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This is what we will learn

How association tests fit into data analysis
Basics: Simple linear regression
Basics: Fixed and random effects
Genome-wide association studies:
* Introduction

* Best practices

Genomic selection:

* Introduction

* Best practices

Examples of GWAS

Examples of GS



Role of the statistical genetics in
polymorphism and association tests

G-to-P analyses .
Genotvpic data Phenotvpic data

Accurate G-to-P models help ensure that
investments in high-throughput technologies
lead to meaningful results in the field

Slide courtesy of Dr. Matthew D. Murphy
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What can we do with statistical
genetics?

* Associate genotypes to phenotypes

Basic statistical model: Y-variables are one or more traits; X-
variables are one or more genomic markers

Models that accurately model the intricate relationship
between genotype and phenotype

More accurate genomic selection models

e Ramifications of this research

Dissection of genetic sources of agronomically important
traits in crops

Flexible statistical models that can analyze wider range of
traits

Reduction 1n length of breeding cycles



G-to-P models are based on simple
linear regression (SLR)

Slope Random
Parameter Error Term
Y ‘ + xl +@
Int t
Y- Value of ith Pn erceli
observation arametet X- Value of i
observation

* Models linear relationship between quantitative X and
Y variables

* Parameters S, and [; are unknown constants

* Data sets of n (X, Y) observations used to estimate
parameters




Assumptions of the error terms

e & ~NID (0,6%)

— Normal

Tsndonrnandant

This framework can be used for X-variables
that are categorical

* What can be done if assumptions are violated?
— Transform the trait (e.g., Box-Cox procedure)

— Implement a bootstrapping (or similar) procedure




Factor B- Fertilizer

Factorial Experiment
Factor A - Density

1 2 3
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Quantity two-way interaction
effect of Factors A and B
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2-way ANOVA model with fixed effects

)0 e

Y;ix : Y-value of k" replicate receiving j"* level
of Factor B and it" level of Factor 4

e y1°' (irand mean

Inferences of fixed effects apply only to the

factor levels used in your experiment
ij- -
receiving j" level of Factor B and it" level of
Factor 4
* &;jx: Error term of k*" replicate receiving j" level

of Factor B and i*" level of Factor 4 ~ NID(0, ¢?)




2-way ANOVA model with random effects

ey

Yijx : Y-value of k" replicate receiving j*" level of
Factor B and it" level of Factor 4

Inferences of random effects apply to an
entlre population of factor levels

p;: Random main eftect ot j= level or Factor 5
~NID(0, c)
* (apB);j: Random two-way interaction effect between
receiving jt" level of Factor B and i*" level of Factor 4
~NID(0, o45)
* &) Error term of k™" replicate receiving j** level of
Factor B and it" level of Factor 4 ~ NID(0, ¢2)



Mixed model

(e

Yijx : Y-value of k" replicate receiving j*" level of
Factor B and it" level of Factor 4

) B |

Mixed models are flexible and can be
adapted for many different quantitative
genetics analyses

receiving jt" level of Factor B and i*" level of Factor 4
~NID(0, o5)

* &k Error term of kt" replicate receiving jt" level of
Factor B and i*" level of Factor A ~ NID(0, )




Genome-wide association study
(GWAS)

Association with Vitamin E Levels in Maize Grain

. |Peak SNP is within ZmVTE4—>

|

P-value

MarKkers exhibiting peak associations with
traits are potential targets for marker-
assisted selection (MAS)

QECTIOITNC FosIutaon

* Identify genomic regions associated with a phenotype
 Fit a statistical model at each SNP 1n genome

* Use fitted models to test Hy: No association with SNP
and phenotype




Genetic diversity can lead to false
positives in a GWAS

Genetic Diversity of 2,815 Maize Inbreds

e Solution: GWAS models include fixed
and random effects to account for false
positives

Pr

, , , , , |
Principal Coordinate 1  Romay etal. (2013)

* Two sources for false positives:

— Population Structure

— Familial Relatedness




Unified mixed linear model (MLM)

Random effects:
Grand Mean Marker effect account for familial

/ l relatedness
Y: = u +H2P .B:PC;) + ax; +(Line) + &;

* Variance component estimation is o
computationally intensive
Computational approaches are available
to reduce this computational burden

* (Line,,..., Line,) ~MVN(0, 2K0 )

@Hlshlp matrlx Measures rllatedness between
individuals

* & ~11.d. N(0, Op)

Yu et al. (2006)




Approach 1: Compressed mixed
linear model

Y; = u+ZI_ B;iPCj + ax; -&Ll' £

Perform hlerarchlcal

* Reduces computational time because it
works with a smaller Kinship matrix

* (Girap,,,.LitagupYWWNONAK 2K o)
K ~kgnehp (Mmpressed”) kinship matrix

* & ~1.1.d. N(O, O'E)

Zhang et al. (2010)




Approach 2: Population parameters

previously determined (P3D)

M

Reduces computational time because
intensive variance component estimation
is conducted only once
Approximation: tends to underestimate
most significant associations

-
. g ~iid. N(O,

Zhang et al. (2010)




Approach 3: GEMMA

Y, =u+ Z}OzlﬁjPCji + ax; + Line; + ¢;

* Same reduction in computational time as
P3D
 Exact: enables statistically optimal
estimation of marker-trait associations

N\
@kmshlp matrix

* & ~1.1.d. N(O, ‘)

and Stephens (2012)




Genomic selection (GS)

l[] TraininkGenotyping &

* Various frequentist and Bayesian models
are commonly used
* Most produce approximately the same
prediction accuracies

L .d
Heffner et al. (2009)

* Predict phenotypic values using markers distributed
throughout the genome

* Enables selection without phenotyping individuals
* Developed to speed up breeding cycles




Basic GS statistical model

* Trait is the response variable (Y))

* All markers are the explanatory variables (xy;,..., x,,)

Y, = o+ B1x1; + -+ BpXpi + &

* Number of markers (p) typically exceeds sample
size (n): n<<p



Issues with n <<p

* Problem:
— Unique estimates of marker effects do not exist
* Solution 1(Non-Bayesian):

— Add a penalty that restricts values of the marker
effects (e.g., ridge regression, LASSO)

* Solution 2 (Bayesian):

— Assign a “prior distribution” on the marker effects
(e.g., Bayes A, Bayes B, ...)



Ridge regression best linear

unbiased prediction (RR-BLUP) for

genomic selection

Observed SNP alleles
of k™ marker at i
individual

| \

Random marker effect
~N(0, 6)

All predicted marker values are equally
penalized so that they are shrunk to zero

Best linear unbiased predictors (BLUPSs) of the fy,s
are subjected to the ridge regression penalty:

ORI

Meuwissen et al., Genetics (2001);
Whittaker et al., Genetics Research (2000)




Cross-validation

Use fitted model to
predict trait values

Training Set

Test Set

Source: blogs.sas.com

* Repeat so that each fold gets a chance to
be the test set
* Prediction accuracy: average correlation
between observed and predicted traits
across folds




Differences between GS and GWAS

* The overall objectives differ:

— Main objective of GWAS 1s to find genomic
regions associated with a trait

— Main objective of GS 1s to determine how well
marker sets predict trait breeding values

* The statistical models differ:

— Typical GWAS models 1n plants test one marker at
a time

— Typical GS models include all markers in the
model at once



Differences between GS and marker-
assisted selection (MAS)

* GS:
— Uses genome-wide marker sets for predictions
— Can account for both major- and minor-effect QTL
— Ideal for predicting complex traits

e MAS:

— Focuses on marker(s) linked to genes of major effect
— Accounts for only major-effect QTL

— Adequate for predicting simple and oligogenic traits



How to choose the best model for
GWAS

* It 1s critical to account for population structure
and familial relatedness 1n a typical GWAS:

W N

Suggested strategy:
* Use unified mixed linear model
* If/when quantitying interesting GWAS
result needs further refinement, use more
sophisticated models

— Accounting for variance heterogeneity
— Multi-locus, multi-trait models

24




Examples of GWAS in crops

* Rincker et al. (2016): Targets for brown stem
rot resistance in soybean

* Owens/Lipka et al. (2014): Targets for

boosting provitamin A and other carotenoid
levels 1n maize grain

* Fernandes and Lipka (2020) and Fernandes et
al (2021): Simulations to test performance of
multi-trait GWAS models



Example: Rincker et al. (2016)

o Brown stem rot (BSRYand = weesses o2 cwwr camen
* Three genes associated with BSR
resistance, RbsI-3, have been identified

in previous studies
* Ciritical need to obtain a more precise
location of these loci
* Result in more efficient MAS for BSR

resistance

Source: cornandsoybeandigest.com/



Separate GWAS performed on four
association panels

Table 1. Characteristics of association panels analyzed with genome-wide association study and stepwise procedures.

S BSR Score}
ymptoms Box-Cox

Panel Data type measured Accessions SNP} markers lambda Mean SD§ h™
N-1989 Binary Foliar and stem 2173 33,240 na na no no#
B-1997 Proportion 01 Foliar 540 33486 log 0.09 0.15 049
B-1997 Proportion 01 Stem 540 33486 1 0.38 0.20 0.61
8-2000 Proportion 01 Foliar 825 32,150 0.25 0.33 0.29 093
P-2003 Proportion 01 Stem 606 29,815 0.75 0.39 0.25 0.68

* N-1989 panel:

— Binary phenotype: logistic regression + stepwise
model selection

* Other panels:

— Quantitative phenotype: Unified MLM + multi-locus
mixed model

27
Rincker et al. (2016)



Unified MLM GWAS identifies
signals near RbsI-Rbs3

A

<
.

30 35

* Multi-locus mixed model identified two

peak SNPs from this region in the final
model

* GWAS was reran using these two peak

SNPs as covariates

o — — =

o

32 é3 34 35 36 37
Position (Chr. 16 Glyma.Wm82.a2) x 10°

Rincker et al. (2016)



Multi locus mixed model (MLMM)
quantifies associations of multiple markers

Random effects:
Grand Mean Addlthe effect of k" account for familial

I —

- “Flnal” model selected by MLMM
consisted of exactly 2 SNPs, both in RbsI-
Rbs3 region
*  We will revisit usage of the MLMM in a
future example

— A b /74 S Nt €
K = klIlShlp matnD ?I/llgiavsiu;jslzelatedness between
. subset of markers selected from stepwise regression
. 2
* g ~11d. N0, Op)

Segura et al. (2012)



Peak SNPs from MLMM reduces
explains most of RbsI-Rbs3 signal

B

30 35

Q
Yo

(o]

* Similar findings were obtained in the

other association panels

=
o
O | e
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32 33 34 35 36 37

Position (Chr. 16 Glyma.Wm82.a2) x 10°

Rincker et al. (2016)
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Breeding Ramifications

AL AN 29y, o
: blogs.ext.vt.edu

* Previous RbsI-Rbs3 signals been refined to a 0.3 Mb
region on Chromosome 16

* Should facilitate both MAS-based approaches and gene
cloning efforts

* Demonstrates the utility of GWAS 1n soybean

31
Rincker et al. (2016)



Biofortification

 Identify target genes
with nutrients

Source: www. aboutharvest.com

* Increase nutritional value of local crop varieties
by selecting on these target genes

* Results in increased availability of essential
nutrients



Targeting vitamin A deficiency
through biofortification

* Vitamin A deficiency (VAD):

— Aftects 17-30% of children
under 5

— 250-500,000 children become :.... K

nnnnnnnnnnnnnnnnnnnnn
lllllllllll

bllnd every year S;urc:‘:a:;.wikipedia\.org
— Infant morbidity and mortality

* Maize 1s a primary food source in many vitamin A
deficient regions

* Biofortification: breed locally-adapted maize lines for
increased provitamin A levels 1n grain

33



Work in maize provitamin A biofortification
prior to Owens/Lipka et al. (2014)

* Candidate gene studies 1dentified loc1 in maize (Harjes et al.,
2008; Vallabheneni et al., 2010; Yan et al. 2010)

Owens/Lipka et al (2014):
1.) Conduct a GWAS to identity new
candidate genes
2.) Determine a minimal marker set to
accurately predlct carotenmd levels

QTL (Kandianis et al. 2013)

Source: Chandler/Lipka et al., 2013



Data analyzed in Owens/Lipka et al.
(2014)

* Maize lmes Wlth whlte kernels do not
produce measureable carotenoids
* We only analyzed a subset of 201 lines
that range from light yellow to dark
orange kernel color

AL W ASHF UWSWoUILXDT

* Compound levels quantified in grain:
— Carotenoids for 252 lines



GWAS found significant marker-trait
associations near carotenoid pathway
genes

— Qianifirant At tha

* Adjusting for multiple testing at the

senome-wide level was conservative

* We also conducted a pathway-level
analysis, where only markers near 58 a

priori genes were considered
'

Antheraxanthin

Violaxanthin

Owens/Lipka et al. (2014)




GWAS found significant marker-trait
associations near carotenoid pathway
genes

GGPP
Geranylgeranyl Pyrophosphate O =Significant at the
genome-wide level

* This work 1dent1ﬁed potential targets for
marker-assisted selection (MAS)
* Are selecting for these target loci
sufficient for improving provitamin A
content in maize grain?

Antheraxanthin

Violaxanthin

Owens/Lipka et al. (2014)




WM_ downloads 4524 | downloads 341/month

Simulation of Pleiotropic, Linked and Epistatic Phenotypes

Prof. Samuel Fernandes

 Multivariate quantitative genetics approaches have
great potential

CRAN/R package: simplePHENOTYPES:
simulate univariate and multivariate traits
based on user-inputted marker data

utility

*  We know genetic architectures of simulated traits

* We directly assess true and false positive identification
rates

38
Fernandes and Lipka., BMC Bioinformatics (2020)



How well can GWAS models
differentiate between pleiotropy and
linkage?

-

One pleiotropic
, e prEtonrop . |

We are now at a stage where we should
deploy multivariate GWAS models more
readily

——
inkage 11

.
Locus 2 Genomic position

39

Fernandes et al., Frontiers in Genetics (2021)



Unified mixed linear model can become
mlllﬁVal‘iate Random effects:

Grand Mean Marker effect account for familial

/ m l relatedness
Y.- = 11 + y‘.p ,R:P{:':: + aox.: + I,i‘nﬁ: 4+ £

e Univariate GWAS: Y-variable consists of
one trait

e Multivariate GWAS: Y-variable consists
of two or more traits

T

* (Line,,..., Line,) ~ MVN(O, 2KO'G)

@Hlshlp matrlx Measures rllatedness between
individuals

* & ~11.d. N(0, Op)

Yu et al. (2006)




Examples of GS in crops

* Lipka et al. (2014): Basic GS example 1n
switchgrass

* Olatoye et al. (2020): More advanced GS
example 1n Miscanthus



Genomic selection (GS) could speed
up switchgrass breeding cycle

™\

Training Genotyping &

Population Phenotyping
Calculate Make
GEBV Selections

Heffner et al. (2009)

* GS on simple-to-measure traits approx1mat1ng
biomass yield could revolutionize switchgrass
breeding efforts

*  We evaluated the potential of GS using the latest
genotypic and phenotypic resources

Lipka et al. (2014)
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Switchgrass Association Panel

* 515 members

* Grown 1n Ithaca,
NY 1n 2009-2011

* Tetraploids and
octoploids included

* Predominantly
northern-adaptaed
upland germplasm

Photo taken 17 August 2010; Caldwell Field
Cornell University, Ithaca NY

43
Lipka et al. (2014)



Genotypic and Phenotypic Data

* 7 morphological traits

* 13 biomass quality traits (Vogel et al.,
Bioenergy Resources, 2011)

* 16,669 SNPs using genotyping-by-sequencing
(GBS) techniques

* SNPs were anchored to the Panicum virgatum
vl.1 reference genome

— Used to impute missing SNP values

Lipka et al. (2014)



GS study

* Three popular GS models:
— RR-BLUP
— Elastic net
— LASSO

 RR-BLUP should perform best for complex
traits

* LASSO should perform best for simple traits

 10-fold cross validation to evaluate
performance

Lipka et al. (2014)



Main finding: GS appears to work

* Three GS models produced similar prediction
accuracies

* High prediction accuracies obtained for most
traits
— Standability had the highest (0.52)

* Morphological traits generally had higher
prediction accuracies than the biomass quality
traits

Lipka et al. (2014)



Do we need to “account” for
population structure in GS?

First two principal components (PCs) of 16,669 SNPs

o |

|

We

used first two PCs to factor out SN
effects from population structure

No longer agree that we need to factor
out population structure from GS models
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*

¢ |owland 4X
e Upland 4X

Lipka et al. (2014)
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Miscanthus is a sustainable source of
lignocellulosic ethanol biofuel production

species 1. M. sinensis

SpeC|e52 M. sacchar/florus |

One clone of an 1nterspec1ﬁc Cross of
Species 1 X Species 2 (M X g)
used for biofuel purposes in North America
and Europe

Miscanthus sp.: Perennial grass from eastern Asia

48



Both species have substantial
subpopulation structure

& @
N China Eastern Nl @‘6\9

W Korea Yangtze &7 «f Yangtze diploids ori Ching

dinlnide

Purpose of GS is to quantify total genetic
merit, whether it is:
* From genes underlying a trait
* Other genetic differences arising from

! subpopulation structure

diploids ! N Japan
US nat. tetraploids

Subpopulations in Species 1: Clark et al. 2014 Subpopulations in Species 2:



Contribution of pop structure to
prediction accuracy?

‘Dr. Marcus Olatoye Par,.‘e;gl 1; MS{pGI’IEl Panel 2: Msa panel

SHE L N

If pop stucture is impo , then
prediction accuracy of PCs model should be
close to GS model

$y 3 ¥y ¥

Fit PCs model - Fit PCs model
accounting for for Fit a standard GS accounting for for
pop structure model pop structure

Fit a standard GS
model

50
Olatoye et al., G3 (2020)



Population structure accounts for substantial
portion of GS prediction accuracy

5'0.75 1o
© ==
S

B

My current opinion: do not “factor out”
populatlon structure in GS models

Pred

accounting for
pop structure

0.25

Ty am

0.00

Olatoye et al., G3 (2020)




What did we just learn, and why
is it important?

What we learned:

* The basics of association tests
« GWAS
e GS

GWAS and GS are the two most widely used applications
association tests



