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This is what we will learn
• How association tests fit into data analysis
• Basics: Simple linear regression
• Basics: Fixed and random effects
• Genome-wide association studies: 
• Introduction
• Best practices

• Genomic selection: 
• Introduction
• Best practices

• Examples of GWAS
• Examples of GS
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Role of the statistical genetics in 
polymorphism and association tests

Advanced statistical 
approaches that 

connect genotype to 
the phenotype

G-to-P analyses

Slide courtesy of Dr. Matthew D. Murphy 

Genotypic data

https://tincture.io/tagged/dna-sequencing 

Phenotypic data

https://www.pioneer.com/us/products/soybeans.html
http://boort.com.au/gallery/drone-checking-corn-crop/

Accurate G-to-P models help ensure that 
investments in high-throughput technologies 

lead to meaningful results in the field



What can we do with statistical 
genetics?
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• Associate genotypes to phenotypes
• Basic statistical model: Y-variables are one or more traits; X-

variables are one or more genomic markers
• Models that accurately model the intricate relationship 

between genotype and phenotype
• More accurate genomic selection models

• Ramifications of this research
• Dissection of genetic sources of agronomically important 

traits in crops
• Flexible statistical models that can analyze wider range of 

traits
• Reduction in length of breeding cycles



Y-value  of ith 
observation

Intercept
Parameter

Random  
Error Term

X-value of ith 
observation 

Slope
Parameter

𝑌! = 𝛽" + 𝛽#𝑥! + 𝜀!

G-to-P models are based on simple 
linear regression (SLR)

• Models linear relationship between quantitative X and 
Y variables

• Parameters 𝛽! and 𝛽" are unknown constants
• Data sets of n (X, Y) observations used to estimate 

parameters



Assumptions of the error terms

• 𝜀! 	~ NID (0,𝜎"#)
– Normal
– Independent
– Equal Variance

• What can be done if assumptions are violated?
– Transform the trait (e.g., Box-Cox procedure)
– Implement a bootstrapping (or similar) procedure
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This framework can be used for X-variables 
that are categorical 



Factorial Experiment
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3x3 = 9 possible combinations 
of A and B

Randomly assign N = 27 plants 
to each combination of A and B

Measure Y = yield on all 
N= 27 plants

Quantify main effect of 
Factor A

Quantify main effect of 
Factor B

Quantify two-way interaction 
effect of Factors A and B



2-way ANOVA model with fixed effects
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𝑌!"# = 𝜇 + 𝛼! + 𝛽" + 𝛼𝛽 !" + 𝜀!"#

• 	𝑌#$% : 𝑌-value of 𝑘&' replicate receiving 𝑗&' level 
of Factor B and 𝑖&' level of Factor A

• 𝜇: Grand mean
• 𝛼#: Fixed main effect of 𝑖&' level of Factor A
• 𝛽$: Fixed main effect of 𝑗&' level of Factor B
• (𝛼𝛽)#$: Two-way interaction effect between 

receiving 𝑗&' level of Factor B and 𝑖&' level of 
Factor A

• 𝜀#$%: Error term of 𝑘&' replicate receiving 𝑗&' level 
of Factor B and 𝑖&' level of Factor A ~ NID(0, 𝜎())

Inferences of fixed effects apply only to the 
factor levels used in your experiment



2-way ANOVA model with random effects
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• 	𝑌!"# : 𝑌-value of 𝑘$% replicate receiving 𝑗$% level of 
Factor B and 𝑖$% level of Factor A

• 𝜇: Grand mean
• 𝛼!: Random main effect of 𝑖$% level of Factor A

 ~NID(0, 𝜎&')
• 𝛽": Random main effect of 𝑗$% level of Factor B
       ~NID(0, 𝜎(')
• (𝛼𝛽)!": Random two-way interaction effect between 

receiving 𝑗$% level of Factor B and 𝑖$% level of Factor A
       ~NID(0, 𝜎&(' )
• 𝜀!"#: Error term of 𝑘$% replicate receiving 𝑗$% level of 

Factor B and 𝑖$% level of Factor A ~ NID(0, 𝜎)')

Inferences of random effects apply to an 
entire population of factor levels

𝑌!"# = 𝜇 + 𝛼! + 𝛽" + 𝛼𝛽 !" + 𝜀!"#



Mixed model
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• 	𝑌!"# : 𝑌-value of 𝑘$% replicate receiving 𝑗$% level of 
Factor B and 𝑖$% level of Factor A

• 𝜇: Grand mean
• 𝛼!: Fixed main effect of 𝑖$% level of Factor A
• 𝛽": Random main effect of 𝑗$% level of Factor B
       ~NID(0, 𝜎(')
• (𝛼𝛽)!": Random two-way interaction effect between 

receiving 𝑗$% level of Factor B and 𝑖$% level of Factor A
       ~NID(0, 𝜎&(' )
• 𝜀!"#: Error term of 𝑘$% replicate receiving 𝑗$% level of 

Factor B and 𝑖$% level of Factor A ~ NID(0, 𝜎)')

Mixed models are flexible and can be 
adapted for many different quantitative 
genetics analyses

𝑌!"# = 𝜇 + 𝛼! + 𝛽" + 𝛼𝛽 !" + 𝜀!"#



Genome-wide association study 
(GWAS)

Association with Vitamin E Levels in Maize Grain

Peak SNP is within ZmVTE4

• Identify genomic regions associated with a phenotype
• Fit a statistical model at each SNP in genome
• Use fitted models to test H0: No association with SNP 

and phenotype

Lipka et al. (2013)
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Markers exhibiting peak associations with 
traits are potential targets for marker-

assisted selection (MAS) 



Genetic diversity can lead to false 
positives in a GWAS

• Two sources for false positives:
– Population Structure
– Familial Relatedness

Genetic Diversity of 2,815 Maize Inbreds 

Principal Coordinate 1
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Romay et al. (2013)
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• Solution: GWAS models include fixed 
and random effects to account for false 

positives



Unified mixed linear model (MLM)

• (Line1,…, Linen) ~ MVN(0,             )
• K = kinship matrix
• εi ~ i.i.d. N(0,      ) 

Yu et al. (2006) 13

𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐿𝑖𝑛𝑒! + 𝜀!

Phenotype of ith 
individual

Grand Mean

Fixed effects: account 
for population 
structure

Marker effect

Observed SNP alleles 
of ith individual

Random effects: 
account for familial 
relatedness

Random error
 term

Measures relatedness between 
individuals

• Variance component estimation is 
computationally intensive

• Computational approaches are available 
to reduce this computational burden



Approach 1: Compressed mixed 
linear model

• (Line1,…, Linen) ~ MVN(0,             )
• K = kinship matrix
• εi ~ i.i.d. N(0,      ) 

Perform hierarchical 
clustering on lines 
using kinship matrix

Zhang et al. (2010)

𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐿𝑖𝑛𝑒! + 𝜀!𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐺𝑟𝑜𝑢𝑝! + 𝜀!

• (Group1,…, Groupk) ~ MVN(0,              )
• KC = group (“compressed”) kinship matrix
• εi ~ i.i.d. N(0,      ) 

• Reduces computational time because it 
works with a smaller kinship matrix 



Approach 2: Population parameters 
previously determined (P3D)

Estimates variance 
components prior to 
running GWAS

Zhang et al. (2010)

• (Group1,…, Groupk) ~ MVN(0,             )
• KC = group (“compressed”) kinship matrix
• εi ~ i.i.d. N(0,      ) 

GWAS is run using 
variance component 
estimates

𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐺𝑟𝑜𝑢𝑝! + 𝜀!• Reduces computational time because 

intensive variance component estimation 
is conducted only once

• Approximation: tends to underestimate 
most significant associations



Approach 3: GEMMA

• (Line1,…, Linen) ~ MVN(0,             )
• K = kinship matrix
• εi ~ i.i.d. N(0,      ) 

Behind the scenes: Replace 
computationally intensive 
calculations with simpler 
calculations

Zhou and Stephens (2012)

Statistically optimal 
variance estimates obtained 
at each marker

𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐿𝑖𝑛𝑒! + 𝜀!

• Same reduction in computational time as 
P3D

• Exact: enables statistically optimal 
estimation of marker-trait associations



Genomic selection (GS)

• Predict phenotypic values using markers distributed 
throughout the genome

• Enables selection without phenotyping individuals
• Developed to speed up breeding cycles

Heffner et al. (2009)

• Various frequentist and Bayesian models 
are commonly used 

• Most produce approximately the same 
prediction accuracies



Basic GS statistical model

• Trait is the response variable (Yi)
• All markers are the explanatory variables (x1i,…, xpi)

• Number of markers (p) typically exceeds sample 
size (n): n<<p

𝑌! = 𝛽( + 𝛽&𝑥&! +⋯+ 𝛽'𝑥'! + 𝜀!



Issues with n << p

• Problem:
– Unique estimates of marker effects do not exist

• Solution 1(Non-Bayesian):
– Add a penalty that restricts values of the marker 

effects (e.g., ridge regression, LASSO) 
• Solution 2 (Bayesian):
– Assign a “prior distribution” on the marker effects 

(e.g., Bayes A, Bayes B, …)



Ridge regression best linear 
unbiased prediction (RR-BLUP) for 

genomic selection 
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𝑌# = 𝛽! + ∑%*"
+ 𝑥#%𝛽% + 𝜀# 

Observed SNP alleles 
of kth marker at ith 
individual

Random marker effect
~N(0, 𝜎!")

Error term ~N(0, 𝜎#")

Phenotype of ith 
individual

Meuwissen et al., Genetics (2001);
Whittaker et al., Genetics Research (2000)

𝐵𝑒𝑠𝑡	𝑙𝑖𝑛𝑒𝑎𝑟	𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐵𝐿𝑈𝑃𝑠 	𝑜𝑓	𝑡ℎ𝑒	𝛽%& 𝑠	
𝑎𝑟𝑒	𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑟𝑖𝑑𝑔𝑒	𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑝𝑒𝑛𝑎𝑙𝑡𝑦:	

𝐽 𝛽 =-
!"#

$
𝛽!%

Intercept

All predicted marker values are equally 
penalized so that they are shrunk to zero



Cross-validation

• Partition data into k folds
• Fit GS model in (k-1) folds 
• Plug markers from kth fold into model
• Calculate correlation between observed and 

predicted trait values

Source: blogs.sas.com

• Repeat so that each fold gets a chance to 
be the test set

• Prediction accuracy: average correlation 
between observed and predicted traits 

across folds

Fit GS model

Use fitted model to 
predict trait values



Differences between GS and GWAS

• The overall objectives differ:
–Main objective of GWAS is to find genomic 

regions associated with a trait
–Main objective of GS is to determine how well 

marker sets predict trait breeding values 
• The statistical models differ:
– Typical GWAS models in plants test one marker at 

a time
– Typical GS models include all markers in the 

model at once
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Differences between GS and marker-
assisted selection (MAS)

• GS:
– Uses genome-wide marker sets for predictions
– Can account for both major- and minor-effect QTL
– Ideal for predicting complex traits

• MAS:
– Focuses on marker(s) linked to genes of major effect
– Accounts for only major-effect QTL
– Adequate for predicting simple and oligogenic traits

23



How to choose the best model for 
GWAS

• It is critical to account for population structure 
and familial relatedness in a typical GWAS:
– Unified mixed linear model is the best option

• Recent developments in unified mixed linear 
model:
– Multi-trait unified linear mixed model
– Multi-locus mixed model

• Other models:
– Accounting for non-additive effects
– Accounting for variance heterogeneity
– Multi-locus, multi-trait models

24

Suggested strategy:
• Use unified mixed linear model 

• If/when quantifying interesting GWAS 
result needs further refinement, use more 

sophisticated models



Examples of GWAS in crops

• Rincker et al. (2016): Targets for brown stem 
rot resistance in soybean

• Owens/Lipka et al. (2014): Targets for 
boosting provitamin A and other carotenoid 
levels in maize grain

• Fernandes and Lipka (2020) and Fernandes et 
al (2021): Simulations to test performance of 
multi-trait GWAS models
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Example: Rincker et al. (2016)
• Brown stem rot (BSR) and 

soybean:
– Caused by the fungus C. 

gregata
– Soybean yield loss of up to 

38% has been reported in the 
United States

– BSR resistance has been 
mapped in only 12 sources, 
only two of which have been 
used to develop BSR-resistant 
cultivars 
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Source: cornandsoybeandigest.com/

• Three genes associated with BSR 
resistance, Rbs1-3, have been identified 

in previous studies
• Critical need to obtain a more precise 

location of these loci
• Result in more efficient MAS for BSR 

resistance



Separate GWAS performed on four 
association panels

27

• N-1989 panel:
– Binary phenotype: logistic regression + stepwise 

model selection
• Other panels:
– Quantitative phenotype: Unified MLM + multi-locus 

mixed model
Rincker et al. (2016)



Unified MLM GWAS identifies 
signals near Rbs1-Rbs3
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• Multi-locus mixed model identified two 
peak SNPs from this region in the final 

model
• GWAS was reran using these two peak 

SNPs as covariates

Rincker et al. (2016)



Multi locus mixed model (MLMM) 
quantifies associations of multiple markers

• (Line1,…, Linen) ~ MVN(0,             )
• K = kinship matrix
• I = subset of markers selected from stepwise regression 
• εi ~ i.i.d. N(0,      ) 

Phenotype of ith 
individual

Grand Mean

Fixed effects: account 
for population 
structure

Additive effect of kth 

marker 

Observed SNP alleles 
of kth marker for  ith 
individual

Random effects: 
account for familial 
relatedness

Random error
 term

Segura et al. (2012)

Measures relatedness between 
individuals
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𝑌! = 𝜇 + Σ"#$% 𝛽"𝑃𝐶"! + Σ%∈'𝛼%𝑥%! + 𝐿𝑖𝑛𝑒! + 𝜀!
• “Final” model selected by MLMM 
consisted of exactly 2 SNPs, both in Rbs1-

Rbs3 region
• We will revisit usage of the MLMM in a 

future example



Peak SNPs from MLMM reduces 
explains most of  Rbs1-Rbs3 signal

30
Rincker et al. (2016)

• Similar findings were obtained in the 
other association panels



Breeding Ramifications

• Previous Rbs1-Rbs3 signals been refined to a 0.3 Mb 
region on Chromosome 16

• Should facilitate both MAS-based approaches and gene 
cloning efforts

• Demonstrates the utility of GWAS in soybean
31

Source: blogs.ext.vt.edu

Rincker et al. (2016)



Biofortification

• Identify target genes                    associated 
with nutrients                                        in crops

• Increase nutritional value of local crop varieties 
by selecting on these target genes

• Results in increased availability of essential 
nutrients

Source: www. aboutharvest.com



Targeting vitamin A deficiency 
through biofortification
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• Vitamin A deficiency (VAD):
– Affects 17-30% of children 

under 5
– 250-500,000 children become  
     blind every year
– Infant morbidity and mortality

• Maize is a primary food source in many vitamin A 
deficient regions

• Biofortification: breed locally-adapted maize lines for 
increased provitamin A levels in grain

Source: en.wikipedia.org



Work in maize provitamin A biofortification 
prior to Owens/Lipka et al. (2014)

• Candidate gene studies identified loci in maize (Harjes et al., 
2008; Vallabheneni et al., 2010; Yan et al. 2010)

• Developed high provitamin A maize (CIMMYT, HarvestPlus) 
and high carotenoid lines (Burt et al., 2011) through selection 
on target alleles 

• Major QTL identified near candidate genes 
(Chandler/Lipka et al., 2013)

• Pleiotropy identified among metabolite 
QTL (Kandianis et al., 2013)

Source: Chandler/Lipka et al., 2013

Owens/Lipka et al (2014):
1.) Conduct a GWAS to identify new 

candidate genes
2.) Determine a minimal marker set to 
accurately predict  carotenoid levels 



Data analyzed in Owens/Lipka et al. 
(2014)

• 281-member Goodman diversity panel
• Grown at Purdue University in 2009 and 2010 

field seasons
• Compound levels quantified in grain:
– Carotenoids for 252 lines

35

Source: Brenda Owens

• Maize lines with white kernels do not 
produce measureable carotenoids

• We only analyzed a subset of 201 lines 
that range from light yellow to dark 

orange kernel color



GWAS found significant marker-trait 
associations near carotenoid pathway 

genes

36

Carotenoid biosynthetic 
pathway

Owens/Lipka et al. (2014)

= Significant at the 
    genome-wide level• Adjusting for multiple testing at the 

genome-wide level was conservative
• We also conducted a pathway-level 
analysis, where only markers near 58 a 

priori genes were considered



GWAS found significant marker-trait 
associations near carotenoid pathway 

genes

37

Carotenoid biosynthetic 
pathway

Owens/Lipka et al. (2014)

= Significant at the 
    genome-wide level

= Significant at the 
   pathway level

Dxs2

• This work identified potential targets for 
marker-assisted selection (MAS)

• Are selecting for these target loci 
sufficient for improving provitamin A 

content in maize grain?
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• Multivariate quantitative genetics approaches have 
great potential
• Identification of pleiotropic loci
• Improve prediction accuracy

• Simulating correlated traits will help assess their 
utility
• We know genetic architectures of simulated traits 
• We directly assess true and false positive identification 

rates

CRAN/R package: simplePHENOTYPES: 
simulate univariate and multivariate traits 

based on user-inputted marker data

Prof. Samuel Fernandes

Fernandes and Lipka., BMC Bioinformatics (2020) 



How well can GWAS models 
differentiate between pleiotropy and 

linkage?
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Genomic position

One pleiotropic 
locus

Causal Locus

Trait 1 Trait 2

Genomic position

Two loci in 
linkage

Trait 1 Trait 2

Causal 
Locus 1

Causal 
Locus 2

Fernandes et al., Frontiers in Genetics (2021) 

We are now at a stage where we should 
deploy multivariate GWAS models more 

readily



Unified mixed linear model can become 
multivariate

• (Line1,…, Linen) ~ MVN(0,             )
• K = kinship matrix
• εi ~ i.i.d. N(0,      ) 

Yu et al. (2006) 40

𝑌! = 𝜇 + Σ$%&
' 𝛽$𝑃𝐶$! + 𝛼𝑥! + 𝐿𝑖𝑛𝑒! + 𝜀!

Phenotype of ith 
individual

Grand Mean

Fixed effects: account 
for population 
structure

Marker effect

Observed SNP alleles 
of ith individual

Random effects: 
account for familial 
relatedness

Random error
 term

Measures relatedness between 
individuals

• Univariate GWAS:  Y-variable consists of 
one trait 

• Multivariate GWAS: Y-variable consists 
of two or more traits



Examples of GS in crops

• Lipka et al. (2014): Basic GS example in 
switchgrass

• Olatoye et al. (2020): More advanced GS 
example in Miscanthus
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Genomic selection (GS) could speed 
up switchgrass breeding cycle

• GS on simple-to-measure traits approximating 
biomass yield could revolutionize switchgrass 
breeding efforts

• We evaluated the potential of GS using the latest 
genotypic and phenotypic resources

Heffner et al. (2009)

42
Lipka et al. (2014)



Switchgrass Association Panel

• 515 members
• Grown in Ithaca, 

NY in 2009-2011
• Tetraploids and 

octoploids included
• Predominantly 

northern-adaptaed 
upland germplasmPhoto taken 17 August 2010; Caldwell Field

Cornell University, Ithaca NY 

43
Lipka et al. (2014)



Genotypic and Phenotypic Data

• 7 morphological traits
• 13 biomass quality traits (Vogel et al., 

Bioenergy Resources, 2011)
• 16,669 SNPs using genotyping-by-sequencing 

(GBS) techniques
• SNPs were anchored to the Panicum virgatum 

v1.1 reference genome
– Used to impute missing SNP values

44
Lipka et al. (2014)



GS study

• Three popular GS models:
– RR-BLUP
– Elastic net
– LASSO

• RR-BLUP should perform best for complex 
traits

• LASSO should perform best for simple traits
• 10-fold cross validation to evaluate 

performance

45
Lipka et al. (2014)



Main finding: GS appears to work

• Three GS models produced similar prediction 
accuracies

• High prediction accuracies obtained for most 
traits
– Standability had the highest (0.52)

• Morphological traits generally had higher 
prediction accuracies than the biomass quality 
traits

46
Lipka et al. (2014)



Do we need to “account” for 
population structure in GS?

First two principal components (PCs) of 16,669 SNPs

• We used first two  PCs to factor out SNP 
effects from population structure

• No longer agree that we need to factor 
out population structure from GS models

47
Lipka et al. (2014)



Miscanthus is a sustainable source of 
lignocellulosic ethanol biofuel production

Miscanthus sp.: Perennial grass from eastern Asia

Species 1: M. sinensis Species 2: M. sacchariflorus

One clone of an interspecific cross of 
Species 1 × Species 2 (M × g) 

used for biofuel purposes in North America 
and Europe

48



Both species have substantial 
subpopulation structure

Clark et al. 2014Subpopulations in Species 1:

Clark et al. 2018

Subpopulations in Species 2:

49

Purpose of GS is to quantify total genetic 
merit, whether it is:

• From genes underlying a trait 
• Other genetic differences arising from 

subpopulation structure



Contribution of pop structure to 
prediction accuracy?

Fit a standard GS 
model

Dr. Marcus Olatoye

Olatoye et al., G3 (2020) 50

Panel 1: Msi panel Panel 2: Msa panel

Fit PCs model 
accounting for for 

pop structure 
Fit a standard GS 

model

Fit PCs model 
accounting for for 

pop structure 

Compare 
prediction 
accuracies

Compare 
prediction 
accuracies

If pop structure is important, then 
prediction accuracy of PCs model should be 

close to GS model



Population structure accounts for substantial 
portion of GS prediction accuracy

51
Olatoye et al., G3 (2020)

c

Results from  
model 

accounting for 
pop structure

c

Results from 
GS model

My current opinion: do not “factor out” 
population structure in GS models



What did we just learn, and why 
is it important?

• What we learned:
• The basics of association tests
• GWAS
• GS

• GWAS and GS are the two most widely used applications 
association tests
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