instead of qualitative reachability analysis, a
quantitative analysis on the minimum time until the system is
unsafe is proposed. Different from these studies on FDI that
assume the adversary’s non-trivial ability to corrupt data, this
paper considers delaying the data packets between communi-
cating system components, which is easier to implement and
thus represents an even more present danger. Rahimi et al. [25]
study the impact of the delay attack on AGC’s stability through
simulations of a three-area power system model. They do not
consider the more subtle but equally critical property of safety,
however. Moreover, they do not provide attack mitigation.

III. STABILITY AND SAFETY UNDER DELAY ATTACK

This section defines stability and safety, as well as our threat
model. Then, we use a simple control system to illustrate the
impacts of the delay attack on the stability and safety.

A. System Model and Definitions of Stability and Safety

We consider a discrete-time CPS control system. Time is
divided into slots. A controller collects measurements by
the sensors in a plant and sends control commands to the
actuators, which may change the state of the plant to maintain
it at a given setpoint. The system is subjected to various
disturbances, such as measurement noises, actuation biases,
setpoint changes, etc. We adopt a bounded-input, bounded-
output (BIBO) stability criterion:

Definition 1. A system is BIBO-stable if its state remains
bounded while it experiences bounded disturbances.

We note that there are other stability definitions, e.g.,
asymptotic stability [26]. A system is asymptotically stable
if for any positive ϵ, there exists a positive δ such that for
any initial state of the system x(0), the system’s asymptotic
equilibrium limt→∞ x(t) satisfies ||x(t)− limt→∞ x(t)|| < ϵ,
∀t ≥ 0, where ||x(0)− limt→∞ x(t)|| < δ. An asymptotically
stable system is also BIBO-stable. Thus, BIBO stability is
more basic and it is widely adopted in research on CPS
control. For instance, the IEEE/CIGRE joint task force defines
power system stability based on the BIBO concept [27]. In this
paper, by stability we mean BIBO stability unless otherwise
stated. Stability is a mandatory property for CPS design and
operations.

We adopt the following safety definition.

Definition 2. A system is safe if its state remains within a
specified range while it experiences disturbances of magni-
tudes no larger than specified values.

Safety is naturally a key concern of system operators,
because devices are designed to function properly only with-
in specified ranges. Crossing these ranges may damage the
devices or cause system failures. From Definitions 1 and 2,

note that stability describes a qualitative “bounded” nature
of the system state, whereas safety additionally imposes a
quantitative range of the bounds. Thus, stability is a more
basic requirement in that an unstable system must be unsafe,
but a stable system may not be safe. This relationship between
the two different properties of a system will be exploited in
§V to improve the performance (e.g., accuracy and timeliness)
of the attack impact assessment for both the properties.

B. Threat Model

The delay attack is formally described as follows. Let w(t)
denote packetized control data generated and transmitted by
the controller in the tth time slot. The transmissions of the
packets are maliciously delayed by τ time slots. Thus, in the
(t+ τ)th time slot, the data w(t) arrives at the actuator. Note
that τ is an integer since the actuator operates in discrete
time. The delay attack does not tamper with the content of the
transmitted data. As §I discusses, it can be launched through a
compromised router or by jamming communication channels
using an industrial IoT botnet. Note that the delay τ can also
include the natural communication latency.

In this paper, we assume that the clocks of the controller
and the actuator are synchronized. Thus, if the controller adds
a timestamp t to the transmitted data w(t), the actuator can
easily measure the delay τ introduced by the attack. The
measured τ is used as an input to the attack impact assessment
and mitigation. We note that secure clock synchronization
techniques [1] can be used to ensure trustworthy measurements
of τ . The scenario in which τ is unknown to the actuator (e.g.,
due to disrupted clock synchronization between the controller
and actuator) is left to future work.

C. Stability and Safety of a Control System under Delay Attack

We use the feedback control system in Fig. 1(a) to illustrate
the impacts of the attack on stability and safety. The results
provide important observations that motivate the design of the
attack impact assessment and mitigation approaches. In the
absence of the attack, the system dynamics is

ẋ(t) = Ax(t) +B(u(t) + d(t)), (1)
y(t) = Cx(t), u(t) = K(r(t)− y(t)),

where x, y, d, r, and u are the system state, sensor measure-
ment, disturbance, setpoint, and control signal, respectively;
A, B, and C are system-specific matrices; K is a matrix
characterizing the control law. Thus, the system employs
proportional control. Note that the attack impact assessment
and mitigation developed later in this paper do not depend on
the control law. In particular, the AGC and PPC case studies
employ proportional-integral (PI) and proportional-integral-
derivative (PID) control. We consider the delay attack on u,
as illustrated in Fig. 1(a). Because of the attack, the u in
Eq. (1) will be a delayed version u(t− τ), which is given by
u(t−τ) = K(r(t−τ)−y(t−τ) = K(r(t−τ)−Cx(t−τ)).
Thus, Eq. (1) becomes

ẋ(t) = Ax(t)−BKCx(t− τ) +BKr(t− τ) +Bd(t). (2)
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Fig. 1. A closed-loop control system under the delay attack: (a) System block
diagram; (b) Largest eigenvalue vs. the delay.

We now analyze the stability of the system in Eq. (2). By
extending a result in [28], a necessary and sufficient condition
for the stability of the system ẋ(t) = Âx(t) + B̂x(t − τ) is
Re{λi(Â+Q(0))} < 0, where Q(0) is a non-singular solution
of e(Â+Q(0))τQ(0) = B̂ and λi represents the ith eigenvalue
of Â + Q(0). By replacing Â = A and B̂ = −BKC, we
can analyze the system in Eq. (2). The numeric results in the
rest of this section are based on the following settings: A =
[−1 − 3; 3 − 5], B = [2 − 1; 1 0], C = [0.8 2.4; 1.6 0.8],
K = 2.

1) Impacts of delay on stability and safety: First, we
analyze the impact of τ on the stability. The real component
of the largest eigenvalue Re{λi(Â+Q(0))} versus τ is shown
in Fig. 1(b). When τ is larger than 0.2 s, the largest eigenvalue
has a positive real component and so the system is unstable.

Second, we run time-domain simulations to understand the
system’s safety. The system output y over time under different
settings is shown in Fig. 2. Both the delay against u and the
step-change disturbance d of magnitude of 1.5 are introduced
at t = 30 s. In Figs. 2(a) and 2(b), where τ = 0.2 s and τ =
0.3 s, the system is convergent and divergent, respectively. This
result is consistent with the stability condition obtained from
Fig. 1(b). The safety classification depends on how we define
the safe range. For example, if we define the safe deviation
range of y’s components to be [−1, 1], the system in Fig. 2(a)
is safe. However, if the safe range is defined to be [−0.4, 0.4],
the system is unsafe. Thus, even if the system is stable, it
can be either safe or unsafe, depending on the given safety
conditions and the system’s state trajectory.

2) Impacts of disturbance on stability and safety: Since
stability is determined by the system’s eigenvalues only, it is
not affected by the disturbance d, so that Â and B̂ do not
include d. In contrast, as safety depends on the trajectory of
y, which depends on d, the magnitude of d can significantly
affect the safety. We now illustrate this observation using
Fig. 2(c) that has the same setting as Fig. 2(a) except that
the disturbances in Fig. 2(a) and Fig. 2(c) are 1.5 and 30,
respectively. Fig. 2(c) shows larger output deviations, which
may violate the safety requirement.

3) Impacts of initial state on stability and safety: As the
system’s eigenvalues do not depend on the initial system
state, the stability does not depend on the initial state. In
contrast, since the initial state affects the system trajectory,
it affects the system’s safety. For instance, Fig. 2(d) has
the same setting as Fig. 2(a) except that they have different
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Fig. 2. The system output y under different settings.

initial states. The system remains convergent in this case,
which generally implies a stable system. However, the output
deviation is doubled compared with that of Fig. 2(a), and the
larger deviation may violate safety.

In summary, we have these two observations: (i) the delay τ
affects both stability and safety, (ii) the safety depends on the
disturbance and the system’s initial state, while the stability
does not. These observations will guide the design of the
proposed tandem stability-safety assessment method.

IV. OBJECTIVE AND APPROACH OVERVIEW

A. Objective and Challenges

We aim to develop delay attack impact assessment and
mitigation for the CPS control. The input for the assessment
includes the measured delay τ and the measurements of
sensors monitoring the system state. If the system is classified
unsafe (i.e., it will enter an unsafe region), mitigation actions
should be initiated to regain safety.

We face the following main challenges. First, although we
can obtain an analytic stability condition for the simple system
in Fig. 1(a), it is challenging to obtain similar conditions for
real-world complex systems. Second, the safety classification
needs the system’s trajectory such as those shown in Fig. 2.
Although we can use a high-fidelity simulator to predict the
trajectory, the transient simulations for complex systems can
be too slow for real-time online prediction and control. For
instance, a transient simulation for the 37-bus power grid
shown in Fig. 4 takes 138 s on a 28-core computing server,
while the grid under attack takes less than two minutes to
cross its safe range (cf. Table II). Thus, the system will
have well entered the unsafe region by the time the transient
simulation completes. Third, as locating and removing an

4



Stability classification Safety classification MitigationStableDelay detected Unsafe

Unstable

EndSafe

Fig. 3. Attack impact assessment and mitigation pipeline.

ongoing cyber-attack often takes significant time, before the
attack is removed, it is critical to tolerate the attack and
mitigate its impact by adapting tunable system parameters and
settings. However, a model that characterizes the effects of the
new parameters and settings on the safety will be needed to
determine their suitable values. It is similarly challenging to
obtain this model for complex systems.

B. Approach Overview

This section overviews our approach. In every time slot,
if the measured total delay τ in transmitting sensor measure-
ments and control commands exceeds a threshold (e.g., the
typical communication delay), we execute the attack impact
assessment and mitigation pipeline shown in Fig. 3. First, we
classify system’s stability. If the system is unstable, which
implies that it is unsafe, we initiate mitigation to restore safety;
otherwise, we classify system’s safety. If and only if the system
is classified unsafe, we initiate mitigation. We now discuss the
design of the stability and safety classification, as well as the
mitigation, that addresses the challenges described in §IV-A.

First, since it is difficult to analyze the stability and safety
of complex systems, we use a simulation-based approach.
We assume that a high-fidelity simulator that can accurately
characterize the system dynamics is available. This assumption
agrees with practice. For instance, power grid operators gener-
ally maintain high-fidelity simulators of their systems to guide
design and operations. Using the simulator, we can explore key
factors that affect the system’s stability and safety.

Second, since the transient simulations, though accurate, are
generally too slow for online use, we conduct offline simula-
tions to generate extensive data with appropriate stability and
safety labels. The labeled data will be used to characterize the
stability and safety boundaries. However, the dependence of
safety on the system’s initial state, as illustrated in §III-C3,
leads to state explosion if we were to enumerate all the initial
states during the generation phase of training data. To deal
with this issue, we apply a Monte Carlo method to generate
the training data and train an ML model to characterize the
safety boundary. The ML model can also be used to guide the
search for suitable mitigation actions.

Third, the ML model may err occasionally in the safety
classification. On the other hand, as observed from case studies
in §III-C and §V, the stability classification is simpler, faster,
and more accurate. Thus, we apply the stability classification
first in the overall assessment, so that we can condition the
safety classification on the more reliable and faster stability
classification result. This conditional sequential strategy re-
duces the overall classification errors and runtime overheads.

We note that the detailed design of the components shown
in Fig. 3 is system specific. However, we believe that the

basic design paradigm is applicable to a wide range of CPSes.
In the rest of this paper, we will apply it to the domains
of AGC and PPC, which are fundamental control systems
used in real-world power systems, and design accordingly the
domain-specific components. Note that we will primarily focus
on the AGC case study in §V, VI, and VII first. Then, we
similarly apply the approach to the PPC case study and present
a summary of the results in §VIII due to space constraints.

V. STABILITY-SAFETY ASSESSMENT FOR AGC

Since AGC involves long-range communications and its
malfunction can cause grid-wide failures and infrastructure
damage, it can be an attractive target for attackers. In §V-A, we
present necessary background of the AGC for our discussions.
§V-B presents extensive simulations to understand the AGC’s
stability and safety under the delay attack. §V-C applies the
proposed tandem stability-safety assessment to the AGC.

A. Background of AGC

AGC maintains the grid frequency at a nominal value
(e.g., 60Hz) by adjusting the setpoints of generators. It also
maintains the net power interchanges among neighboring areas
at scheduled values [9]. Here, an area is a part of the grid and
it is usually operated by a utility. Two areas are connected
by tie-lines. Fig. 4 illustrates a three-area 37-bus system1,
where the dotted lines represent the tie-lines. As illustrated
in Fig. 5, the AGC, located in the grid control center, receives
over a communication network measurements of the deviations
of the grid frequency (from the standard frequency) and the
ith area’s power export from their respective setpoints (which
are denoted by ∆ωi and ∆PEi), and it computes the area
control error (ACE) as ACEi = αi ·∆PEi + βi ·∆ωi, where
αi and βi are two constants. The control center sends ACEi

to the area’s power plants over the communication network.
Each plant applies PI controller with a gain of k to generate
a reference signal for its generator. Specifically, the reference
signal is −k

∫
ACEi(t)dt. The above process is repeated every

AGC cycle, which is often two to four seconds. We note that
this reference signal is the power setpoint of the PPC system
studied in §VIII.

The sensor measurements and ACE are transmitted in
long-range communication networks that are susceptible to
cybersecurity threats. In this paper, we focus on the delay
attack against transmissions of ACE signals. However, our
approach can be readily applied to delay attacks on sensor
measurements, or both ACE signals and sensor measurements.

B. AGC’s Stability and Safety under Delay Attack

This section presents two extensive simulation studies to
investigate how the following factors may affect the AGC’s
stability and safety: (i) the grid’s total load, (ii) the distribution
of the load among the load buses, (iii) the change of load,

1We use the 37-bus system as a case study throughout this paper. It
is a test system [29]. Its scale corresponds to a small-/mid-scale grid in
real life. According to our rough count based on a grid topology database
(http://bit.ly/2vRH5Nd), a major fraction of 130 national grids consist of fewer
than 37 buses.
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and (iv) the communication delay. We note that the load
distribution determines the power system’s state, which is
often defined as the union of all the buses’ voltage phasors.
Thus, the total load can be considered a statistics of the sys-
tem’s initial state. The load change is the primary exogenous
disturbance to the AGC. The simulations are conducted using
PowerWorld, an industry-strength high-fidelity power system
simulator, based on the system model in Fig. 4. The main
simulation settings are: the length of a time slot is 1 s; the
length of an AGC cycle is 4 s; each simulation lasts for 300 s;
the delay attack on the ACE signal is launched at t = 120 s;
the load change occurs at t = 140 s.

1) AGC’s stability: The stability is assessed by checking
the system’s convergence. We have the following observations.
AGC’s stability depends on the total load: Fig. 6 shows the
AGC’s stability under different total loads and delays, where
a blue/red point means that the system is stable/unstable,
respectively. A total of 7,900 combinations of the total load
and delay are tested. We can see that the total load affects the
maximum delay that the system can tolerate to keep stable.
For instance, when the total load is 600MW, the maximum
tolerable delay is 6 s. When the total load is 1000MW, the
maximum tolerable delay is 2 s only. Fig. 6 also shows a clear
cut boundary between the stable and unstable regions.
AGC’s stability is independent of the detailed load dis-
tribution: We fix the total load at 795MW and distribute
it among the load buses randomly. Simulations using 1,000
random load distributions show that the maximum tolerable

Fig. 6. AGC’s stability under different total
loads and delays.

TABLE I
MAX TOLERABLE DELAY.

Load Total load
change 715 795 874
−10% 5 3 3
−5% 5 3 3

0 5 3 3
5% 5 3 3
10% 5 3 3
aThe delays are in seconds.
bTotal Loads are in MW.

TABLE II
TIME TO CROSS THE SAFE RANGE VS. DELAY AND LOAD CHANGE.

Delay (s)
0 1 2 3

L
oa

d
ch

an
ge

(M
W

)

-80 105.45 105.45 105.7 105.8
-40 ∞ ∞ ∞ 276.1
0 ∞ ∞ ∞ 944.3
40 148.6 148.6 148.6 148.6
80 146.1 146.1 146.1 146.1

∗The time values are in seconds; ∞ means the system is safe.

delay is always 2 s. Under other settings of the total load, the
maximum tolerable delay is also a constant over the different
load distributions. This gives strong empirical evidence that
the AGC’s stability is independent of the load distribution.
The observation is consistent with the standard practice of
analytical modeling of AGC, which considers the total load
only but not the load distribution [9].
AGC’s stability is independent of load change: Table I
shows the maximum tolerable delay under different settings
of the total load and the load change as percentage of the total
load. The load change consists of step changes at all the load
buses at t = 140 s. The step change is realistic given increasing
adoption of demand response and distributed renewable energy
sources that can trigger sudden changes in load. From the
table, for each tested total load setting, the AGC’s stability
is unaffected by the change. This result is consistent with
our discussions in §III-C2. Moreover, with less total load, the
system can tolerate longer delays, which is consistent with the
results in Fig. 6.

2) AGC’s safety: We impose the following two safety
requirements. First, the grid frequency deviation must be
within [−0.5Hz, 0.5Hz]. In real systems, if the deviation
exceeds this safe range, disruptive remedial actions such as
load shedding will be automatically initiated to protect the
grid from infrastructural damage [9]. Second, the power flows
must be within capacities of the transmission lines. Otherwise,
the lines will trip due to overheating. In our simulations, we
adopt the default line capacities of the 37-bus system.
AGC’s safety depends on load change: The total load is
800MW. Table II shows the time from the launch of the delay
attack to the breach of the safety requirement under different
delays and load changes. The symbol ∞ means that the safety
limits are never crossed, i.e., the system is safe. From the table,
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the AGC’s safety is affected by the load change, which is
consistent with our discussion in §III-C2. For instance, when
the load change is 5% of the total load (i.e., 40MW), the
system will be unsafe, regardless of the delay. When the load
change is small, the system will be safe if the delay is also
small. Thus, the load change and delay jointly affect the safety.

AGC’s safety depends on total load: Fig. 7 shows the
minimum delays that lead to unsafety under different total
loads and load changes. Each grid point represents such a
minimum delay obtained by running a set of simulations under
different delays. Note that, to simplify the illustration, we
relax the transmission line capacities to infinite, such that
the load distribution does not affect the safety. The next set
of experiments will show the impact of the load distribution
on the safety under finite line capacities. In Fig. 7, the
surface formed by the grid points that represent the obtained
minimum delays leading to unsafety divides the space into safe
and unsafe regions, which are below and above the surface,
respectively. The result shows that the total load, the load
change, and the delay jointly affect the AGC’s safety.

AGC’s safety depends on load distribution: We fix the
total load at 800MW and distribute it among the load buses
randomly. Fig. 8(a) and Fig. 8(b) show the classification of
the AGC’s safety given different delays in 30 cases of the
load distributions, when the line capacities are set to be
infinite and finite, respectively. Although the line capacities
are finite in practice, we present the infinite case to help
understand the affecting factors of the AGC’s safety. Under
infinite line capacities, the AGC’s safety depends on the
frequency deviation only. The deviation depends on the total
load, rather than the load distribution. Thus, in Fig. 8(a), the
safety is independent of the load distribution. In contrast, since
power flows depend on the load distribution, under finite line
capacities, the load distribution will affect the AGC’s safety.
In Fig. 8(b), for a given delay, the system may be safe or
unsafe depending on the load distribution.

3) Summary: The above experiments show that the AGC’s
stability depends on the total load and the delay, while its
safety additionally depends on the load change and the load
distribution. This observation is mostly consistent with that
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Fig. 8. AGC’s safety under different load distributions. (a) Infinite line
capacity; (b) Finite line capacity.

for the barebone control system in §III-C, except that the
AGC’s stability depends on the total load, a statistics of the
system state. This can be explained from the fact that AGC is
a nonlinear system, although its control-theoretic analysis is
often based on a linearization at the system’s current condition
as characterized by the total load [9]. Thus, the AGC’s stability
condition is also affected by the total load. However, this
minor deviation will not impede the application of the tandem
stability-safety assessment, since the scalar total load will not
lead to a state explosion problem.

C. Stability-Safety Assessment for AGC under Delay Attack

This section applies the proposed tandem stability-safety
assessment to AGC. From Fig. 6, since the AGC’s stability has
a clear cut boundary in the two-dimensional space formed by
the total load and the delay, it can be classified quickly at run
time based on the boundary a priori obtained through exten-
sive offline transient simulations. We call this classification ap-
proach boundary-based stability classification. Specifically, if
the system’s current operating point (i.e., total load and delay)
is below the boundary, such as that shown in Fig. 6, the system
is stable; otherwise, it is unstable. This classification avoids
running a time-consuming online transient simulation based
on the system’s current operating point. In particular, due to
the limited dimension of the stability space (i.e., two), we can
achieve any granularity in enumerating operating points within
any specified range. As a result, the boundary-based approach
achieves perfect classification accuracy asymptotically as the
enumerating granularity goes to zero.

In contrast, AGC’s safety additionally depends on the load
distribution vector, which has exponential complexity with
respect to the number of load buses that is often tens to
hundreds. To avoid the exponential complexity, we use a
Monte Carlo method to randomly sample the operating points
in a discretized state space and generate extensive offline
simulation results with determined safety labels to train an
ELM [11] to characterize the AGC’s safety. The ELM is
a single hidden layer feedforward neural network with a
training algorithm much faster than conventional gradient-
based learning algorithms. At run time, the trained ELM
classifies the AGC’s safety based on the current operating point
(i.e., total load, load change, load distribution, and delay). In
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Fig. 9. FP, FN rates, and testing time versus the number of hidden nodes in
ELM. (a) FP and FN rates. (b) Testing time.

§VII, we will compare the performance of the ELM with a
baseline approach that also uses the training data to classify
safety.

We present the following numeric results to show the effec-
tiveness of the ELM-based safety assessment. The training and
testing data sets consist of 11,000 and 7,000 operating points
and their safety labels, respectively. We use the false positive
(FP) and false negative (FN) rates as the accuracy metrics,
which are the percentages of safe (resp., unsafe) cases that are
wrongly classified to be unsafe (resp., safe). The green and red
curves in Fig. 9(a) show the ELM’s FP and FN rates versus
the number of hidden nodes in the ELM. The two rates are
generally below 5%. In §VII-C, we will discuss how to deal
with the FPs and FNs. When the number of hidden nodes is
300, both the two rates reach their knee points. Thus, 300 is
a satisfactory setting, since using more hidden nodes does not
improve the accuracy much, but increases the testing time as
shown by the red curve in Fig. 9(b). Under the setting of 300,
the testing time is around 0.03ms only on an Intel i7 2.2GHz
CPU. This time is short compared with the time horizon of
a power grid’s fault clearing (e.g., 200ms for lightning strike
overcurrent clearing). The testing time can be further reduced
significantly by using hardware acceleration.

Lastly, we show the benefits of the tandem stability-safety
assessment. First, as the boundary-based stability classification
gives asymptotically perfect accuracy, it helps reduce FNs of
the ELM-based safety classification. The blue and black curves
in Fig. 9(a) show the FP and FN rates of the tandem stability-
safety assessment. FN rate is reduced by up to 1%. Second, the
blue curve in Fig. 9(b) shows the testing time of the boundary-
based stability classification, which is 11 microseconds only,
3 times shorter than that of the ELM’s testing time with 300
hidden nodes. Thus, under the tandem approach, any instability
will be detected by the fast stability classification, which
improves the timeliness of the needed mitigation (cf. §VI).
In §VII-C, we will evaluate the impact of an FP and describe
an approach to further reduce the FN rate.

VI. MITIGATING IMPACT OF ATTACK AGAINST AGC

This section presents an approach to mitigating the delay
attack impact on AGC. As the total load is an important
determining factor for both stability and safety, a feasible
approach is to shed load to restore safety. However, clearly,

0.5 0.6 0.7 0.8 0.9 1.0
Total load (GW)

0

2

4

6

8

10

12

M
a
x
 

to
le

ra
b
le

 d
e
la

y
 (

s
)

Stable

Unstable

(a) Stability boundaries (b) Safety boundaries
Fig. 10. System stability and safety boundaries under different k settings.
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Fig. 11. Two-tiered delay attack impact mitigation.

load shedding will affect customers adversely, sometimes
severely. Hence, it should be avoided if possible. This section
proposes a two-tiered approach that firstly tunes the AGC gain
as a first-line defense, and resorts to shedding load only when
the gain tuning is insufficient. This section studies the impact
of the gain on the AGC’s stability and safety first in §VI-A.
Then, it presents the two-tiered approach in §VI-B.

A. Impact of AGC Gain on Stability and Safety

As discussed in §V-A, each power plant applies a PI
controller with a gain of k to the received ACE to produce
a reference signal for the plant’s generator. We conduct sim-
ulations based on the 37-bus system model to investigate the
impact of k on the AGC’s stability and safety. The curves
and surfaces in Figs. 10(a) and (b) show the stability and
safety boundaries, respectively, under different settings of k.
By reducing k, we can expand the stable and safe regions.
However, from control theory, a smaller k will result in slower
convergence when there is a load change. Hence, we have a
trade-off between (i) AGC’s tolerance to the delay in terms
of stability and safety, and (ii) AGC’s convergence speed in
response to a load change. As AGC generally also needs to
meet some required convergence speed, there exists in practice
a minimum allowable setting for k [9], which is denoted as
kmin. Multiple ELMs are trained to characterize the safety
boundaries under different settings of k. This ELM bank will
be used in §VI-B to find a k to restore safety where needed.

B. Two-Tiered Delay Attack Impact Mitigation

Fig. 11 illustrates the integrated stability-safety assessment
and attack impact mitigation. When a system is classified
unstable or unsafe, the two-tiered mitigation is activated. No
mitigation is needed only when the system is classified safe.
The two-tiered mitigation works as follows. First, within the
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range from kmin to the current setting of k, we search for
the maximum setting of k that can restore safety using the
ELM bank discussed in §VI-A. If such a k setting is found, it
is piggybacked onto the next ACE signal that will be sent
to generators. Otherwise, load shedding should be applied.
We use the ELM bank to find the minimum amount of load
that needs to be shed to restore safety under the setting
kmin. This minimum amount is denoted by ∆Lmin. The grid
operator sheds ∆Lmin load and piggybacks the kmin to the
next ACE signal that will be sent to generators. The shedding
amount can be shared among load buses equally or using
existing scheduling algorithms addressing other grid operation
optimization objectives and constraints [30]. Once a generator
receives the new AGC gain, it updates its setting accordingly.

VII. PERFORMANCE EVALUATION

This section evaluates several key aspects of our attack
impact assessment and mitigation designed for the AGC of
the 37-bus system shown in Fig. 4.

A. Effectiveness of ELM-Based Safety Classification

We compare the proposed ELM-based approach with a data-
driven baseline approach. Specifically, the baseline finds a
system operating point within the ELM’s training data that
has the smallest Euclidean distance to the system’s current
operating point, and yields the found operating point’s safety
label. Fig. 12 shows the classification error rates of our ELM-
based and the baseline approaches under different settings of
training data volume. Consistent with intuition, the error rate
decreases with the volume of training data. The ELM-based
approach gives lower error rates. Moreover, the running time
for ELM-based approach is up to 6,000 times shorter than that
of the baseline approach.

B. Effectiveness of Attack Mitigation

We conduct two simulations to show the effectiveness of
our two-tiered attack mitigation. The system’s total load is
1000MW. The initial setting for k is 10. The safety require-
ment for the grid frequency deviation is [−0.5Hz, 0.5Hz].
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Fig. 13. Attack impact mitigation examples. (a) Tuning k only; (b) Tuning
k and shedding load.

The attacker delays the ACE signal by 4 s from t = 120 s.
The attack impact assessment classifies the system safe until
a step load change is introduced at t = 140 s. In Fig. 13(a),
the load change is 5% of the total load. At this point, the
system is classified unsafe. The red curve in Fig. 13(a) shows
the system’s trajectory if no mitigation is applied. It confirms
the assessment result. The mitigation approach starts searching
for a k setting to regain safety. By decreasing k from 10 to
kmin = 5, the system is classified safe under the attack. The
thick green curve in Fig. 13(a) shows the system’s trajectory
after the new setting k = 5 is applied. We can see that the
system becomes safe after the mitigation. In Fig. 13(b), the
load change is 8% of the total load. Because of the increased
load change, tuning k to kmin = 5 is insufficient and shedding
10% of load is needed to restore safety. The thick green
curve in Fig. 13(b) shows the system’s trajectory after load
shedding and reconfiguring k. The system is safe after the
mitigation. The effects of different mitigation approaches on
the customers are different. In Fig. 13(b), as tuning k to kmin

still cannot mitigate the attack impact, we have to shed some of
the customer loads, which results in lower utility to the owners.
In Fig. 13(a), as the mitigation is achieved by adjusting the
AGC parameters only, no customers will be affected.

C. False Positives and Negatives in Safety Classification

While the ML deals with the state explosion problem,
it results in FPs and FNs. An FP will trigger the attack
mitigation. Fig. 14(a) shows the system’s trajectory after the
mitigation wrongly triggered by a safety classification FP
caused by a load change that is 0.5% of the total load, where
the ACE signal is delayed by 2 s from t = 120 s. As the
mitigation applies a small adjustment only (i.e., decrease k
from 10 to 8), the frequency deviation has a slightly longer
settling time. Moreover, Fig. 14(b) shows another scenario of
the system’s trajectory after the mitigation wrongly triggered
by a safety classification FP caused by a load change that is
0.5% of the total load, where the ACE signal is delayed by 5 s
from t = 120 s. The mitigation sheds 8% of the total load after
decreasing k from 10 to 5, the frequency deviation can even
have a smaller setting time. This is the because the mitigation
speeds up the system to diminish the small fluctuations due
to the delay. Therefore, as FPs mostly occur for marginally
safe operating conditions, the caused mitigation is generally of
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Fig. 15. (a) sliding window approach. The time window is set as two time
slots and the step load change will be assessed twice at t = t3 and t = t4.
(b) FN rate vs. window size. The window size is increased from 1 to 5 and
three different random load fluctuations standard deviations are illustrated.

small strength that leads to slight settling time increase or even
can help the system to decrease the settling time, mitigating
the concern of FPs.

In contrast, the system may become unsafe due to FNs. We
discuss a sliding window approach as illustrated in Fig. 15(a)
to reduce the FNs. In this approach, the load change is defined
as the difference between the current load and the load that
is a time window before. As a result, a step load change will
be assessed for multiple times. For instance, in Fig. 15(a), the
time window is two time slots and the step load change will be
assessed twice at t = t3 and t = t4. Due to the random tem-
poral fluctuations of the load, the probability that an unsafety
can be detected in at least one of the multiple assessments will
increase, thus reducing the FN rate. By increasing the window
size, a load change will be assessed for more times. Fig. 15(b)
shows the FN rate versus the window size under different
random load fluctuations’ standard deviations (σ). The FN
rate decreases with the window size. Thus, this approach can
effectively reduce the FN rate. The concern of increased FP
rate due to this approach is minor since the FPs cause little
impact on the system as illustrated earlier.

D. Impact of Load Change Trajectory

In the previous sections, the disturbances to the system are
modeled as step load changes. In practice, the load change
may take time. For instance, the customers’ solar power
generation may change due to the movement of clouds and
the ensuing load changes may take tens of seconds. This
section investigates how the trajectory of the load change
may affect the system’s stability and safety. Fig. 16 shows
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Fig. 16. Trajectories of load increasing. The load starts to change from t =
450s and lasts 600 s. The total load increases by 50 MW in all three randomly
generated trajectories.
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Fig. 17. System output for different load increase trajectories in Fig. 16 under
different delays. (a) Delay by 3 s (b) Delay by 6 s.

three trajectories for a load change from 650MW to 700MW.
The trajectories are generated randomly. Fig. 17 shows the
system frequency deviation for the different trajectories when
the system experiences delays of 3 s and 6 s. From the figure,
the system’s stability is not affected by the load trajectories.
Specifically, in Fig. 17(a), the system frequency converges to
the nominal value. In Fig. 17(b), although the system experi-
ences oscillations around the nominal value, the system will
eventually converge, although this is not shown in Fig. 17(b)
to focus instead on the details around t = 900. In contrast, the
load trajectories can affect the system’s safety. For example,
at around t = 900, the system frequency of Case 2 crosses
the safety range due to some large fluctuations of load in the
trajectory. Hence, considering the change trajectory (e.g., by
using recurrent neural network [31] to capture the effects of
time-series data) may improve the safety assessment. We leave
this task to future work.

VIII. STABILITY-SAFETY ASSESSMENT FOR PPC

In this section, we apply the stability-safety assessment
approach to a power plant control (PPC) system. We use a PPC
model in ThermoPower [32], an open-source library based on
Modelica. Note that Modelica is an object-oriented complex
physical system modeling language [33]. The signal flow
graph of the system is shown in Fig. 18. The controlled power
plant admits two inputs, the power control signal and the void
fraction control signal. The void fraction is also known as
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porosity, which is an important parameter characterizing two-
phase fluid flow, especially gas-liquid flow. The two control
signals are determined respectively by two PID controller-
s. The power controller’s feedback signal is corrupted by
additive zero-mean Gaussian noises acting as disturbances
to the system. The adversary delays the power controller’s
output signal. We use offline simulations together with ML
to model the system’s stability and safety. Specifically, we
use OpenModelica [34], a Modelica-based simulator, to run
massive offline simulations under a wide range of settings to
generate training data. Then, we train the ELMs to model the
stability and safety. Inputs to the ELMs include the sampling
period and variance of the Gaussian noise as well as the delay.
The output is the stability or safety assessment result. We apply
the sliding window approach illustrated in Fig. 15 to improve
the FN rate. The training and testing data sets consist of 10,000
and 3,500 operating points, respectively.

Figs. 19(a) and 19(b) show the FN rates of the stability
and safety assessments, respectively, under various settings of
the sliding window size. The different curves are the results
under different settings of the Gaussian noise generator’s
sampling period in seconds, i.e., the s values in the legends.
We note that different from the simple control loop in §III-C
the AGC, which are discrete-time systems, the PPC is a
hybrid system with discrete-time sensing but continuous-time
control and actuation. Thus, the Gaussian noise generation,
which belongs to the sensing part, is in discrete time. As a
result, the frequency at which we update the noise affects
the level of the disturbance to the system. Specifically, a
smaller noise sampling period causes a higher disturbance.
From Figs. 19(a) and 19(b), similar to the results for the AGC,
the FN rate increases with the window size and decreases
with the disturbance level. For attack mitigation, we can build
ELMs for a range of PID configurations (i.e., the P, I, and D
coefficients) and then apply the mitigation approach presented
in §VI to tune the PID configuration. Due to space constraints,
the results are omitted here.
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Fig. 19. FN rates of stability (a) and safety (b) assessment vs. window size.
The s is the noise generator sampling period. A smaller s value means a
larger level of disturbance to the system.

IX. CONCLUSION

This paper presented a real-time delay attack impact as-
sessment approach that applies a stability classifier and an
ML-based safety classifier sequentially. The ML addresses the
state explosion problem in the safety classification due to the
dependence of the system’s safety on the multi-dimensional
system state. The tandem stability-safety design improves
the accuracy of the unsafety detection and speeds up the
overall assessment. We applied our approach to power grid
AGC, and developed a two-tiered attack impact mitigation
that tunes the control gain as a first-line defense and resorts
to shedding load only if the gain tuning is insufficient to
regain safety. Simulations based on a 37-bus system model
verified and illustrated the effectiveness of our assessment and
mitigation approaches. We also applied our approach to assess
the stability and safety of a PPC system and presented the
evaluation results based on Modelica simulations.
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