MAYO CLINIC

CENTER FOR INDIVIDUALIZED MEDICINE

Variant Interpretation ACMG Guidelines part 1

Matheus Wilke, M.D., Ph.D. Wilke.Matheus@mayo.edu

TAC

Objectives

- 1. Introduction to ACMG variant interpretation guidelines and updated recommendations.
- 2. Understand best-practices of pathogenicity evidence acquisition and integration for variant classification.
- 3. Discussion on the current limitations and the future of clinical variant interpretation.

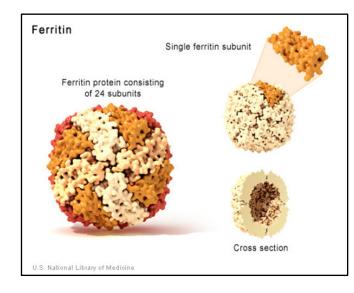
Pretest questions:

1) When we classify a variant, we do it ONLY in the context of the case we are working on, we classify `if the variant is causing the disease in the patient`.

- A) TRUE
- B) FALSE

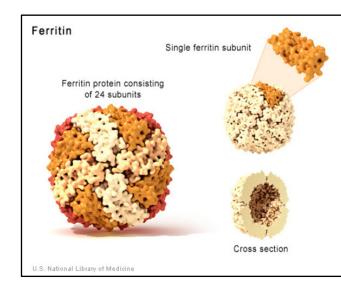
2) Retinoblastoma, the most malignant form of eye cancer, arises from a dominant pathogenic variant in one gene RB1, but only about 75% of people who carry this variant develop the disease. We are talking about:

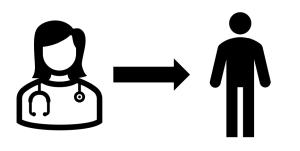
- A) Penetrance
- **B)** Expressivity


3) A frequent variant (found in >5% in a population) will always be classified as `benign`

- A) TRUE
- B) FALSE

One quick story...

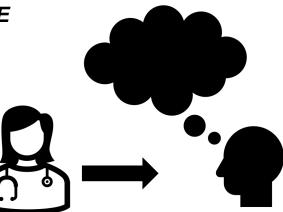



"You have a pathogenic mutation in *HFE* which is responsible for autosomal dominant hemochromatosis"

One quick story...

"You have a pathogenic mutation in *HFE* which is responsible for autosomal dominant hemochromatosis"

Pesquisa da mutação c.187C>G (p.H63D): Mutação presente, em heterozigose


H63D is considered to be the "minor" variant, which seldom causes significant iron overload, even when it is present in compound heterozygosity with C282Y.

"RISK ALLELE"

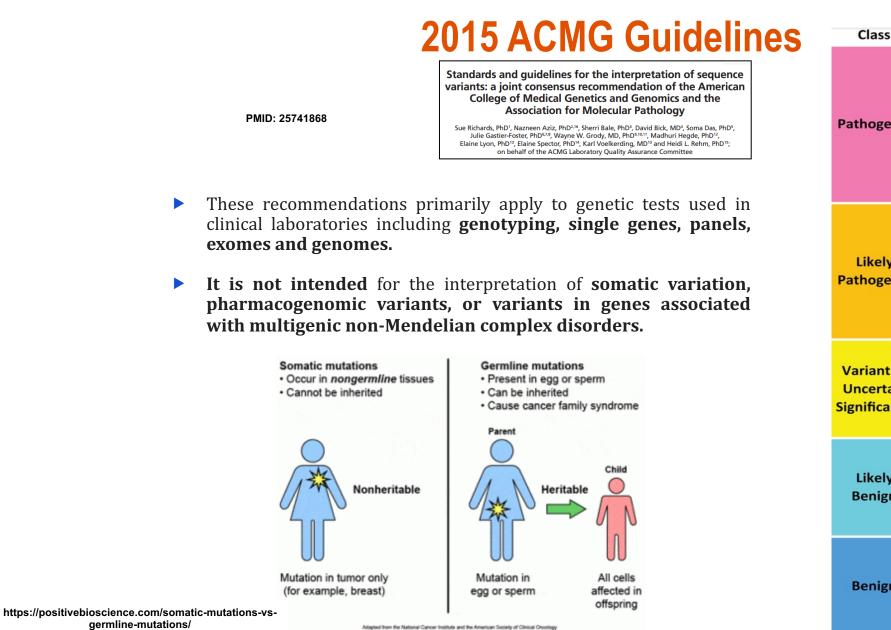
One quick story...

"You have a pathogenic <u>mutation</u> in *HFE* which is responsible for <u>autosomal</u> <u>dominant hemochromatosis</u>"

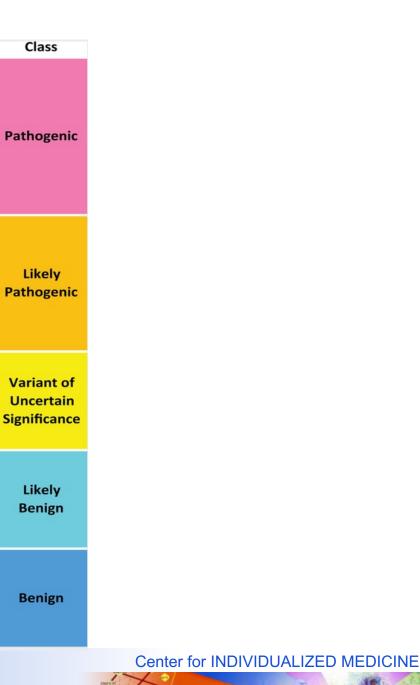
Wrong terminology Wrong Inheritance pattern...

How can we all speak the same `language`?

Established a common framework and criteria for variant classification


American College of Medical Genetics and Genomics

Translating Genes Into Health®


Pathogenic Likely Pathogenic Variant of Uncertain Significance Likely Benign Benign

Center for INDIVIDUALIZED MEDICINE

MAYO CLINIC

- These recommendations primarily apply to genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes.
- pharmacogenomic variants, or variants in genes associated with multigenic non-Mendelian complex disorders.
- Care must be taken when applying these rules to candidate genes ("genes of uncertain significance", GUS)
- This report recommends the use of specific standard terminology: 'pathogenic', 'likely pathogenic', 'uncertain significance', 'likely benign', and 'benign' to describe variants identified in Mendelian disorders.

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8} Wayne W. Grody, MD, PhD^{5,101}, Madhuri Hegde, PhD¹⁷, Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

A variant which is proven to be deleterious to protein or gene function and is associated with a particular human disease phenotype.

A variant that does not appear to have a *deleterious* effect often associated with a "normal" human phenotype.

Class

Pathogenic

Likely Pathogenic

Variant of Uncertain Significance

> Likely Benign


> Benign

©2012 MFMER | slide-

What is `Likely`?

The rules proposed to classify sequence variants follows is a heuristic system for variant classification that is compatible with a formal, quantitative, Bayesian classifier.

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

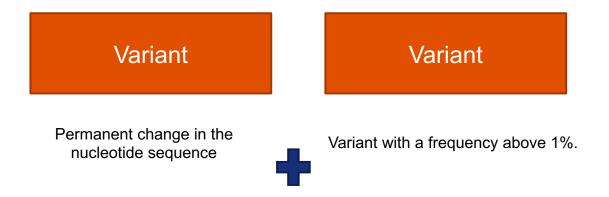
Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,2,8} Wayne W. Grody, MD, PhD^{5,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁶, Karl Voelkerding, MD¹³ and Heidi L Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

In the past...

Permanent change in the nucleotide sequence

Polymorphism

Variant with a frequency above 1%.


Center for INDIVIDUALIZED MEDICINE

TA

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,2,8} Wayne W. Grody, MD, PhD^{5,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵, on behalf of the ACMG Laboratory Quality Assurance Committee

Terminology

the following modifiers: (1) pathogenic, (2) likely pathogenic, (3) uncertain significance, (4) likely benign, or (5) benign.

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{4,7,8} Wayne W. Grody, MD, PhD^{5,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁶, Karl Voelkerding, MD¹³ and Heidi L Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

Use of ClinGen

They anticipated "that those working in specific disease groups should continue to develop more focused guidance regarding the classification of variants in specific genes given that the applicability and weight assigned to certain criteria may vary by gene and disease" (Richards et al., 2015)

ClinGen - Clinical Genome Resource

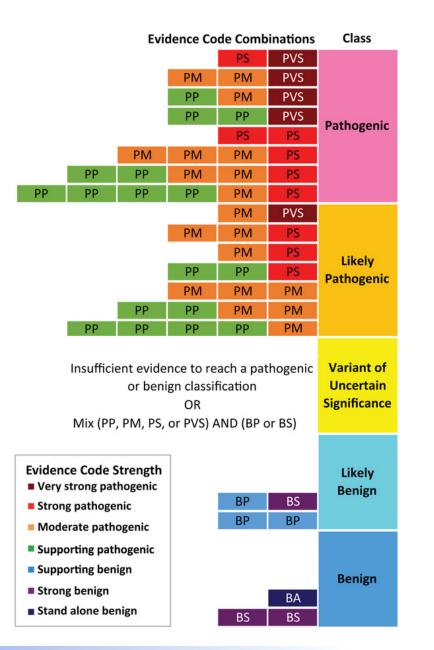
ClinGen is a National Institutes of Health (NIH)-funded resource dedicated to building an authoritative central resource that defines the clinical relevance of genes and variants for use in precision medicine and research.

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{4,2,4} Wayne W. Grody, MD, PhD^{5,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁶, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

The guideline defined 28 criteria, with codes that addressed types of variant evidence. Each evidence type or criterion code was assigned a direction, benign (B) or pathogenic (P), and a level of strength: stand-alone (A), very strong (VS), strong (S), moderate (M), or supporting (P).

	€ Ber	ilgn 🔶 🗲	Pathogenic						
	Strong	Supporting	Supporting	Moderate	Strong	Very strong			
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4				
Computational and predictive data		Multiple lines of computational evidence suggest no lineact on gene /gene product BP4 Missense in gene where only fruncating cease disease BP1 Sillent variant with non predicted splice impact BP7 In-frame indels in repeat woul known function BP3	Multiple lines of computational evidence support a deleterious effect on the geno-/gene product PP3	Novel missense change at an amino add realdue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gen where LOF is a known mechanism of disease PVS1			
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3				
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→				
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2				
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cls</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3					
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5						
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4						


ACMG 2015 guidelines discrete criteria's have a strong quantitative correlation with the odds of pathogenicity of a variant.

		BENIGN	CRITERIA	PATHOGENIC CRITERIA					
Stre	ength of Evidence	Strong	Supporting	Supporting	Moderate	Strong	Very Strong		
	s of Pathogenicity*	-18.7	-2.08	2.08	4.33	18.7	350.0		
es	Population Data	<i>BA1</i> + BS1 BS2			PM2	PS4			
Dode	Allelic Evidence &		BP2	PP1					
Category and ACMG/AMP Codes	Co-Segregation BS4 Data	BP5		PM3 PM6	PS2				
Evidence Cate Corresponding ACM	Computation & Predictive Data		BP1 BP3 BP4 BP7	PP2 PP3	PM1 PM4 PM5	PS1	PVS1		
Surres	Functional Data	BS3				PS3			
ŭ	Other BP6		PP4 PP5						

12 MFMER | 3198462-16

Pathogenic	(i) 1 Very strong (PVS1) AND
	(a) ≥1 Strong (PS1–PS4) OR
	(b) ≥2 Moderate (PM1–PM6) OR
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
	(d) ≥2 Supporting (PP1–PP5)
	(ii) ≥2 Strong (PS1–PS4) OR
	(iii) 1 Strong (PS1–PS4) AND
	(a)≥3 Moderate (PM1–PM6) OR
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR
	 (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR
	(iv) ≥3 Moderate (PM1–PM6) OR
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Benign	(i) 1 Stand-alone (BA1) OR
	(ii) ≥2 Strong (BS1–BS4)
Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR
	(ii) ≥2 Supporting (BP1–BP7)
Uncertain	(i) Other criteria shown above are not met OR
significance	(ii) the criteria for benign and pathogenic are contradictory

Center for INDIVIDUALIZED MEDICINE

TA

TA

PMID: 25741868

variants		PS4
Pathogenic	(i) 1 Very strong (PVS1) AND	
	(a) ≥1 Strong (PS1–PS4) OR	
	(b) ≥2 Moderate (PM1–PM6) OR	
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	Pathogenic
	(d) ≥2 Supporting (PP1–PP5)	
	(ii) ≥2 Strong (PS1–PS4) OR	Le
	(iii) 1 Strong (PS1–PS4) AND	Evi
	(a)≥3 Moderate (PM1–PM6) OR	
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR	S
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	
Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 	=
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR	
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR	
	(iv) ≥3 Moderate (PM1–PM6) OR	
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR	
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	
Benign	(i) 1 Stand-alone (BA1) OR	
	(ii) ≥2 Strong (BS1–BS4)	
Likely benign	 (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR 	
	(ii) ≥2 Supporting (BP1–BP7)	
Uncertain	(i) Other criteria shown above are not met OR	
significance	(ii) the criteria for benign and pathogenic are contradictory	

Evidence: Strong

PS4 + PM2 + PP1

Level of

= Likely Pathogenic

PMID: 25741868

ATA

TA

Pathogenic	(i) 1 Very strong (PVS1) AND			
	(a) ≥1 Strong (PS1–PS4) OR			
	(b) ≥2 Moderate (PM1–PM6) OR			
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	Pathogenic		
	(d) ≥2 Supporting (PP1–PP5)	l I		
	(ii) ≥2 Strong (PS1–PS4) OR	Level of	•	
	(iii) 1 Strong (PS1–PS4) AND	Evidence	-	
	(a)≥3 Moderate (PM1–PM6) OR			
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR	Strong		
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)			
ikely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 	= Like	ly Pat	hogenic
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR			
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR			
	(iv) ≥3 Moderate (PM1–PM6) OR	BP4		
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR			
	 (vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5) 			
	(i) 1 Stand-alone (BA1) OR			
Benign		Benign		
Benign	(ii) ≥2 Strong (BS1–BS4)			
Benign Likely benign	 (ii) ≥2 Strong (BS1–BS4) (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR 	1		
	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1–	Leve		
	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR		el of ence:	

PMID: 25741868

Center for INDIVIDUALIZED MEDICINE

TA

TA

124/3.31

Table 5 Rules for combining criteria to classify sequence variants

voriarita	
Pathogenic	(i) 1 Very strong (PVS1) AND
	(a) ≥1 Strong (PS1–PS4) OR
	(b) ≥2 Moderate (PM1–PM6) OR
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
	(d) ≥2 Supporting (PP1–PP5)
	(ii) ≥2 Strong (PS1–PS4) OR
	(iii) 1 Strong (PS1–PS4) AND
	(a)≥3 Moderate (PM1–PM6) OR
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR
	(iv) ≥3 Moderate (PM1–PM6) OR
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Benign	(i) 1 Stand-alone (BA1) OR
	(ii) ≥2 Strong (BS1–BS4)
Likely benign	 (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OB
	(ii) ≥2 Supporting (BP1–BP7)
Uncertain	(i) Other criteria shown above are not met OR
significance	(ii) the criteria for benign and pathogenic are contradictory

Conflicting evidence example:

PS4 + PM2 + BP2 + BP4

= Variant of Uncertain Significance (VUS)

Center for INDIVIDUALIZED MEDICINE

PMID: 25741868

	€ Ber	^{nign} → ←	Pathogenic						
	Strong	Supporting	Supporting	Moderate	Strong	Very strong			
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4				
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1			
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3				
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data					
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2				
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3					
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5						
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4						

PMID: 25741868

Center for INDIVIDUALIZED MEDICINE

TA

AT/

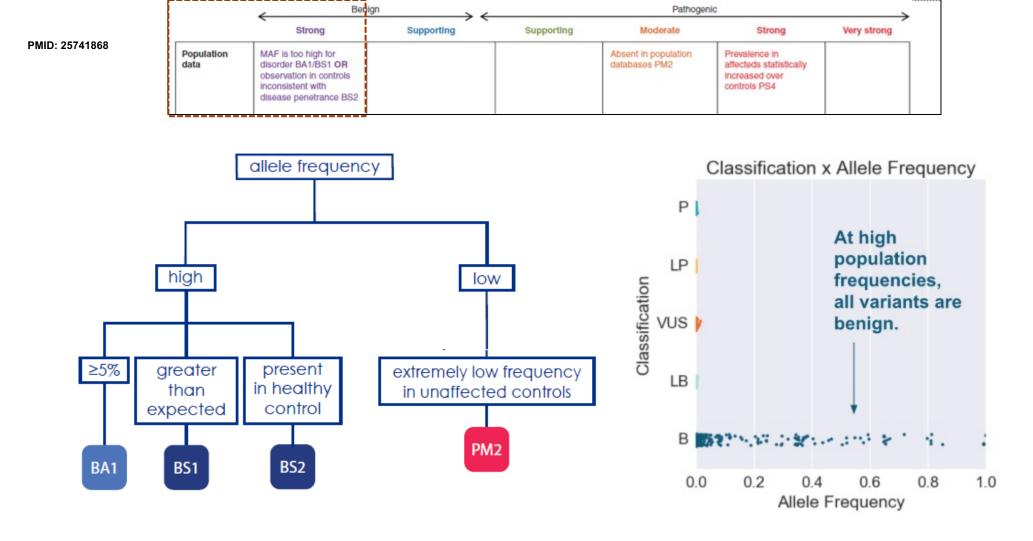
Index at

	€ Ber	iign 🔶 🔶	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data				
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>ds</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3				
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5					
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

PMID: 25741868

Center for INDIVIDUALIZED MEDICINE

TA


TA

224/3.31

The cutoffs of each of these criteria depends on many factors such as: Prevalence of disease, age of onset, and penetrance

Richards CS et al. *Gen Med.* 2015;17:405-423

©2012 MFMER | slide-24

Center for INDIVIDUALIZED MEDICINE

TA

Examples of Databases

Table 1

Population, Disease-Specific, and Sequence Databases

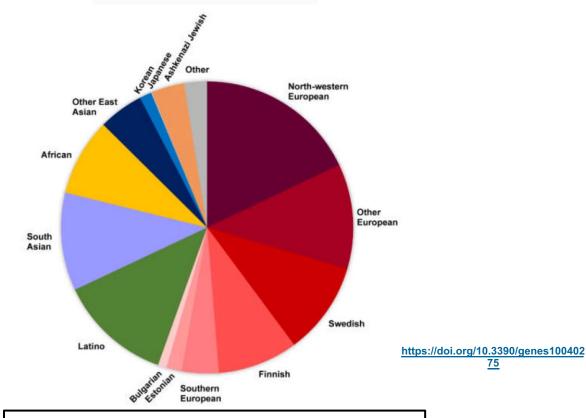
Population Databases	
Exome Aggregation Consortium http://exac.broadinstitute.org/	Database of variants found during exome sequencing of 61,486 unrelated individuals sequenced as part of various disease-specific and population genetics totalics. Pediatric disease subjects as well as related individuals were excluded.
Exome Variant Server http://evs.gs.washington.edu/EVS	Database of variants found during exome sequencing of several large cohorts of individuals of European and African American ancestry. Includes coverage data to inform the absence of variation.
1000 Genomes http://browser.1000genomes.org	Database of variants found during low-coverage and high- coverage genomic and targeted sequencing from 26 populations. Provides more diversity compared to EVS but also contains lower quality data and some cohorts contain related individuals.
dbSNP http://www.ncbi.nlm.nih.gov/snp	Database of short genetic variations (typically 50 bp or less) submitted from many sources. May lack details of originating study and may contain pathogenic variants.
dbVar http://www.ncbi.nlm.nih.gov/dbvar	Database of structural variation (typically greater than 50 bp) submitted from many sources.
Disease Databases	
ClinVar http://www.ncbi.nlm.nih.gov/clinvar	Database of assertions about the clinical significance and phenotype relationship of human variation.
OMIM http://www.omim.org	Database of human genes and genetic conditions that also contains a representative sampling of disease-associated genetic variants.
Human Gene Mutation Database http://www.hgmd.org	Database of variant annotations published in the literature. Requires fee-based subscription for much of the content.
Locus/Disease/Ethnic/Other-Specific Databases http://www.hgvs.org/dblist/dblist.html http://www.lovd.nl	The HGVS site developed a list of thousands of different databases that provide variant annotations on specific subsets of human variation. A large percentage of databases are built in the LOVD system.
DECIPHER http://decipher.sanger.ac.uk	A molecular cytogenetic database for clinicians and researchers linking genomic microarray data with phenotype using the Ensembl genome browser.
Sequence Databases	
NCBI Genome http://www.ncbi.nlm.nih.gov/genome	Source of full human genome reference sequences.
RefSeqGene http://www.ncbi.nlm.nih.gov/refseq/rsg and Locus Reference Genomic (LRG) http://www.lrg-sequence.org	Medically relevant gene reference sequence resource
MitoMap http://www.mitomap.org/MITOMAP/HumanMitoSeq	Revised Cambridge reference sequence (rCRS) for the Human Mitochondrial DNA

Center for INDIVIDUALIZED MEDICINE

T

T

Examples of Databases

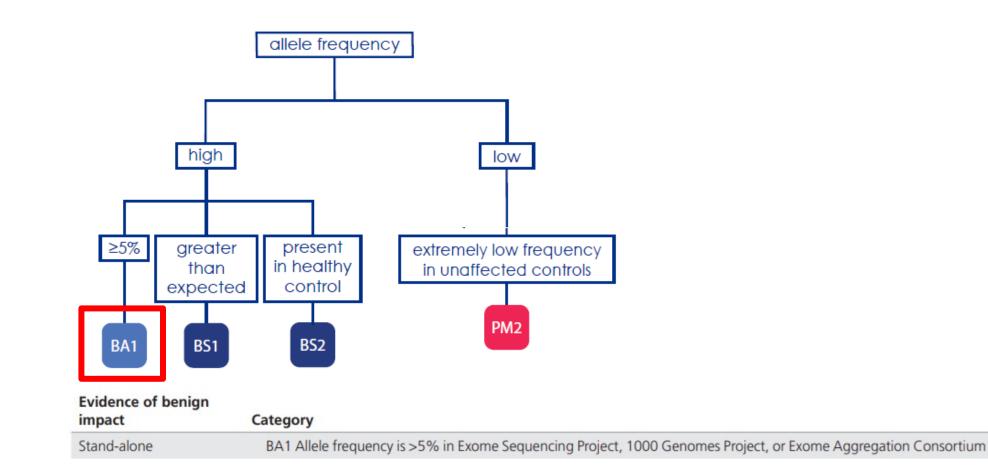

Table 1

Population, Disease-Specific, and Sequence Databases

Population Databases							
Exome Aggregation Consortium http://exac.broadinstitute.org/	Database of variants found during exome sequencing of 61,486 unrelated individuals sequenced as part of various disease-specific and population genetic studies. Pediatric disease subjects as well as related individuals were excluded.						
Exome Variant Server http://evs.gs.washington.edu/EVS	Database of variants found during exome sequencing of several large cohorts of individuals of European and African American ancestry. Includes coverage data to inform the absence of variation.						
1000 Genomes http://browser.1000genomes.org	Database of variants found during low-coverage and high- coverage genomic and targeted sequencing from 26 populations. Provides more diversity compared to EVS but also contains lower quality data and some cohorts contain related individuals.						
dbSNP http://www.ncbi.nlm.nih.gov/snp	Database of short genetic variations (typically 50 bp or less) submitted from many sources. May lack details of originating study and may contain pathogenic variants.						
dbVar http://www.ncbi.nlm.nih.gov/dbvar	Database of structural variation (typically greater than 50 bp) submitted from many sources.						
Disease Databases							
ClinVar http://www.ncbi.nlm.nih.gov/clinvar	Database of assertions about the clinical significance and phenotype relationship of human variation.						
OMIM http://www.omim.org	Database of human genes and genetic conditions that also contains a representative sampling of disease-associated genetic variants.						
Human Gene Mutation Database http://www.hgmd.org	Database of variant annotations published in the literature. Requires fee-based subscription for much of the content.						
Locus/Disease/Ethnic/Other-Specific Databases http://www.hgws.org/dblist/dblist.html http://www.lovd.nl	The HGVS site developed a list of thousands of different databases that provide variant annotations on specific subsets of human variation. A large percentage of databases are built in the LOVD system.						
DECIPHER http://decipher.sanger.ac.uk	A molecular cytogenetic database for clinicians and researchers linking genomic microarray data with phenotype using the Ensembl genome browser.						
Sequence Databases							
NCBI Genome http://www.ncbi.nlm.nih.gov/genome	Source of full human genome reference sequences.						
RefSeqGene http://www.ncbi.nlm.nih.gov/refseq/rsg and Locus Reference Genomic (LRG) http://www.lrg-sequence.org	Medically relevant gene reference sequence resource						
MitoMap http://www.mitomap.org/MITOMAP/HumanMitoSeq	Revised Cambridge reference sequence (rCRS) for the Human Mitochondrial DNA						

gnomAD

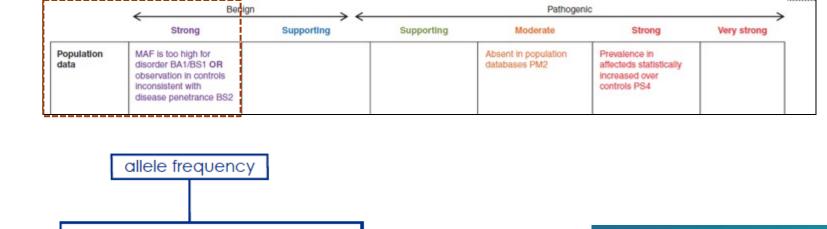
Genome Aggregation Database

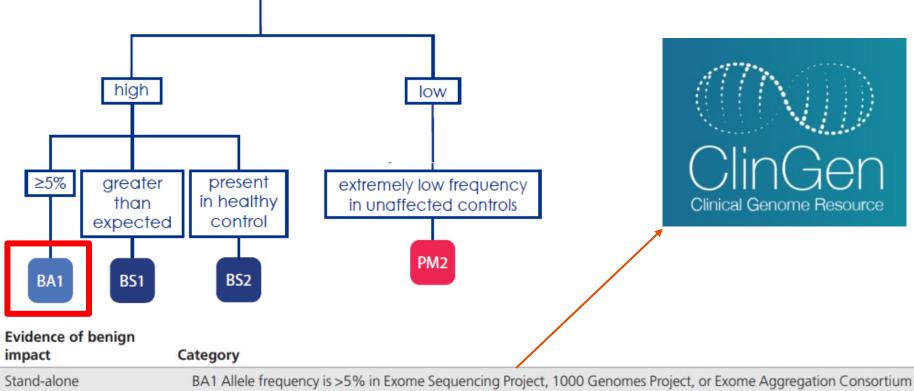

Keep in mind if the database correctly assess the population of the proband !

TA

PMID: 25741868

	Berlign		Pathogenic						
	Strong	Supporting	Supporting	Moderate	Strong	Very strong			
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4				


Richards CS et al. Gen Med. 2015;17:405-423


©2012 MFMER | slide-27

Center for INDIVIDUALIZED MEDICINE

TA

ATA

Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

TA

T

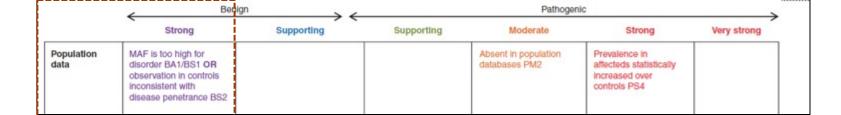
List of nine variants for which there was some evidence of pathogenicity even though the MAF was high for these variants!

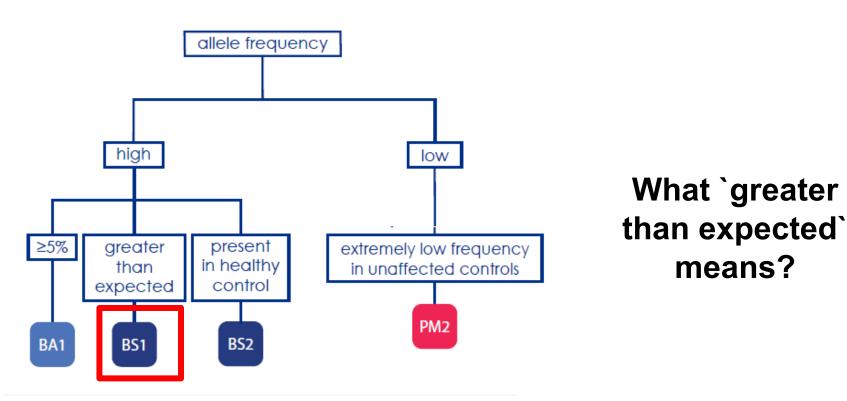
Gene	Variant	Classification	applied (not including BA1 or BS1)	ClinVar ID	ClinGen Allele Registry ID	Chr	Position	Ref	Alt	ExAC Source Pop	ExAC Source Pop MAF	ClinVar disease entry
ACAD9	NM_014049.4: c44 41dupTAAG	VUS	PS3_Supporting; BS2	1018	CA114709	3	128,598,490	с	CTAAG	AFR	0.1261	Deficiency of Acyl- CoA dehydrogenase family, member 9
GJB2	NM_004004.5: c.109G>A (p.Val37ile)	Pathogenic	PS4; PP1_Strong; PM3_VeryStrong; PS3_Moderate	17023	CA172210	13	20,763,612	с	T	EAS	0.07242	Deafness, autosomal recessive
HFE	NM_000410.3: c.187C>G (p.His63Asp)	Pathogenic*	PS4	10	CA113797	6	26,091,179	с	G	NFE	0.1368	Hereditary hemochromatosis
HFE	NM_000410.3: c.845G>A (p.Cys282Tyr)	Pathogenic*	PS4; PP3	9	CA113795	6	26,093,141	G	A	NFE	0.05135	Hereditary hemochromatosis
MEFV	NM_000243.2: c.1105C>T (p.Pro369Ser)	VUS	PM3; PM5	2551	CA280114	16	3,299,586	G	A	EAS	0.07156	Familial Mediterranean fever
MEFV	NM_000243.2: c.1223G>A (p.Arg408Gln)	vus	PM3; PM5	2552	CA280116	16	3,299,468	с	т	EAS	0.05407	Familial Mediterranean fever
PIBF1	NM_006346.2: c.1214G>A (p.Arg405Gln)	VUS	PM3; BS2	217689	CA210261	13	73,409,497	G	A	AMR	0.09858	Joubert syndrome
ACADS	NM_000017.3: c.511C>T (p.Arg171Trp)	vus	PS3_Moderate; PM3; PP3	3830	CA312214	12	121,175,678	с	т	FIN #	0.06589	Deficiency of butyryl- CoA dehydrogenase
втр	NM_000060.4: c.1330G>C (p.Asp444His)	Pathogenic	PS3; PM3_Strong; PP3; PP4	1900	CA090886	3	15,686,693	G	с	FIN #	0.05398	Biotidinase deficiency

*ACMG/AMP criteria selected does not match the classification as these variants are common low-penetrant variants and the ACMG/AMP guidelines are not designed for this variant type

Detected at >5% MAF only in Finnish population (see text).

Genomic coordinates on build GRCh37


AFR: African/African American, EAS: East Asian, NFE: Non-Finnish European, AMR: Latino, FIN=Finnish


https://clinicalgenome.org/site/assets/files/3460/ba1_exception_list_07_30_2 018.pdf

Center for INDIVIDUALIZED MEDICINE

2012 MFMER | slide-29

BS1 Allele frequency is greater than expected for disorder (see Table 6)

Richards CS et al. *Gen Med.* 2015;17:405-423

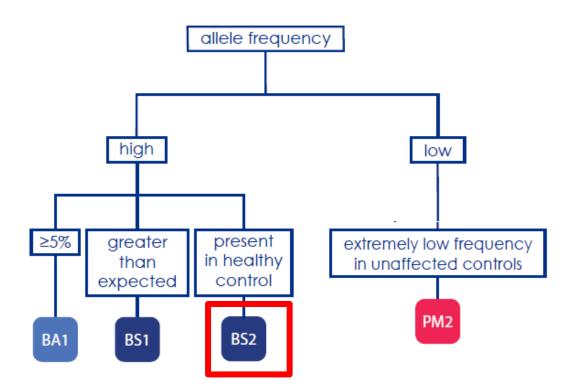
Center for INDIVIDUALIZED MEDICINE

TA

T

Different population frequency thresholds

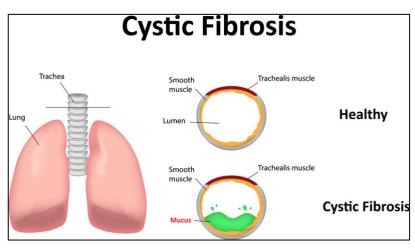
	Criteria	Prevalence	Heterogeneity	Penetrance	Threshold
	BA1	1:200	10.60% ^L	30%	≥0.001 (0.1%)
Cardiomyopathy (AD)	BS1	1:200	20/ 4	30%	≥0.0002 (0.02%)
	PM2	1:500	2% ^A	50%	<0.00004 (0.004%)
	BA1	1:2500	100%	40%	≥0.0005 (0.05%)
RASopathy (AD)	BS1	1:2300	50% ^L	4070	≥0.00025 (0.025%)
	PM2	-	-	-	Absent R
	BA1	1:800	1009/	200/	≥0.002 (0.2%)
CDH1 (AD)	BS1	1:1250	100%	30%	≥0.001 (0.1%)
	PM2	-	-	-	<0.00001 (0.001%) ^R
	BA1	1:30	5% L/A	800/	≥0.001 (0.1%)
Hearing Loss (AD)	BS1	1:150	5% 24	80%	≥0.0002 (0.02%)
	PM2	-	-	-	<0.00002 (0.002%) ^M
	BA1	1.200	7.2% ^A	1000/	≥0.005 (0.5%)
Hearing Loss (AR)	BS1	1:200	4.4% ^A	100%	≥0.003 (0.3%)
	PM2	-	-	-	<0.00007 (0.007%) ^M
	BA1	1.5000	90% ^L	000/	≥0.015 (1.5%)
PAH (AR)	BS1	1:5000	2% ^A	80%	≥0.002 (0.2%)
	PM2	-	-	-	<0.0002 (0.02%) ^M
	BA1	-	-	-	≥0.01 (1%)
PTEN [*] (AD)	BS1	-	-	-	≥0.001 (0.1%)
	PM2	-	-	-	<0.00001 (0.001%) ^R


Comparison of population frequency thresholds from ClinGen Variant Curation Expert Panels.

PMID: <u>31479589</u>

	e Berlign		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/8S1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	

BS2 Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age


Richards CS et al. *Gen Med.* 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

ATA

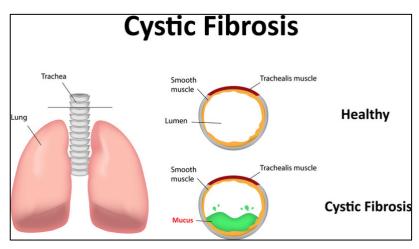
TA

CFTR - c.-8G>C

https://medlineplus.gov/genetics/condition/cystic-fibrosis/

	Exomes	Genomes	Total	External Resources
Filters	Pass	Pass		
Allele Count	11486	1727	13213	 dbSNP (rs1800501)
Allele Number	251068	31346	282414	UCSC
Allele Frequency	0.04575	0.05509	0.04679	ClinVar (93148)
Popmax Filtering AF 😧 (95% confidence)	0.05902	0.06839		ClinGen Allele Registry (CA146694) Feedback
Number of homozygotes	364	64	428	reeuback
Mean depth of coverage	97.2	29.1		Report an issue with this variant

Population Frequencies 😡


opulation	Allele Count	Allele Number	Number of Homozygotes	Allele Frequer
European (Finnish)	2385	25068	106	0.09514
East Asian	1248	19910	44	0.06268
European (non-Finnish)	7524	128920	238	0.05836
Other	384	7218	17	0.05320
Ashkenazi Jewish	338	10364	6	0.03261
Latino/Admixed American	652	35416	6	0.01841
South Asian	456	30606	10	0.01490
African/African American	226	24912	1	0.009072
х	6119	129256	203	0.04734
Y	7094	153158	225	0.04632
	13213	282414	428	0.04679

https://gnomad.broadinstitute.org/

TA

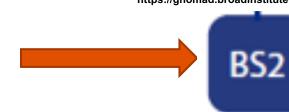
CFTR - c.-8G>C

https://medlineplus.gov/genetics/condition/cystic-fibrosis/

	Exomes	Genomes	Total	External Resources
Filters	Pass	Pass		
Allele Count	11486	1727	13213	dbSNP (rs1800501)
Allele Number	251068	31346	282414	UCSC ClinVar (93148)
Allele Frequency	0.04575	0.05509	0.04679	ClinGen Allele Registry (CA146694)
Popmax Filtering AF 😧 (95% confidence)	0.05902	0.06839		Feedback
Number of homozygotes	364	64	428	recuback
Mean depth of coverage	97.2	29.1		Report an issue with this variant

Population Frequencies @

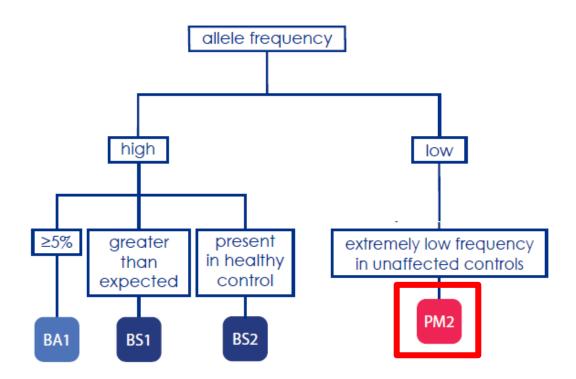
Population	Allele Count	Allele Number	Number of Homozygotes	Allele Frequency
 European (Finnish) 	2385	25068	106	0.09514
 East Asian 	1248	19910	44	0.06268
 European (non-Finnish) 	7524	128920	238	0.05836
Other	384	7218	17	0.05320
 Ashkenazi Jewish 	338	10364	6	0.03261
Latino/Admixed American	652	35416	6	0.01841
 South Asian 	456	30606	10	0.01490
African/African American	226	24912	1	0.009072
xx	6119	129256	203	0.04734
XY	7094	153158	225	0.04632
Total	13213	282414	428	0.04679


Include: 🗹 Exomes 🗹 Genomes

Related Variants

https://gnomad.broadinstitute.org/

Observed in healthy adult individuals



T

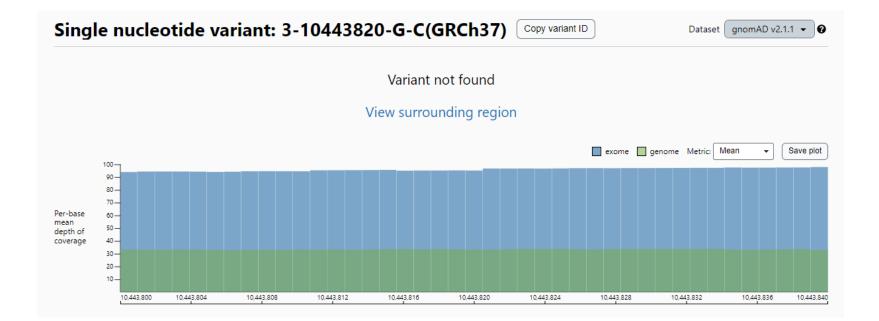
resources/

	< Benign			Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		

PM2 Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

Caveat: Population data for insertions/deletions may be poorly called by next-generation sequencing.

Richards CS et al. *Gen Med.* 2015;17:405-423

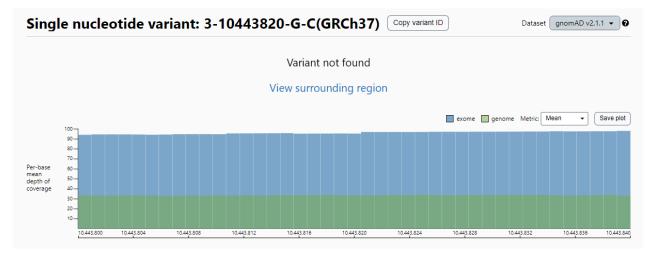

©2012 MFMER | slide-35

Center for INDIVIDUALIZED MEDICINE

TA

ATA

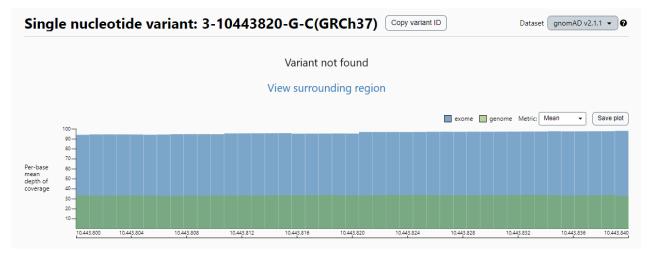
ATP2B2 HET c.610C>G


https://gnomad.broadinstitute.org/

2012 MFMER | slide-36

ATP2B2 HET c.610C>G

https://gnomad.broadinstitute.org/



TA

ATP2B2 HET c.610C>G

https://gnomad.broadinstitute.org/

ClinGen Sequence Variant Interpretation Recommendation for PM2 - Version 1.0 Working Group Page: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/ Date Approved: September 4, 2020

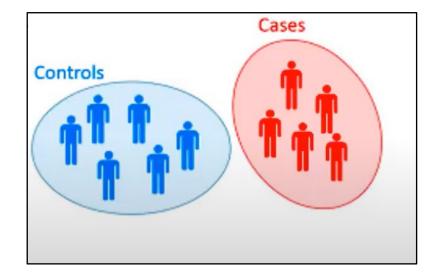
SVI Recommendation for Absence/Rarity (PM2) - Version 1.0

The ClinGen Sequence Variant Interpretation (SVI) Working Group proposes decreasing the weight of criterion PM2 ("Absent from controls, or at extremely low frequency if recessive, in Exome Sequencing Project, 1000Genomes Project, or Exome Aggregation Consortium") from a Moderate strength level to a Supporting strength level (PM2_Supporting).

Now PM2_Suppoting

`M` as moderate level of evidence?

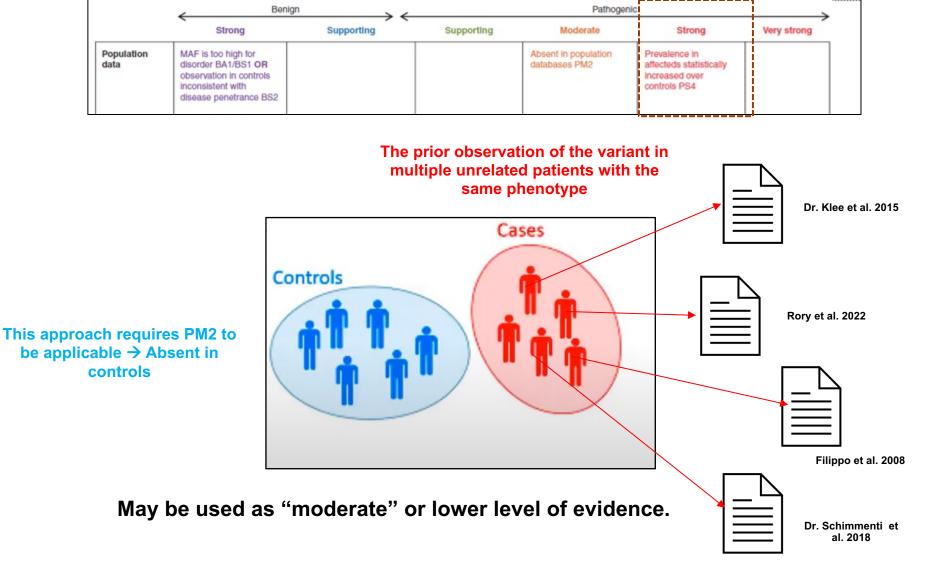
PM2


Center for INDIVIDUALIZED MEDICINE

©2012 MFMER | slide-38

	Eenign			>	128		
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		

PS4


- The prevalence of the variant is increased in affected individuals is significantly increased compared with the prevalence in controls.
- Relative risk (RR) or odds ratio (OR) in a case-control study is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0.

What if some genetic diseases have a very low prevalence (1: 1,000,000)?

Richards CS et al. Gen Med. 2015;17:405-423

Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

T

©2012 MFMER | slide-40

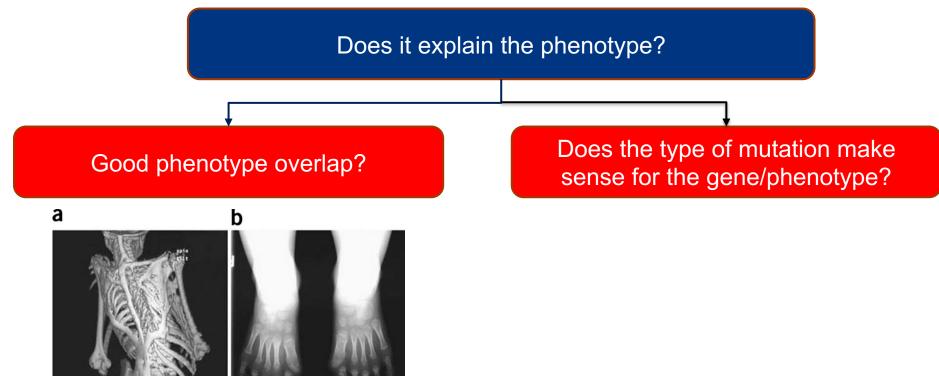
	Benign			Pathogenic		>
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			databases PM2	Prevalence in affecteds statistically increased over controls PS4	

Examples of Case Prevalence or Previously Reported Cases (PS4) High Prevalence or Multiple Unrelated Patients Observed with Variant and Phenotype

Table 4 Overview of Case-Level Data Specifications: Point Value Thresholds per Strength Level for Proband Count Thresholds per Variant Curation Expert Panel for PS4							
	Supporting	Moderate	Strong	Very strong			
Cardiomyopathy	2 probands	6 probands	15 probands	N/A			
RASopathy	1 proband	3 probands	5 probands	N/A			
PTEN	1 point	2 points	4 points	16 points			
CDH1	1 proband	2 probands	4 probands	16 probands			
Hearing loss (AD)	2 probands	6 probands	15 probands	N/A			
	oband Count Thresholds Cardiomyopathy RASopathy PTEN CDH1	oband Count Thresholds per Variant CuratiSupportingCardiomyopathy2 probandsRASopathy1 probandPTEN1 pointCDH11 proband	oband Count Thresholds per Variant Curation Expert PanelSupportingModerateCardiomyopathy2 probands6 probandsRASopathy1 proband3 probandsPTEN1 point2 pointsCDH11 proband2 probands	oband Count Thresholds per Variant Curation Expert Panel for PS4SupportingModerateStrongCardiomyopathy2 probands6 probands15 probandsRASopathy1 proband3 probands5 probandsPTEN1 point2 points4 pointsCDH11 proband2 probands4 probands			

Harrison et al., 2019 Curr Protoc Hum Genet. 2019 Sep; 103(1) https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cphg.93

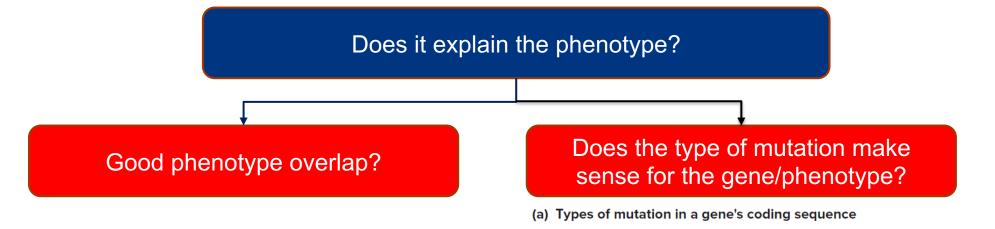
2- Computational and Predictive Data



Center for INDIVIDUALIZED MEDICINE

©2012 MFMER | slide-42

Before we continue...



https://doi.org/10.1186/1750-1172-6-80

+ Variant in ACVR1

Center for INDIVIDUALIZED MEDICINE

Wild-type mRNA Wild-type polypeptide	5' N	ATG GGA GCA CCA GGA CAA GAU GGA ^{3'} Met Gly Ala Pro Gly Gln Asp Gly C
Silent mutation		ATG GGA GCC CCA GGA CAA GAU GGA Met Gly Ala Pro Gly Gln Asp Gly
Missense mutation		ATG GGA GCA CCA AGA CAA GAU GGA Met Gly Ala Pro Arg Gln Asp Gly
Nonsense mutation		ATG GGA GCA CCA GGA UAA GAU
Frameshift mutation		ATG GGA GCC ACC AGG ACA AGA UGG A Met Gly Ala Thr Arg Thr Arg Trp

Center for INDIVIDUALIZED MEDICINE

DOI:10.1002/mma.4764

	∠ Ber	^{iign} → ←		Pathogenic		>
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>ds</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Richards CS et al. *Gen Med.* 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

ATA

TAC

12443.31

©2012 MFMER | slide-45

	< Ber	nign 💦 🔶	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data				
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3	Focus "Patho	on the		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5					
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

Richards CS et al. *Gen Med.* 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

T

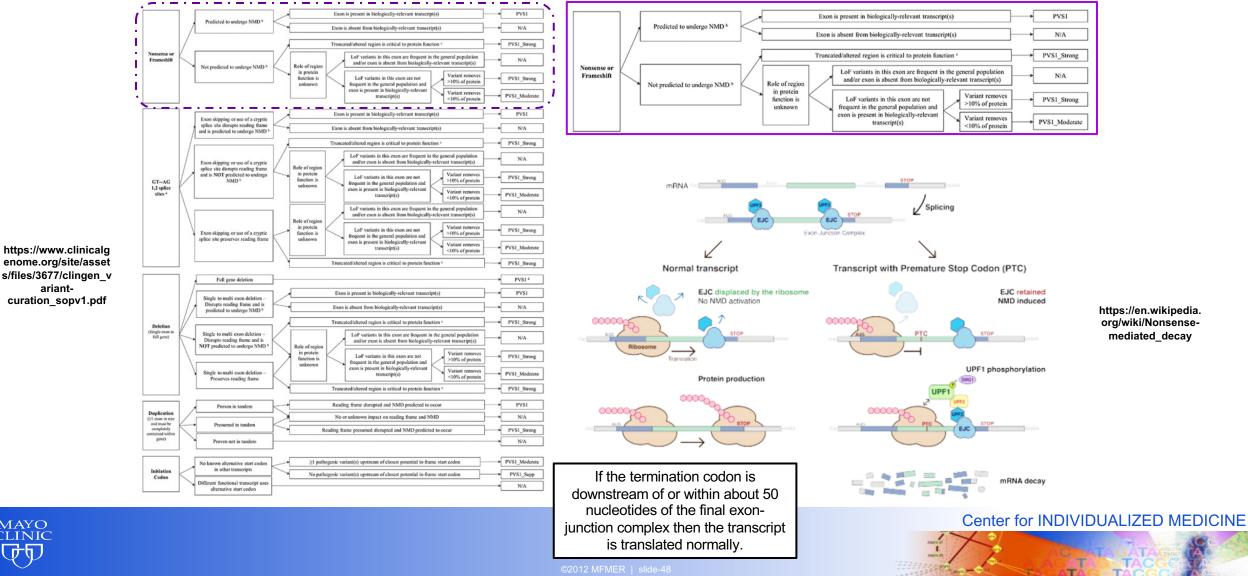
TAC

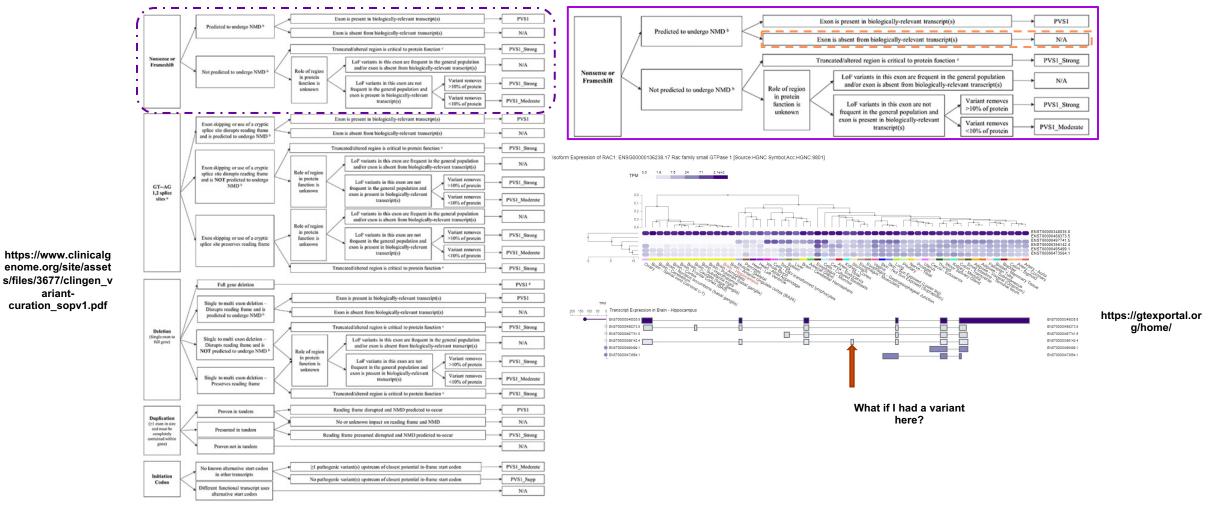
224/3.31

Computational and predictive data	Multiple lines of computational evidence suggest no Impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	--	---	---	---

Loss of Function Criteria (PVS1) (only "very strong" level of evidence)

Null variant in a gene where loss of function (LoF) is a known mechanism of disease.

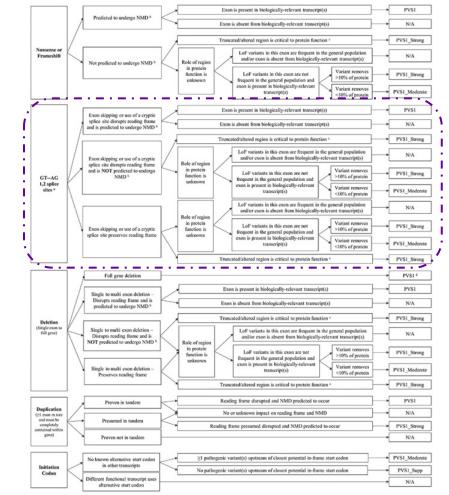


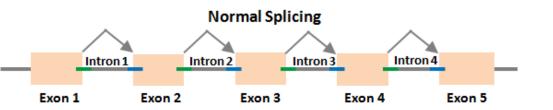


©2012 MFMER | slide-47

ariant-

MAYO CLINIC

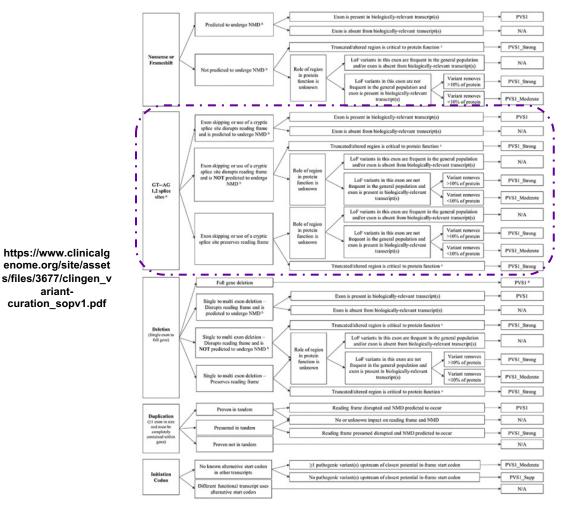


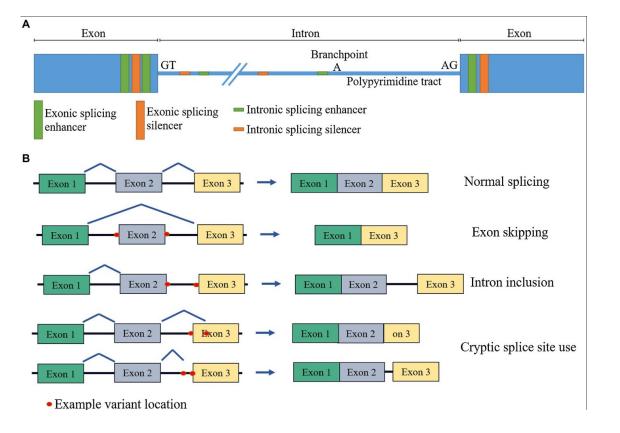


ariant-

T

https://www.clinicalg enome.org/site/asset s/files/3677/clingen_v ariantcuration_sopv1.pdf

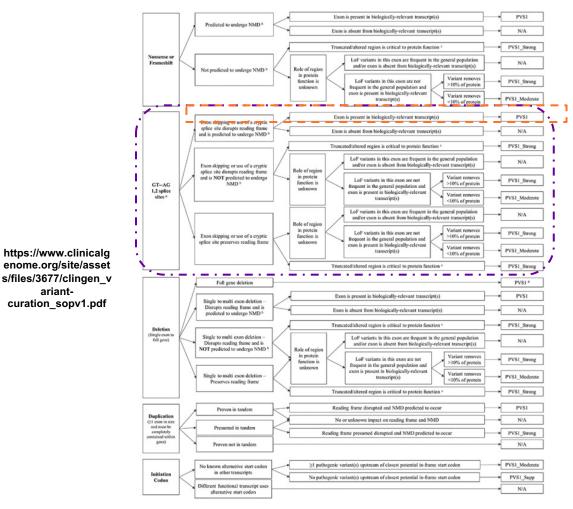

Center for INDIVIDUALIZED MEDICINE

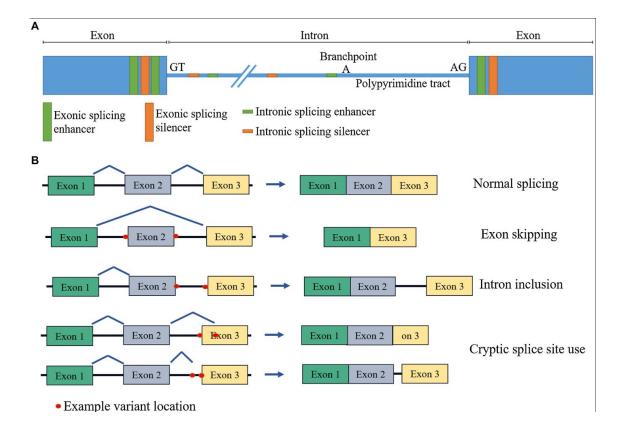

TA

T

E.

https://doi.org/10.3389/fgene.2021.689892

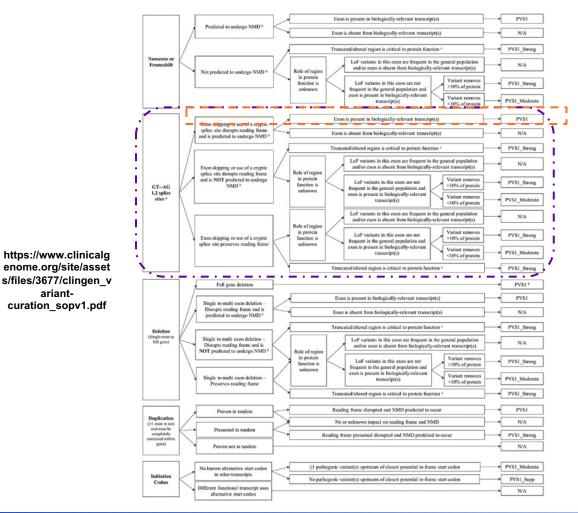


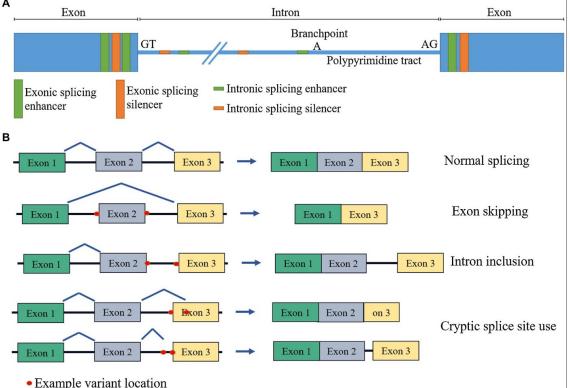

ariant-

curation sopv1.pdf

T

https://doi.org/10.3389/fgene.2021.689892


ariant-


curation sopv1.pdf

TA

PVS1- How to investigate if I OF is a `known Exon Intron mechanism of disease GT

https://doi.org/10.3389/fgene.2021.689892

ariant-

curation_sopv1.pdf

Center for INDIVIDUALIZED MEDICINE

T

Table 3.

Missense and LoF annotations and curations per gene from ClinGen Variant Curation Expert Panels

	Gene	Disease Area (MOI)	HI Score	gnomAD LoF <i>oe</i> metric (90% CI)	PVS1?	Missense Z score (ExAC / gnomAD)	PP2?	
	MYH7	Cardio (AD)	0	0.45 (0.35–0.57)	Yes (Mod)	6.54 / 3.93	No	
	BRAF		1	0.1 (0.05–0.21)	No	3.99 / 3.72	Yes	
	HRAS		0	0.36 (0.16-0.93)	No	2.69 / 1.51	Yes	
	KRAS		0	0.63 (0.34–1.24)	No	1.36 / 2.32	Yes	
	MAP2KI		0	0.15 (0.07-0.38)	No	3.43 / 3.11	Yes	A
	MAP2K2	RAS (AD)	1	0.1 (0.04–0.33)	No	1.48 / 1.87	Yes	
	PTPN11		3	0.03 (0.01-0.14)	No	3.43 / 3.13	Yes	
	RAFI		0	0.19 (0.11-0.35)	No	2.82 / 2.46	Yes	k.
	SHOC2		-	0 (0.00–0.14)	No	2.57 / 2.97	Yes	C D
	SOSI		0	0.07 (0.03-0.14)	No	2.18 / 3.05	Yes	
	PTEN	PHTS (AD)	3	0.24 (0.13-0.51)	Yes	3.71 / 3.49	Yes	
	CDH1	HDGC (AD)	3	0.25 (0.15-0.43)	Yes	0.81 / 0.71	No	
	PAH	PKU (AR)	30	1.12 (0.84–1.50)	Yes	-1.54 / -0.65	No	Mars and The
	CDH23		30	0.38 (0.26-0.57)	Yes	-0.24 / 0.71	No	https://doi.org/10.1186/1/50-11/2-
	GJB2		-	2.62 (1.39-1.98)	Yes	-1.07 / 1.17	No	
	MY07A		-	0.7 (0.58–0.85)	Yes	-1.44 / 1.07	No	
	SLC26A4	HL (AR)	-	0.89 (0.68–1.18)	Yes	-3.23 / -2.01	No	
oi:10.1002/cphg.93	теста		30	0.45 (0.35-0.58)	Yes	2.3 / 1.61	No	
	USH2A		30	0.76 (0.67–0.86)	Yes	-5.12 / -2.47	No	
	СОСН			0.59 (0.40-0.91)	No	0.34 / 0.68	No	
	KCNQ4		-	0.22 (0.12-0.41)	Yes	2.73 / 1.83	No	
	MYO6	HL (AD)	-	0.3 (0.22-0.42)	Yes	1.02 / 1.39	No	
	TECTA		30	0.45 (0.35-0.58)	No	2.3 / 1.61	No	

PVS1- How to investigate if LOF is a `known mechanism of disease`

* 176876 Table of Contents	* 17687	* 176876					
Title							
Gene-Phenotype Relationships	PROTE PTPN1	EIN-TYROSINE PHOSPHAT	[ASE, NONR]	ECEPTOR	-TYPE, 11;	;	
Text							
Description	Alternative ti	itles symbols					
Cloning and	Alternative ti	uies, symoois					
Expression	PROTEIN	N-TYROSINE PHOSPHATASE 2C; PT	TP2C			https://www.omin	
Mapping	TYROSIN	NE PHOSPHATASE SHP2; SHP2					
Biochemical Features							
Gene Function	HGNC Ap	proved Gene Symbol: PTPN11					
Molecular Genetics							
Genotype/Phenotype	Cytogenet	tic location: 12q24.13 Genomic coordi	nates (GRCh38): 12	:112,418,946-1	12,509,917 (from	1	
Correlations	NCBI)						
	,						
Animal Model							
Animal Model Allelic Variants		enotype Relationships					
		enotype Relationships	-		-		
Allelic Variants	Gene-Pho		Phenotype MIM number	Inheritance	Phenotype mapping key		
Allelic Variants Table View	Gene-Pho Location	Phenotype Clinical Synopses	MIM number	Inheritance	mapping key		
Allelic Variants Table View References Contributors	Gene-Pho	Phenotype Clinical Synopses LEOPARD syndrome 1	MIM number 151100	Inheritance AD	mapping key		
Allelic Variants Table View References	Gene-Pho Location	Phenotype Clinical Synopses	MIM number		mapping key		

Center for INDIVIDUALIZED MEDICINE

OMIM - Online Mendelian Inheritance in Man®

* 176876 Table of Contents	* 17687	6	6						
Title									
Gene-Phenotype Relationships	PROTE PTPN1	EIN-TYROSINE PHOSPHA 1	TASE, NONRI	ECEPTOR	-TYPE, 11	;			
Text									
Description	Alternation t	itles; symbols							
Cloning and	Allernative i	uies, symbols							
Expression		N-TYROSINE PHOSPHATASE 2C; P	TP2C			https://www.omim.org/			
Mapping	TYROSIN	NE PHOSPHATASE SHP2; SHP2							
Biochemical Features									
Gene Function	HGNC Ar	proved Gene Symbol: PTPN11							
Molecular Genetics									
Genotype/Phenotype Correlations	Cytogenei NCBI)	tic location: 12q24.13 Genomic coord	inates (GRCh38): 12	:112,418,946-1	12,509,917 (fron	n			
Animal Model									
Allelic Variants	Gene-Ph	enotype Relationships							
Table View		51 1							
References	Location	Phonotypo Clinical Support	Phenotype MIM number	Inheritance	Phenotype mapping kov				
Contributors		Phenotype Clinical Synopses			mapping key				
Creation Date	12q24.13	LEOPARD syndrome 1	151100	AD	3				
		Leukemia, juvenile myelomonocytic, somatic	607785	45	3				
Edit History		Metachondromatosis	156250	AD	3				

163950

AD

3

Center for INDIVIDUALIZED MEDICINE

TA

Noonan syndrome 1

OMIM - Online Mendelian Inheritance in Man®

PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR-TYPE, 11; PTPN11

Allelic Variants (36 Selected Examples) :

All ClinVar Variants

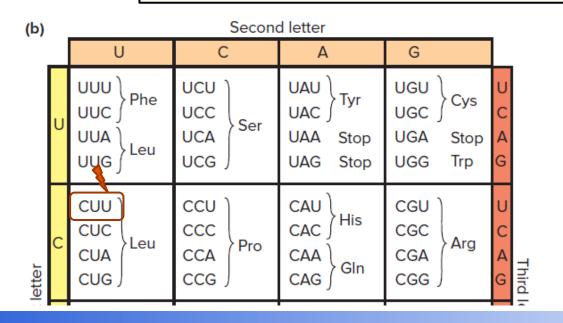
Number 🔺	Phenotype 🌲	Mutation 👙	SNP	gnomAD	ClinVar	
.0001	NOONAN SYNDROME 1	PTPN11, ALA725ER	rs121918453 -	-	RCV000014252	
.0002	NOONAN SYNDROME 1	PTPN11, ALA72GLY	rs121918454 -	-	RCV000014253	
.0003	NOONAN SYNDROME 1	PTPN11, ASN308ASP	rs28933386 -	rs28933386	RCV000014254	
.0004	NOONAN SYNDROME 1	PTPN11, ASN308SER	rs121918455 -	-	RCV000014255	
.0005	LEOPARD SYNDROME 1	PTPN11, TYR279CYS	rs121918456 •	-	RCV000030620	
.0006	LEOPARD SYNDROME 1	PTPN11, THR468MET	rs121918457 -	rs121918457	RCV000033533	
.0007	NOONAN SYNDROME 1	PTPN11, SER502THR	rs121918458-	-	RCV000014260	·
.0008	NOONAN SYNDROME 1	PTPN11, TYR63CY5	rs121918459-	rs121918459	RCV000014261	https://
.0009	NOONAN SYNDROME 1	PTPN11, TYR62ASP	rs121918460 •	rs121918460	RCV000014257	
.0010	NOONAN SYNDROME 1	PTPN11, ASP61GLY	rs121918461 •	-	RCV000014258	
.0011	NOONAN SYNDROME 1	PTPN11, THR73ILE	rs121918462 -	-	RCV000014262	
.0012	NOONAN SYNDROME 1	PTPN11, PHE2855ER	rs121918463 -	-	RCV000014263	
.0013	MOVED TO 176876.0011	-	-	-	-	
.0014	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76LY5	rs121918464 •	-	RCV000014264	
.0015	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76VAL	rs121918465 •	-	RCV000014265	
.0016	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76GLY				
.0017	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76ALA				variants
.0018	NOONAN SYNDROME	PTPN11, GLN79ARG		2000	hateine	with the
.0019	NOONAN SYNDROME	PTPN11, THR411MET		a330		
.0020	LEOPARD SYNDROME 1	PTPN11, ALA461THR	nh	onot		o Miccopco
.0021	LEOPARD SYNDROME 1	PTPN11, GLY464ALA	n pr	ienot	ype are	e Missense
.0022	LEOPARD SYNDROME 1	PTPN11, GLN510PRO			v 1	
.0023	NOONAN SYNDROME	PTPN11, GLN510ARG	rs121918470 -	rs121918470	RCV000014273	

https://www.omim.org/

ClinGen

	Gene Facts	4 Gene-Disease Validity Classifications	2 Dosage Sensitivity Classifications	12 Clinical Actionability Assertions	40 Variant Pathogenicity Assertions	0 / 0 CPIC / PharmGKB High Level Records	Follow Gene
Curation Sur	nmaries Status and Futu	re Work ③ Extern	al Genomic Resou	Irces ClinVar Varian	ts 🕑		
G Gen	e-Disease Valid	lity				Group By Activity Grou	p By Gene-Disease Pair
Gene	Disease	-	MOI	Expert Panel	Classification		Report & Date
PTPN11	Noonan syndrome MONDO:0018997		AD 🚺	RASopathy GCEP 🗹	Definitiv	/e	07/24/2018
PTPN11	Noonan syndrome with MONDO:0007893	multiple lentigines	AD 🚯	RASopathy GCEP 🗹	Definitiv	/e	07/25/2018
PTPN11	cardiofaciocutaneous sy MONDO:0015280	vndrome	AD 🚯	RASopathy GCEP 🗹	Disputed	d	05/30/2018
PTPN11	Costello syndrome MONDO:0009026		AD 🚯	RASopathy GCEP 🗹	Disputed	d	05/31/2018

Noonan syndrome is believed to be caused by gain-of-function defects in PTPN11 (PMID:11992261), and LEOPARD syndrome is believed to be caused by dominant-negative mechanisms (PMID: 16358218). Evidence gathered for the haploinsufficiency rating for this gene is related to the metachondromatosis/IDUALIZED MEDICINE phenotype.


Computational and predictive data	Multiple lines of computational evidence suggest no Impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	--	---	---	---

PS1

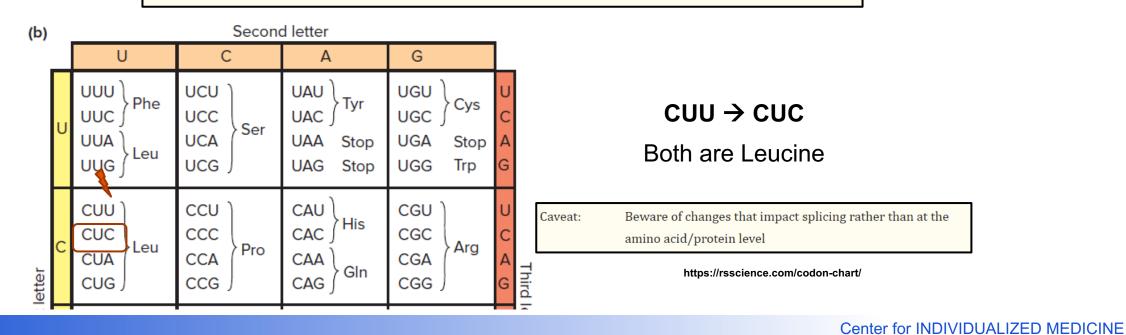
PMID: 25741868

PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

Example: Val->Leu caused by either G>C or G>T in the same codon

https://rsscience.com/codon-chart/

T


and predictive data computational evidence suggest no impact on gene /gene product BP4 computational evidence support a deleterious effect on the gene /gene at an amino acid residue where a different pathogenic missense change has been seen change as an established ww where established Missense in gene where product PP3 before PM5 pathogenic variant potoc deleterious effect change has been seen	Predicted null variant in a gene where LOF is a onown mechanism of disease PVS1
---	---

PMID: 25741868

PS1

PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

Example: Val->Leu caused by either G>C or G>T in the same codon

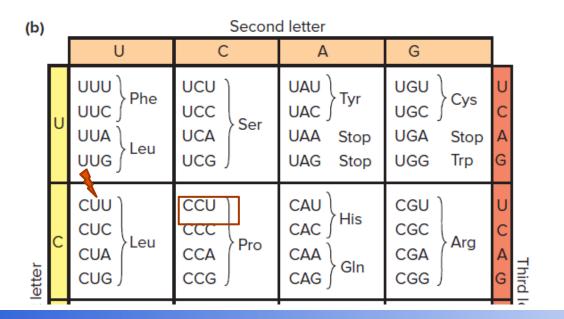
TA

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silient variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	---	--	---	---	---

► PM5

PMID: 25741868

PM5Novel missense change at an amino acid residue where a different
missense change determined to be pathogenic has been seen before
Example: Arg156His is pathogenic; now you observe Arg156Cys


8	Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
► PM	5					

PM5

PMID: 25741868

Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before

Example: Arg156His is pathogenic; now you observe Arg156Cys

Leu257Pro - Pathogenic

 $\text{CUU} \rightarrow \text{CCU}$

https://rsscience.com/codon-chart/

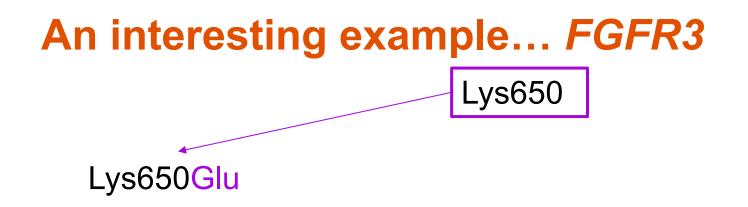
Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted nul variant in a g where LOF is known mechanism o disease PVS1
---	--	--	---	---	--

PMID: 25741868

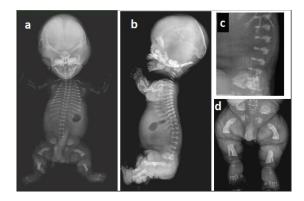
► PM5

PM5

Novel missense change at an amino acid residue where a different

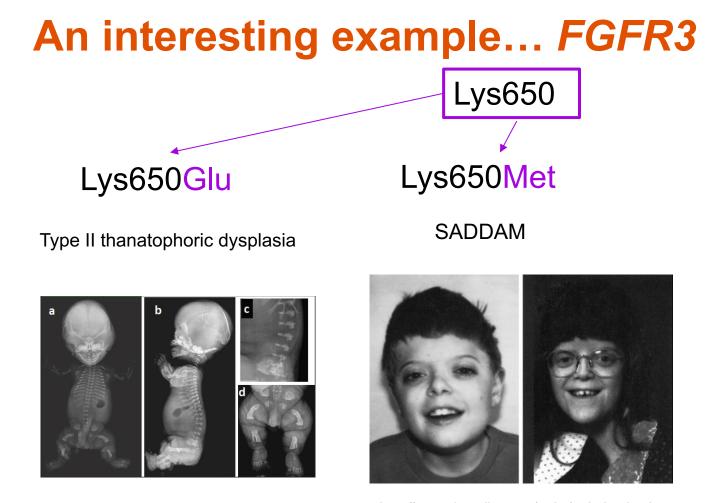

missense change determined to be pathogenic has been seen before

Example: Arg156His is pathogenic; now you observe Arg156Cys


(b)		Secon	d letter		
	U	С	А	G	Leu257Pro - Pathogenic
U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	$\begin{array}{c} CUU \rightarrow CCU \\ Leu257His - ??? \\ CUU \rightarrow CAU \end{array}$
letter O	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC ∫ His CAA CAA CAG ∫ GIn	CGU CGC CGA CGG	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level

Center for INDIVIDUALIZED MEDICINE

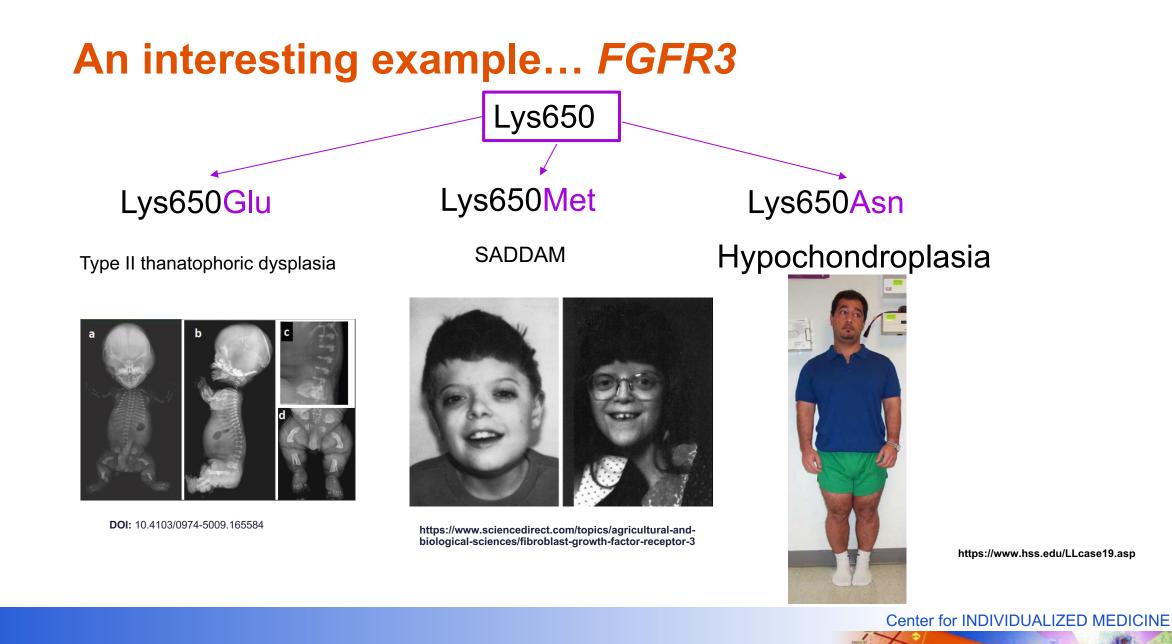
Type II thanatophoric dysplasia



DOI: 10.4103/0974-5009.165584

Center for INDIVIDUALIZED MEDICINE

©2012 MFMER | slide-64

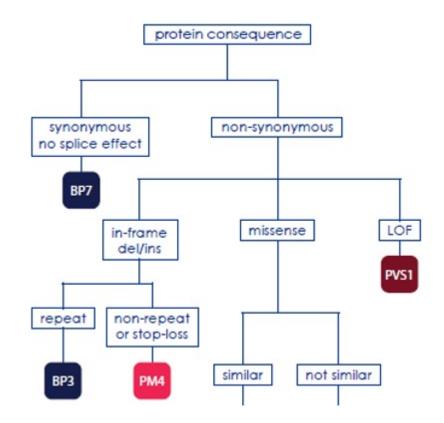


https://www.sciencedirect.com/topics/agricultural-andbiological-sciences/fibroblast-growth-factor-receptor-3

MAYO CLINIC

DOI: 10.4103/0974-5009.165584

Center for INDIVIDUALIZED MEDICINE



Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silient variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	---	--	---	---	---

► PM4

- Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
- To prevent double-counting of this evidence type, we recommend that PM4 should not be applied for any variant in which PVS1, at any strength level, is also applied.

TA

Example – *CTNNB1* c.1021_1026del, p.(Ser341_Arg342del)

615075

NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS; NEDSDV

Alternative titles; symbols

MENTAL RETARDATION, AUTOSOMAL DOMINANT 19, FORMERLY; MRD19, FORMERLY

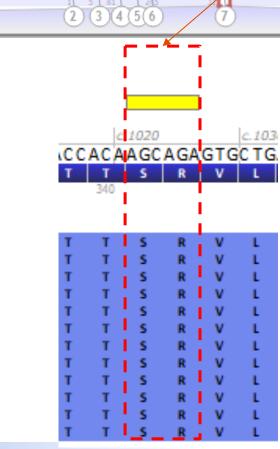
Phenotype-Gene Relationships

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus
3p22.1	Neurodevelopmental disorder with spastic diplegia and visual defects	615075	AD	3	CTNNB1

	· · · · · · · · · · · · · · · · · · ·		
.0017	NEURODEVELOPMENTAL DISORDER WITH	CTNNB1, 4-BP DEL,	rs398122907 -
	SPASTIC DIPLEGIA AND VISUAL DEFECTS	NT1272	
.0018	NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS	CTNNB1, ARG515TER	rs397514554▼
.0019	NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS	CTNNB1, GLN309TER	rs376393123 -
.0020	NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS	CTNNB1, 1-BP DUP, NT705	rs587777412 -
.0021	NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS	CTNNB1, ARG535TER	rs886039332 -

https://www.omim.org/

Center for INDIVIDUALIZED MEDICINE

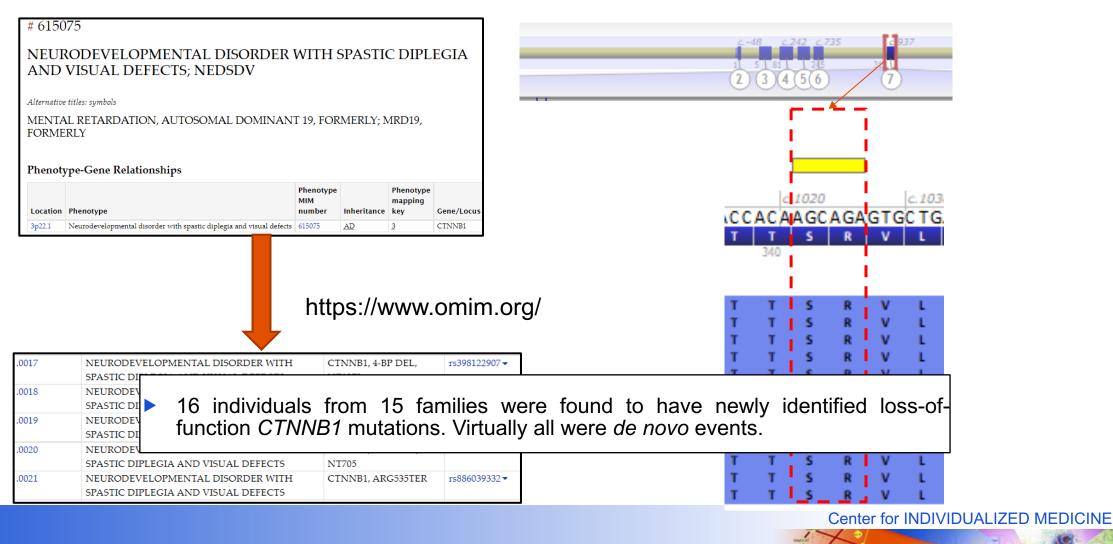

TA

Example – *CTNNB1* c.1021_1026del, p.(Ser341_Arg342del)

Images from Alamut software:

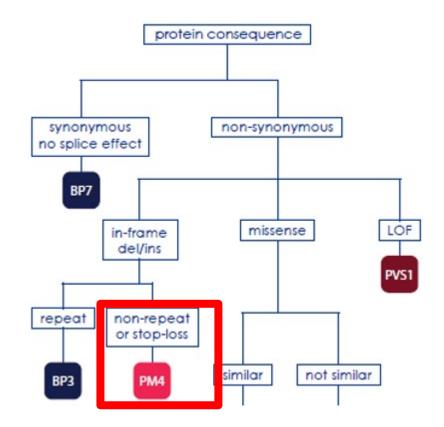
d93

AND Alternative MENTA FORME	RODEVELOPMENTAL DISORDER VISUAL DEFECTS; NEDSDV e titles: symbols AL RETARDATION, AUTOSOMAL DOMINAN				EGIA	
	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus	
3p22.1						
						I
		http	os://v	vww.	omin	n.or
0017	NEURODEVELOPMENTAL DISORDER WITH	CI	'NNB1, 4-B		omin rs398122	
0017	NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS	CI		P DEL,		2907 -
0017	SPASTIC DIPLEGIA AND VISUAL DEFECTS NEURODEVELOPMENTAL DISORDER WITH	CI NI CI	'NNB1, 4-B 11272	P DEL, G515TER	rs398122	2907 ▼ 4554 ▼
	SPASTIC DIPLEGIA AND VISUAL DEFECTS NEURODEVELOPMENTAL DISORDER WITH SPASTIC DIPLEGIA AND VISUAL DEFECTS NEURODEVELOPMENTAL DISORDER WITH	СТ N1 СТ СТ	NNB1, 4-B 11272 NNB1, AR	P DEL, G515TER N309TER	rs398122 rs397514	2907 - 4554 - 3123 -



Example – *CTNNB1 c*.1021_1026del, p.(Ser341_Arg342del)

Images from Alamut software:



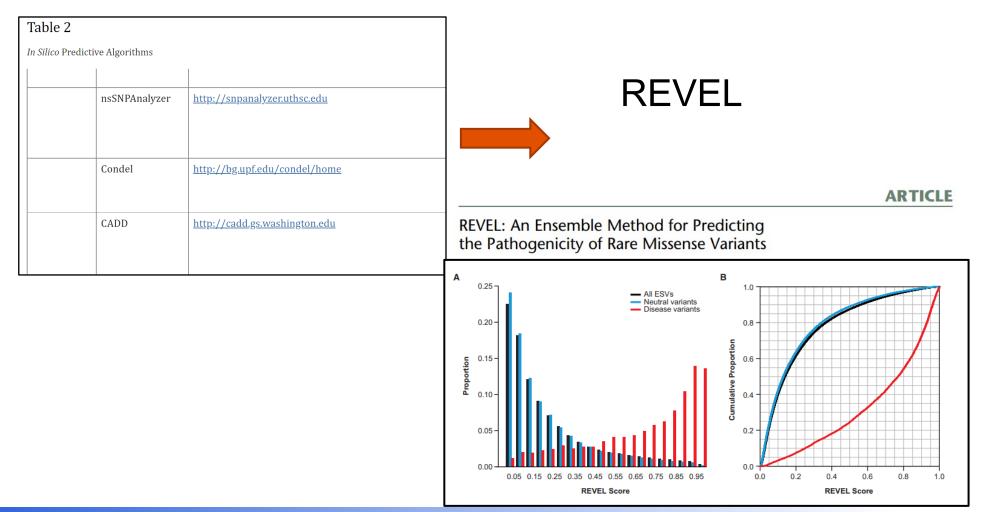
Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silient variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	---	--	---	---	---

► PM4

- Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
- To prevent double-counting of this evidence type, we recommend that PM4 should not be applied for any variant in which PVS1, at any strength level, is also applied.

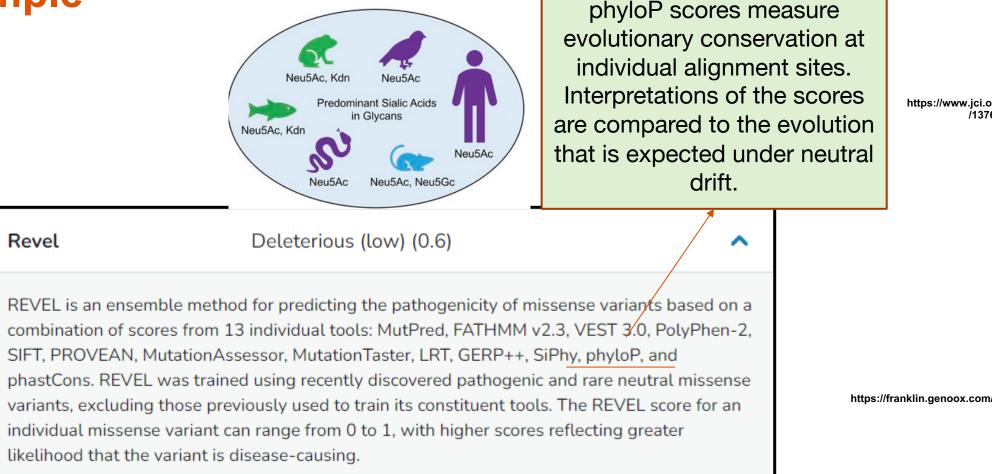
TA

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
	In-frame indels in repeat w/out known function BP3				


► PP3

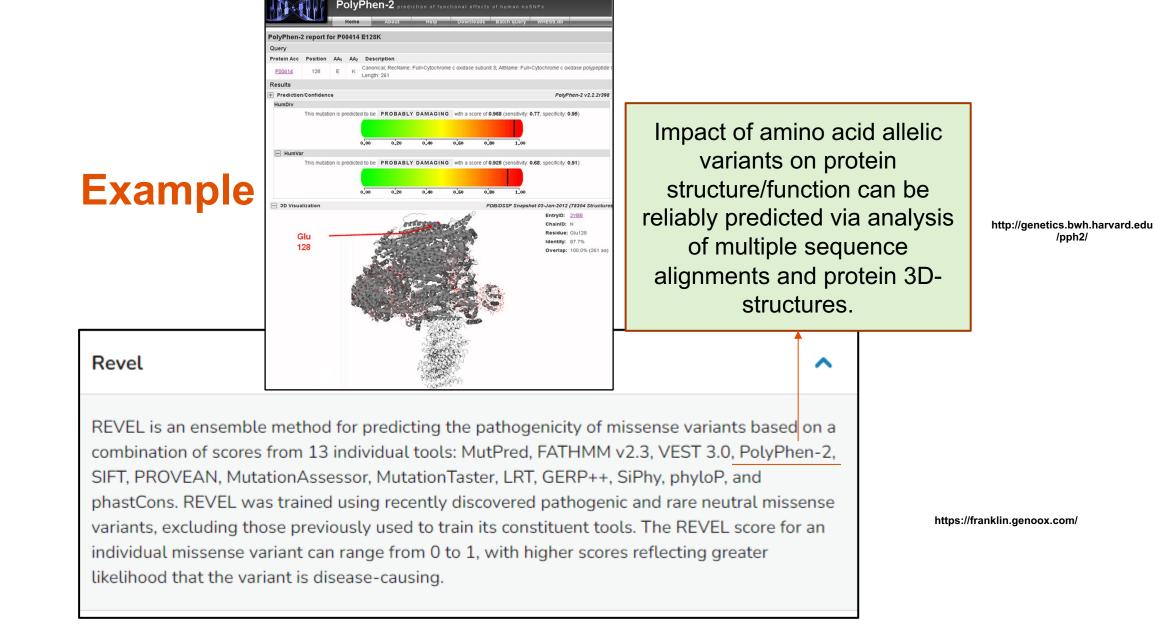
PP3 Multiple lines of computational evidence support a deleterious effect on
 the gene or gene product (conservation, evolutionary, splicing impact, etc)

...Some of the In Silico tools mentioned


Center for INDIVIDUALIZED MEDICINE

TA

Richards CS et al. *Gen Med.* 2015;17:405-423


Example

https://www.jci.org/articles/view /137681

https://franklin.genoox.com/

Computational and predictive data		Multiple lines of computational evidence suggest no Impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silient variant with non predicted splice impact BP7 In-frame Indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	---	--	---	---	---

Scores are not deterministic of biological effect/deleteriousness, they are used as "supporting evidence"

gDNA: Chr6(GRCh37):g.51720765A>G cDNA: NM_138694.3(*PKHD1*):c.7837T>C p.Trp2613Arg

Polyphen-2: Probably damaging CADD: 29 M-CAP: Probably PredictSNP2: Deleterious

Scores agree towards SNV being deleterious

PMID: 25741868

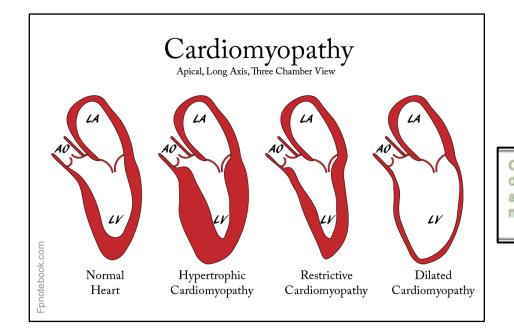
1- Population Data

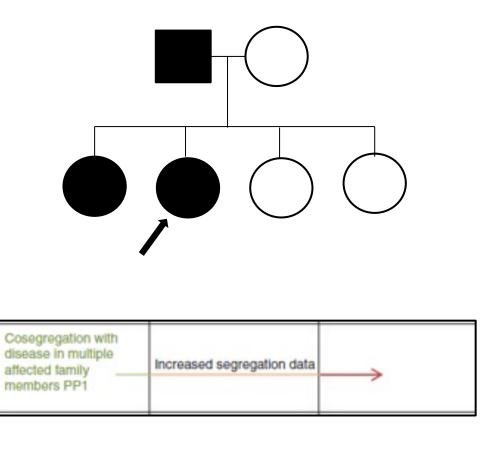
2- Computational and Predictive Data

3- Segregation Data

Segregation data	Nonsegregation with disease BS4	Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\longrightarrow	

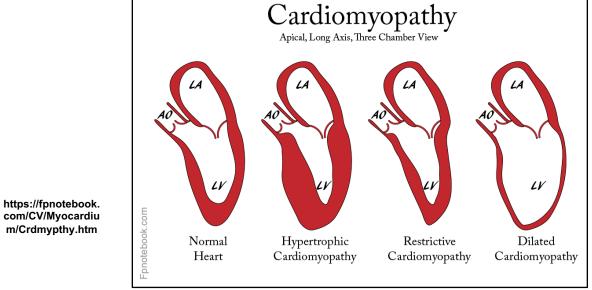
PMID: 25741868

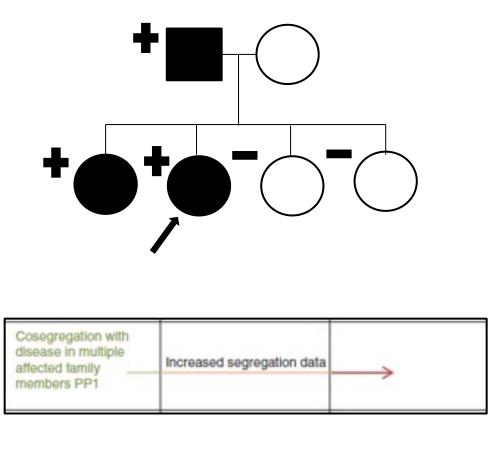

► PP1


- Co-segregation with disease in multiple affected family members of a single family in a gene definitively known to cause the disease.
 - Note: May be used as stronger evidence with increasing segregation data.

... Example of segregation

Restrictive cardiomyopathy; Variant of uncertain significance in *FLNC*




https://fpnotebook.

com/CV/Myocardiu m/Crdmypthy.htm

... Example of segregation

Restrictive cardiomyopathy; Variant of uncertain significance in *FLNC*

... Example of segregation

 Restrictive cardiomyopathy;
 Variant of uncertain significance in *FLNC*

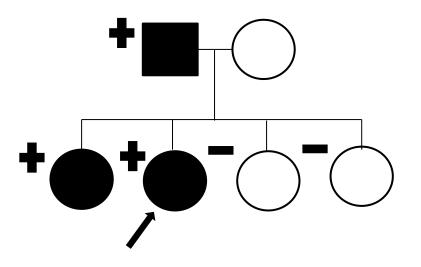
ARTICLE

Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants

Gail P. Jarvik^{1,*} and Brian L. Browning¹

Table 1

Proposed Cosegregation Evidence to Support Each ACMG-AMP¹ Pathogenicity Evidence Level


Single Family >1 Family

Strong evidence	≤1/32 (≤0.03)	≤1/16 (≤0.06)
-----------------	---------------	---------------

Moderate evidence	≤1/16 (≤0.06)	≤1/8 (≤0.125)
Supporting evidence	≤1/8 (≤0.125)	≤1/4 (≤0.25)

<u>Open in a separate window</u>

N, probability of observed cosegregation if not pathogenic, totaled over all families (or 1/BF). Note that the strongest evidence level supported by a given N is selected.

Under a dominant model, this probability is $N = (1/2)^m$, where *m* is the number of meioses of the variant of interest that are informative for cosegregation.

Watch out for different penetrance, expressivity and phenocopies!

Publicly Available Calculators and Workflows

- Publically available tools that will help add up your "points"
 - <u>https://varsome.com/</u>
 - <u>http://wintervar.wglab.org/</u>
 - <u>http://www.medschool.umaryland.edu/Genetic_Variant_Interpretation_Tool1.html/</u>
- Several analysis software integrate guidelines into their workflow

ACMG Classification: Uncertain significance

PVS1 🛛 🕐 PS1 🖾 🕐	PS2 🛛 🕐 PS3 🖾 🛈	Р54 🗌 🕐 РМ1 🛛 🛈	РМ2 🔽 🕐 РМЗ 🗌 🗘	РМ4 🛛 🕐 РМ5 🖾 🕐 РМ6 🖾 🕐
PP1 ⊠ ① PP2 ⊠ ①	РРЗ 🔽 🕐 РР4 🗌 🕐	PP5 🛛 🕛 🛛 🛛 🔿	BP2 🗌 🕐 BP3 🛛 🕐	BP4 ⊠ ① BP5 □ ① BP6 ⊠ ①
BP7 ⊠ () BS1 □ ()	BS2 🗌 🕐 BS3 🛛 🕐	BS4 🛛 🕐 BA1 🖂 🕐		

Post-test questions:

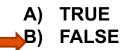
1) When we classify a variant, we do it ONLY in the context of the case we are working on, we classify `if the variant is causing the disease in the patient`.

- A) TRUE
- B) FALSE

2) Retinoblastoma, the most malignant form of eye cancer, arises from a dominant pathogenic variant in one gene *RB1*, but only about 75% of people who carry this variant develop the disease. We are talking about:

- A) Penetrance
- B) Expressivity

3) A frequent variant (found in >5% in a population) will always be `benign`


- A) TRUE
- B) FALSE

Post-test questions:

1) When we classify a variant, we do it ONLY in the context of the case we are working on, we classify `if the variant is causing the disease in the patient`.

WE CLASSIFY THE VARIANT

2) Retinoblastoma, the most malignant form of eye cancer, arises from a dominant pathogenic variant in one gene *RB1*, but only about 75% of people who carry this variant develop the disease. We are talking about:

- A) Penetrance
 - **B)** Expressivity

3) A frequent variant (found in >5% in a population) will always be `benign`

- A) TRUE
- B) FALSE

To be continued...

Questions?

TA

TA

12413.31

MAYO CLINIC

CENTER FOR INDIVIDUALIZED MEDICINE

Variant Interpretation Part 2 ACMG Guidelines

Wilke.Matheus@mayo.edu

TAC

	€ Ber	^{iign} → ←	, Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data			
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

ATA

TAC

12443.31 EM45.32

"In-Silico" Tools

Computationally Inert

Criteria for classifying benign variants

Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc.).

Caveats:

- Because many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion.
- BP4 can be used only once in any evaluation of a variant.

In-Silico Tool	Prediction
Cadd Phred	22.9
Mutation Taster	D;D;D;D;D;D
MetaSVM	Т
REVEL	0.580

Criteria for classifying pathogenic variants

Multiple lines of computational evidence support a deletrious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).

Caveats:

- Because many in silico algorithims use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion.
- PP3 can be used only once in any evaluation of a variant.

Center for INDIVIDUALIZED MEDICINE

TA

MAYO CLINIC ጉፍ

Richards CS et al. Gen Med. 2015;17:405-423

Mathed	Pathogenic (PP3)				Benign (BP4)			
Method	Very Strong	Strong	Moderate	Supporting	Supporting	Moderate	Strong	Very Strong
BavesDel	-	> 0.50	[0.27, 0.50)	[0 13 0 27)	(-0.36 -0.18]	< -0.36	-	-
CADD	-	-	≥ 28.1	[25.3, 28.1)	(17.3, 22.7]	(0.15, 17.3]	≤ 0.15	-
EA	-	-	≥ 0.821	[0.685, 0.821)	(0.069, 0.262]	≤ 0.069	-	-
FATHMM	-	-	≤ -5.04	[-5.04, -4.14)	(3.32, 4.69]	≥ 4.69	-	-
GERP++	-	-	-	-	(-4.54, 2.70]	≤ -4.54	-	-
MPC	-	-	≥ 1.828	[1.360, 1.828)	-	-	-	-
MutPred2	-	≥ 0.932	[0.829, 0.932)	[0.737, 0.829)	(0.197, 0.391]	(0.010, 0.197]	≤ 0.010	-
PhyloP	-	-	≥ 9.741	[7.367, 9.741)	(0.021, 1.879]	≤ 0.021	-	-
PolyPhen2	-	-	≥ 0.999	[0.978, 0.999)	(0.009, 0.113]	≤ 0.009	-	-
PrimateAl			> 0.867	[0 790 0 867)	(0.362, 0.483)	< 0.362		
REVEL	-	≥ 0.932	[0.773, 0.932)	[0.644, 0.773)	(0.183, 0.290]	(0.016, 0.183]	(0.003, 0.016]	≤ 0.003
SIFT	-	-	≤ 0.000	[0.000, 0.001)	(0.080, 0.327]	≥ 0.327	-	-
VEST4	-	≥ 0.965	[0.861, 0.965)	[0.764, 0.861)	(0.302, 0.449]	≤ 0.302	-	-

• 2022 new guidelines update. Will be implemented in the future

Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria.

Pejaver V¹, Byrne AB², Feng BJ³, Pagel KA⁴, Mooney SD⁵, Karchin R⁶, O'Donnell-Luria A⁷, Harrison SM⁸, Tavtigian SV⁹, Greenblatt MS¹⁰, Biesecker LG¹¹, Radivojac P¹², Brenner SE¹³, ClinGen Sequence Variant Interpretation Working Group

Table 2. Estimated threshold ranges for all tools in this study corresponding to the four pathogenic and four benign

intervals. A "-" implies that the given tool did not meet the posterior probability (likelihood ratio) threshold. See Supplemental Table

S1 for comprehensive results that include point estimates and one-sided confidence intervals. Intervals follow standard mathematical

notation in which "(" and ")" indicate exclusion of the end value and "[" and "]" indicate inclusion of the end value.

PMID: 36413997

	← Benign ← ←		Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
		Wout known function BP3					
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
	with diagona DC4		diagona in multipla				
Segregation data	with disease BS4		disease in multiple affected family members PP1	Increased segregation data	>		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

Richards CS et al. *Gen Med.* 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

T

TA

22473.31 [. 23473.32

Functional Evidence:

PS3

Functional Consequence

Criteria for classifying pathogenic variants

Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.

Note:

Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established. BS3

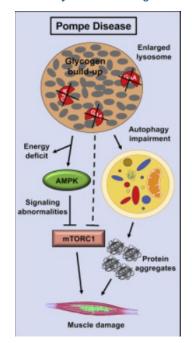
No Functional Consequence

No.

Center for INDIVIDUALIZED MEDICINE

Criteria for classifying benign variants

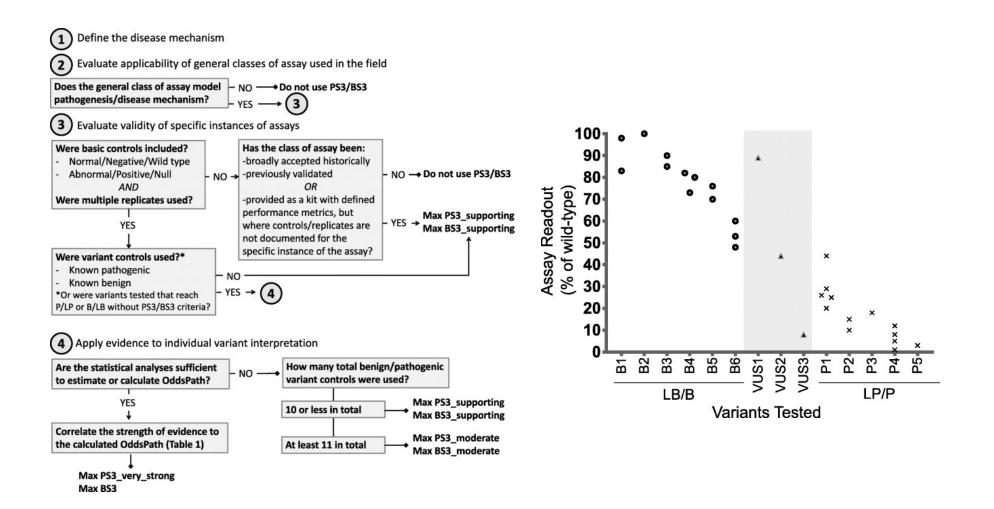
Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.


What defines a "well established" functional study or assay? How reliable? This is not simple.

Richards CS et al. *Gen Med.* 2015;17:405-423

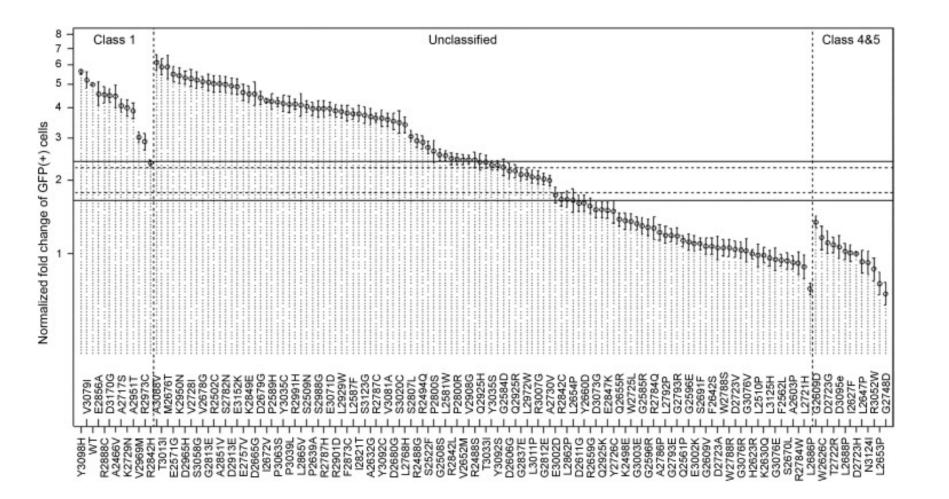
GAA example

From ClinGen Lysosomal Storage Disorders Variant Curation Expert Panel Specifications to the ACMG/AMP Variant Interpretation Guidelines Version 2



<u>PS3</u> Original ACMG Summary Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product. Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well-established. Strong Well-established in vitro or in vivo functional studies supportive of a damaging effect. RT-PCR evidence of mis-splicing for non-canonical intronic variants with no evidence of normal splice products. Modification Type: None -----Moderate Well-established in vitro or in vivo functional studies supportive of a damaging effect. • <5% wild type GAA activity when the variant is expressed in a heterologous cell type and evidence of abnormal GAA synthesis and/or processing.</p> RT-PCR evidence of mis-splicing for non-canonical intronic variants with evidence of normal splice products. Modification Type: Strength, Disease-specific Supporting Well-established in vitro or in vivo functional studies supportive of a damaging effect. • <30% wild type GAA activity when the variant is expressed in a heterologous cell type. RT-PCR evidence of mis-splicing for non-canonical intronic variants with evidence of normal splice products. Strength, Disease-specific Modification Type:

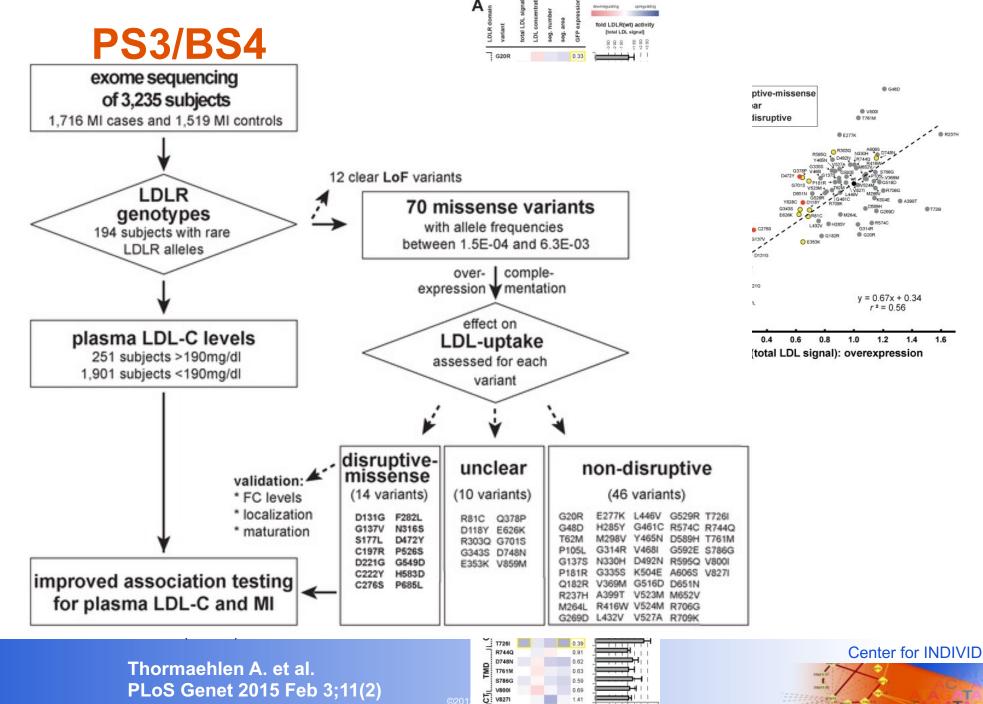
Decision Tree to guide PS3/BS3 criterion



Brnich SE et al. Gen Med. 2019 Dec 31;12(1):3

Center for INDIVIDUALIZED MEDICINE

T


PS3/BS4

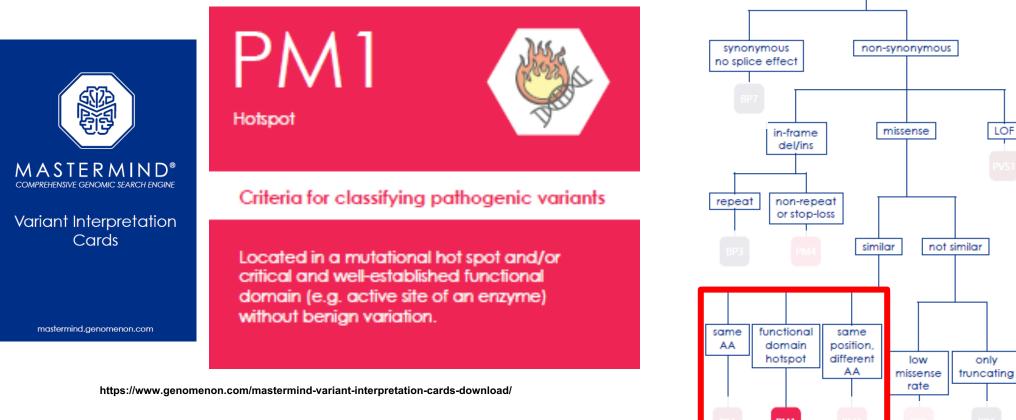
Guidugli L. et al. Am J Hum Genet. 2018 Feb 1;102(2)

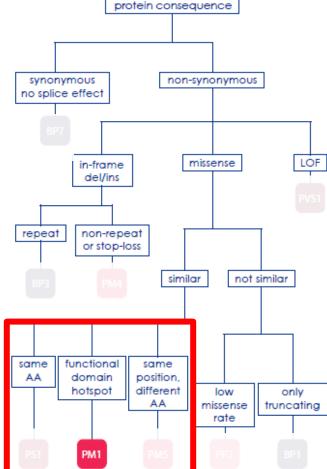
Center for INDIVIDUALIZED MEDICINE

MAYO CLINIC

ታዎ

	← Benign ← ←		Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
		Wout known function BP3					
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
	with diagona DC4		diagona in multipla				
Segregation data	with disease BS4		disease in multiple affected family members PP1	Increased segregation data	>		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

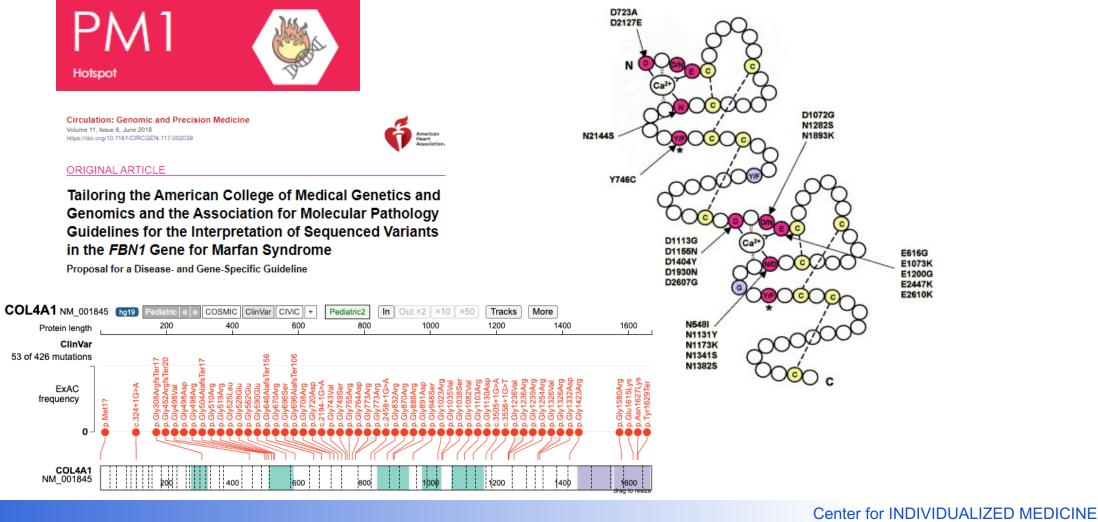

Richards CS et al. *Gen Med.* 2015;17:405-423


Center for INDIVIDUALIZED MEDICINE

T

TAC

22473.31 [. 23473.32



Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

Richards CS et al. *Gen Med.* 2015;17:405-423

Reference laboratories are very conservative in the use of this criteria because of its subjectivity

Automated criteria

Rule	Explanation
PM1 Moderate	UniProt protein CLN6_HUMAN trans-membrane region 'Helical' has 6 non-VUS missense/in-frame/non-synonymous, variants (6 pathogenic and 0 benign), pathogenicity = 100.0% which is more than threshold 50.0%.

Richards CS et al. *Gen Med.* 2015;17:405-423

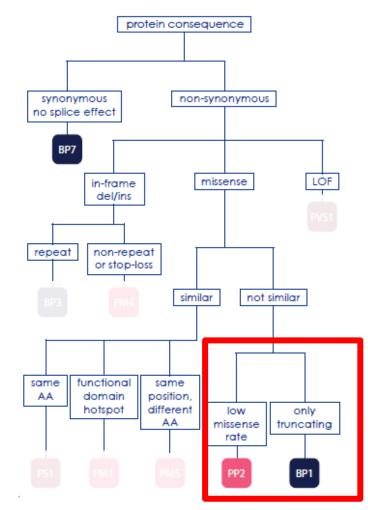
Center for INDIVIDUALIZED MEDICINE

TA

Gene-specific ClinGen expert panels

Center for INDIVIDUALIZED MEDICINE

Gene-specific criteria for PTEN variant curation: Recommendations from the ClinGen PTEN Expert Panel


Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, Costa HA, Lachlan K, Ngeow J, Barnholtz-Sloan J, Sesock K, Hernandez F, Zhang L, Milko L, Plon SE, Hegde M, Eng C.

Recommendations for PM1 specified in guidelines if applicable

Moderate	PM1	DS	Located in a mutational hot spot and/or critical and well-
			established functional domain. Defined to include residues in
			catalytic motifs: 90-94, 123-130, 166-168 (<u>NP 000305.3</u>).

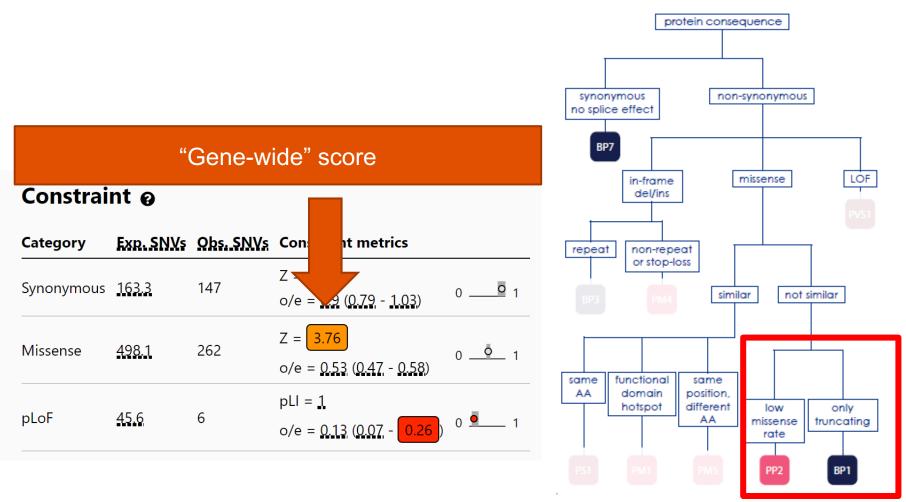
PMID: 30311380


https://www.genomenon.c om/mastermind-variantinterpretation-cardsdownload/

Center for INDIVIDUALIZED MEDICINE

T

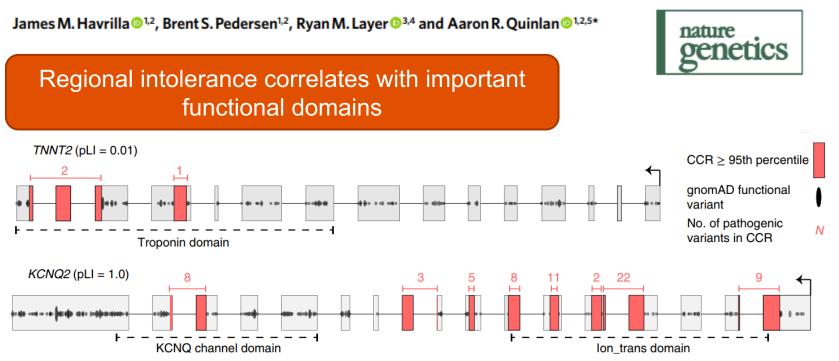
TA



Richards CS et al. *Gen Med.* 2015;17:405-423

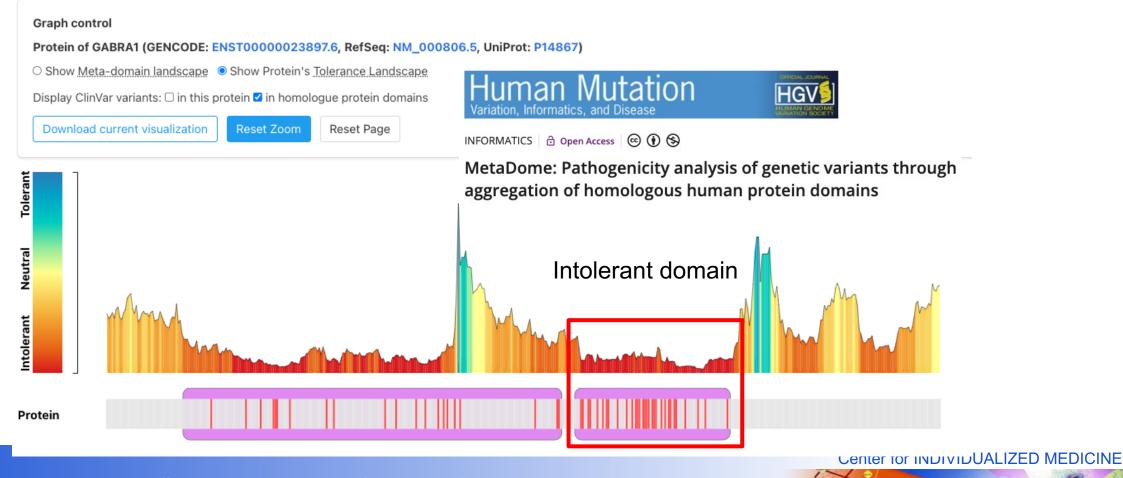
©2012 MFMER | slide-104

Center for INDIVIDUALIZED MEDICINE


Richards CS et al. *Gen Med.* 2015;17:405-423

©2012 MFMER | slide-105

Center for INDIVIDUALIZED MEDICINE


• Gene-wide summary measures of constraint are prone to overstating and understating constraint within specific regions of protein-coding genes

A map of constrained coding regions in the human genome

• Gene-wide summary measures of constraint are prone to overstating and understating constraint within specific regions of protein-coding genes

MAYO

	< Ber	Eenign		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computation and predictiv data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data			
Case-specific data to consider				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

Center for INDIVIDUALIZED MEDICINE

ATA

TA

12443.31 [. 224/3.52

and the second second

Case-Specific Evidence -Segregation Data

PS₂ PM6 De Novo - Confirmed De Novo - Not Confirmed

> De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.

Confirm parental status through validated test

father

child

mother

de novo

variant

https://www.genomenon.c om/mastermind-variantinterpretation-cardsdownload/

MAYO CLINIC

Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

PS2/PM6

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per Proband			
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships		
Phenotype highly specific for gene	2	1		
Phenotype consistent with gene but not highly specific	1	0.5		
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25		
Phenotype not consistent with gene	0	0		

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)	
0.5	1	2	4	

https://clinicalgenome.org/site/assets/files/3461/svi_proposal_for_de_novo_criteria_v1_1.pdf

https://clinicalgenome.org/site/assets/files/3461/svi_proposal_for_de_novo_criteria_v1

Center for INDIVIDUALIZED MEDICINE

PS2/PM6

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per Proband		
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships	
Phenotype highly specific for gene	2	1	
Phenotype consistent with gene but not highly specific	1	0.5	
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25	
Phenotype not consistent with gene	0	0	

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

https://clinicalgenome.org/site/assets/files/3461/svi_proposal_for_de_novo_criteria_v1_1.pdf

Center for INDIVIDUALIZED MEDICINE

If a NIPBL variant was de novo in one patient with Cornelia de Lange syndrome, with confirmed parental relationships and de novo in two additional unrelated patients with Cornelia de Lange syndrome with unconfirmed parental relationships, then ...

PS2/PM6

https://clinicalgenome.org/site/assets/files/3461/svi_proposal_for_de_novo_criteria_v1_1.pdf

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per Proband			
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships		
Phenotype highly specific for gene	2	1		
Phenotype consistent with gene but not highly specific	1	0.5		
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25		
Phenotype not consistent with gene	0	0		

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)	
0.5	1	2	4	

Center for INDIVIDUALIZED MEDICINE

If a NIPBL variant was de novo in one patient with Cornelia de Lange syndrome, with confirmed parental relationships and de novo in two additional unrelated patients with Cornelia de Lange syndrome with unconfirmed parental relationships, then ...

..Very Strong evidence level is applied (PS2_Very Strong) based on combined point value of 4 (Table 2).

PS2/PM6 – Additional considerations

- A patient with early infantile epileptic encephalopathy and a de novo SIK1 variant with confirmed parental relationships is awarded 1 point (as the patient's phenotype is consistent with the gene but not highly specific and the variant is de novo with confirmed parental relationships). If this patient is the only de novo occurrence for the variant, then a Moderate strength level (PS2_Moderate) is applied.
- A patient with nonsyndromic intellectual disability and a de novo ASH1L variant is awarded 0.5 points (as the variant is de novo with confirmed parental relationships and patient's phenotype is consistent with the gene but not highly specific and there is significant evidence of genetic heterogeneity). If this patient is the only de novo occurrence for the variant, then a Supporting strength level (PS2_Supporting) is applied.
- A patient with developmental delay but no other features of Cornelia de Lange syndrome and a de novo NIPBL variant with unconfirmed parental relationships is awarded zero points as this phenotype is not consistent with the gene/disease association. If this patient was the only de novo occurrence for the variant, then no de novo criteria are applied.

	< Ber	^{iign} → ←		Pathogenic		>
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
 Segregation	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
consi	ic data der			De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Richards CS et al. *Gen Med.* 2015;17:405-423

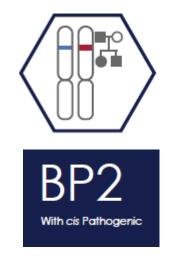
©2012 MFMER | slide-114

Center for INDIVIDUALIZED MEDICINE

TA

ATA

Case-Specific Evidence – Allelic Data



https://www.genomenon.c om/mastermind-variantinterpretation-cardsdownload/

> For recessive disorders, detected in trans with a pathogenic variant.

Trans

Note: This requires testing of parents (or offspring) to determine phase.

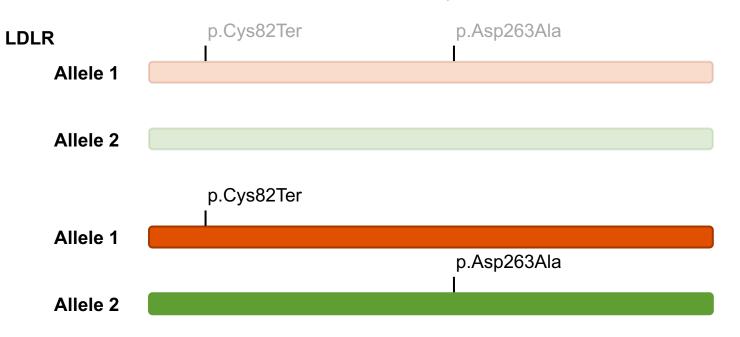
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.

Center for INDIVIDUALIZED MEDICINE

Richards CS et al. *Gen Med.* 2015;17:405-423

PM3/BP2

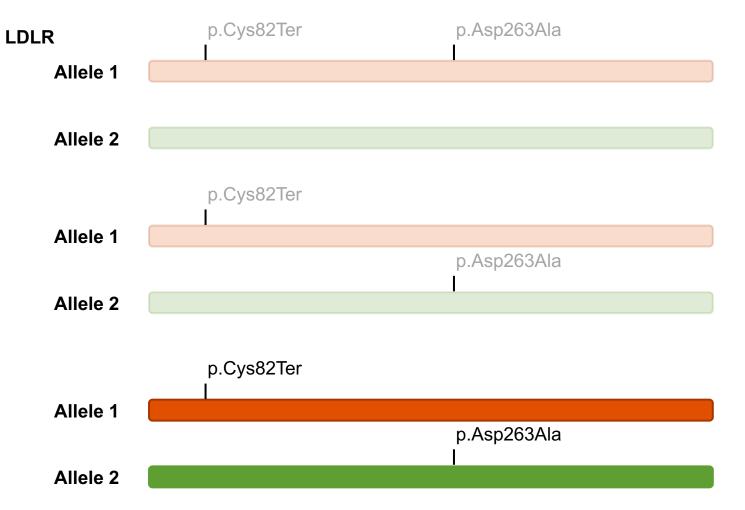
Patient presents with Familial Hypercholesterolemia (AD)



T

PM3/BP2

Patient presents with Familial Hypercholesterolemia



Center for INDIVIDUALIZED MEDICINE

T

PM3/BP2

Patient presents with HoFH

©2012 MFMER | slide-118

Center for INDIVIDUALIZED MEDICINE

TA

T

I.

	< Ber	Benign Pathogenic		>		
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\longrightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
ase-specitities to consi		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

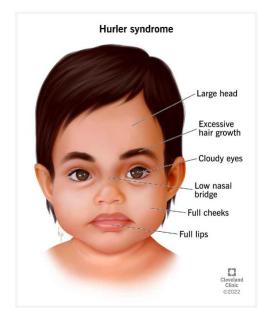
MAYO CLINIC

Richards CS et al. Gen Med. 2015;17:405-423

Center for INDIVIDUALIZED MEDICINE

T

TAC


12443.31 L

Case-Specific Evidence – Phenotype Specificity

PP4

Patient's phenotype or family history is highly specific for a disease with a single genetic etiology.

https://my.clevelandclinic.org/health/diseases/24000-hurler-syndrome

enzyme α-Liduronidase (IDUA)

Center for INDIVIDUALIZED MEDICINE

2012 MFMER | slide-120

	C Benign		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
putable s	ources	Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			r

Richards CS et al. *Gen Med.* 2015;17:405-423

©2012 MFMER | slide-121

Center for INDIVIDUALIZED MEDICINE

TA

ATA

PP5/BP6

NM_000249.4(MLH1):c.931A>G (p.Lys311Glu)				
Interpretation:	Likely pathogenic			
Review status: Submissions: Last evaluated: Accession: Variation ID: Description:	 ★ ★ ☆ reviewed by expert panel 5 (Most recent: Sep 24, 2021) Mar 9, 2018 VCV000230595.10 230595 single nucleotide variant 			

Who is reputable?

Expert panel curation takes precedence (if available)

G

Submitted interpretations and evidence

Interpretation (Last evaluated)	Review status (Assertion criteria)	Condition (Inheritance)	Submitter	More information	~
Likely pathogenic (Mar 09, 2018)	reviewed by expert panel (Guidelines v2.3) Method: curation	Lynch syndrome I Affected status: yes Allele origin: germline	International Society for Gastrointestinal Hereditary Tumours (InSiGHT) Accession: SCV000740673.1 Submitted: (Mar 23, 2018)	Other databases http://www.insight-database.org/ Comment: Multifactorial probability: 0.999 but with conflicting data. Reduced classification to class 4 pending somatic information.	~
Uncertain significance (Dec 06, 2019)	criteria provided, single submitter (Ambry Autosomal Dominant and X- Linked criteria (3/2017)) Method: clinical testing	Hereditary cancer- predisposing syndrome Affected status: unknown Allele origin: germline	Ambry Genetics Accession: SCV000274194.5 Submitted: (Nov 30, 2020)	Comment: The p.K311E variant (also known as c.931A>G), located in coding exon 11 of the MLH1 gene, results from an A to G substitution at nucleotide (more)	~
Uncertain significance (Apr 24, 2019)	criteria provided, single submitter (LabCorp Variant Classification Summary - May 2015) Method: clinical testing	not specified Affected status: unknown Allele origin: germline	Women's Health and Genetics/Laboratory Corporation of America, LabCorp Accession: SCV000696173.3 Submitted: (Sep 24, 2019)	Comment: Variant summary: MLH1 c.931A>G (p.Lys311Glu) results in a conservative amino acid change located in the N- terminal domain (IPR002099) of the encoded protein sequence. Four of (more)	~
Uncertain significance (Jun 21, 2020)	criteria provided, single submitter (Invitae Variant Classification Sherloc (09022015)) Method: clinical testing	Hereditary nonpolyposis colorectal neoplasms Affected status: unknown Allele origin: germline	Invitae Accession: SCV000543638.6 Submitted: (Jan 07, 2021)	Publications: PubMed (4) Comment: This sequence change replaces lysine with glutamic acid at codon 311 of the MLH1 protein (p.Lys311Glu). The lysine residue is highly conserved and there is (more)	~
Uncertain significance (Jun 11, 2020)	criteria provided, single submitter (GeneDx Variant Classification Process June 2021) Method: clinical testing	Not Provided Affected status: yes Allele origin: germline	GeneDx Accession: SCV000565923.3 Submitted: (Sep 24, 2021)	Comment: Not observed at a significant frequency in large population cohorts (Lek et al., 2016); in silico analysis supports that this missense variant has a deleterious (more)	~

https://my.clevelandclinic.o rg/health/diseases/24000hurler-syndrome

Center for INDIVIDUALIZED MEDICINE

T

Publicly Available Calculators and Workflows

- Publically available tools that will help tally up your "points"
 - https://varsome.com/
 - http://wintervar.wglab.org/
 - <u>http://www.medschool.umaryland.edu/Genetic_Variant_Interpretation_Tool1.html/</u>
 - https://mobidetails.iurc.montp.inserm.fr/MD/
- Several analysis software integrate guidelines into their workflow

Center for INDIVIDUALIZED MEDICINE

PVS1 🛛 🕐 PS1 🖾 🕐	PS2 🛛 🛈 PS3 🖂 🛈	PS4 □ ① PM1 ⊠ ①	РМ2 🔽 🕐 РМЗ 🗌 🕐	РМ4 🛛 !	РМ5 🛛 🕐 РМ6 🖾 🕐
PP1 🛛 🕐 PP2 🖾 🕐	РРЗ 🔽 🕐 РР4 🗆 🗘	PP5 🛛 🕛 🛛 BP1 🖂 🛈	BP2 □ ① BP3 ⊠ ①	BP4 🛛 🕐	BP5 □ ① BP6 ⊠ ①
BP7 ⊠ ① BS1 □ ①	BS2 🗌 🕐 BS3 🖾 🗘	BS4 🛛 🕐 🛛 BA1 🖂 🕐			

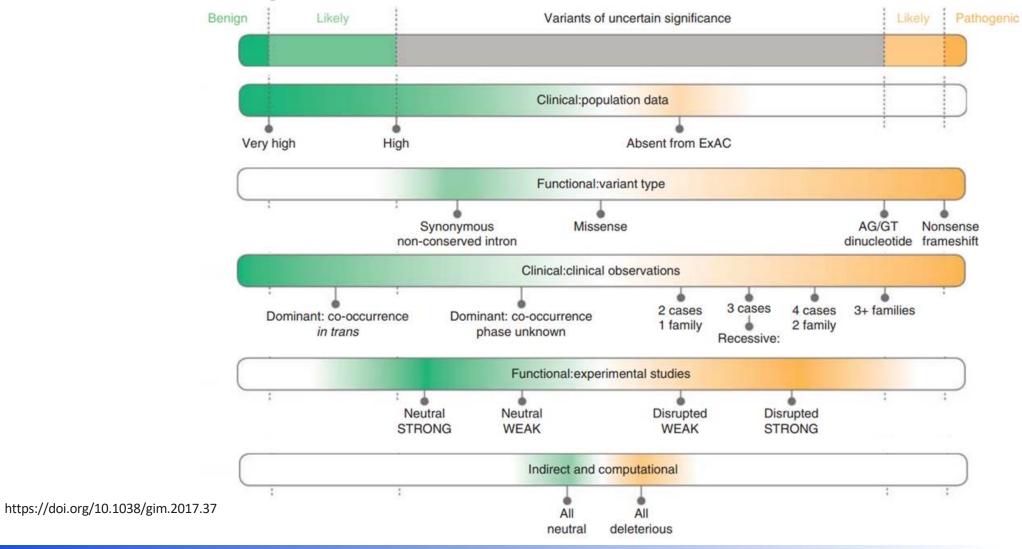
Publicly Available Calculators and Workflows

http://www.medschool.umaryland.edu/Genetic_Variant_Interpretation_Tool1.html/

X PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease

- PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change
- PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history
- PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product
- PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls
- PP1 (Strong evidence) Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease

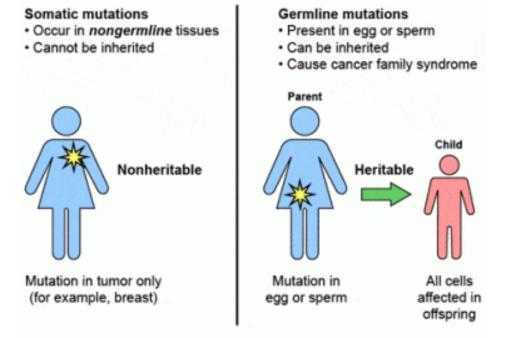
PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation


PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project. 1000 Genomes Project, or Exome Aggregation Consortium

- PM3 For recessive disorders, detected in trans with a pathogenic variant
- PM4 Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants
- PM5 Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before
- PM6 Assumed de novo, but without confirmation of paternity and maternity
- _ PP1 (Moderate evidence) Cosegregation with disease in multiple affected family members in
- a gene definitively known to cause the disease

Variant Classification: Likely pathogenic (I)

The ACMG guidelines are not mandatory, or the only ones used



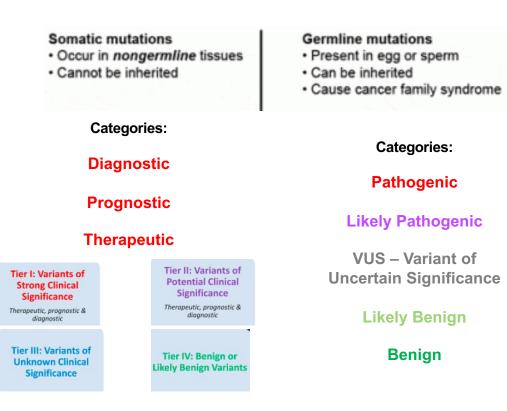
Center for INDIVIDUALIZED MEDICINE

TA

Warning!

Germline and Somatic Classification and Catalogue Differences

Adapted from the National Cancer Institute and the American Society of Clinical Ononiogy


MAYO CLINIC

Center for INDIVIDUALIZED MEDICINE

TA

Warning!

Germline and Somatic Classification and Catalogue Differences

Center for INDIVIDUALIZED MEDICINE

TA

Framework Summary for Variant Interpretation – 6 key questions

- Allele Frequency?
- What is the mechanism of disease?***
- Known or predicted impact?
- Do we have functional evidence? How reliable?
- Phenotype overlaps with gene-disease association described?
- Does it segregate with disease?

Center for INDIVIDUALIZED MEDICINE

Questions?

T

ATA

TAC

224/3.31

and and a

VUS examples

Gene	Genomic position	Coding DNA	Variant	Inheritance
DDX41	Chr5:176941942G>A	c.773C>T	p.Pro258Leu	Mother Neg (Healthy) Father Neg (Healthy)
	•			

Gene	Genomic position	Coding DNA	Variant	Inheritance
RTEL1	Chr20:622908596A>G	c.101A>G	p.Gln34Arg	Mother is Neg (Healthy) Father is Het (Affected)

Age: 62 y Sex: Female RFR: Idiopathic pulmonary fibrosis and short telomeres Family History: Father and Brother are affected and carry the mutation. Sister is affected and does not carry the mutation. Cousin is unaffected and carries the variant

VUS examples

Gene	Genomic position	Coding DNA	Variant	Inheritance
DDX41	Chr5:176941942G>A	c.773C>T	p.Pro258Leu	Mother Neg (Healthy) Father Neg (Healthy)
Age: 71 y Sex: Male RFR: Pancytopenia Family History: Negative				

Gene	Genomic position	Coding DNA	Variant	Inheritance
RTEL1	Chr20:622908596A>G	c.101A>G	p.Gln34Arg	Mother is Neg (Healthy) Father is Het (Affected)

Age: 62 y Sex: Female RFR: Idiopathic pulmonary fibrosis and short telomeres Family History: Father and Brother are affected and carry the mutation. Sister is affected and does not carry the mutation. Cousin is unaffected and carries the variant

