Polymorphisms and Association Tests

Alexander E. Lipka

Associate Professor of Biometry

Department of Crop Sciences UIUC

This is what we will learn

- How association tests fit into data analysis
- Basics: Simple linear regression
- Basics: Fixed and random effects
- Genome-wide association studies:
 - Introduction
 - Best practices
- Genomic selection:
 - Introduction
 - Best practices
- Examples of GWAS
- Examples of GS

Role of the statistical genetics in polymorphism and association tests

G-to-P analyses

Genotvpic data

Phenotvpic data

Accurate G-to-P models help ensure that investments in high-throughput technologies lead to meaningful results in the field

http://boort.com.au/gallery/drone-checking-corn-crop/ https://www.pioneer.com/us/products/soybeans.html

Slide courtesy of Dr. Matthew D. Murphy

What can we do with statistical genetics?

- Associate genotypes to phenotypes
 - Basic statistical model: Y-variables are one or more traits; Xvariables are one or more genomic markers
 - Models that accurately model the intricate relationship between genotype and phenotype
 - More accurate genomic selection models
- Ramifications of this research
 - Dissection of genetic sources of agronomically important traits in crops
 - Flexible statistical models that can analyze wider range of traits
 - Reduction in length of breeding cycles

G-to-P models are based on simple linear regression (SLR)

- Models linear relationship between quantitative *X* and *Y* variables
- Parameters β_0 and β_1 are unknown constants
- Data sets of *n* (*X*, *Y*) observations used to estimate parameters

Assumptions of the error terms

- $\varepsilon_i \sim NID(0, \sigma_e^2)$
 - Normal

Indonandant

This framework can be used for X-variables that are categorical

- What can be done if assumptions are violated?
 - Transform the trait (e.g., Box-Cox procedure)
 - Implement a bootstrapping (or similar) procedure

2-way ANOVA model with fixed effects $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$

- Y_{ijk} : *Y*-value of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor *A*
- *II*. Grand mean

Inferences of fixed effects apply only to the factor levels used in your experiment $(\alpha p)_{ij}$: Two-way interaction effect between

- $(\alpha p)_{ij}$: Two-way interaction effect between receiving j^{th} level of Factor *B* and i^{th} level of Factor *A*
- ε_{ijk} : Error term of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor $A \sim NID(0, \sigma_e^2)$

2-way ANOVA model with random effects $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$

• Y_{ijk} : *Y*-value of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor *A*

Inferences of random effects apply to an entire population of factor levels

- β_j : Random main effect of $j^{\prime \prime \prime}$ level of Factor *B* $\sim NID(0, \sigma_B^2)$
- $(\alpha\beta)_{ij}$: Random two-way interaction effect between receiving j^{th} level of Factor *B* and i^{th} level of Factor *A* $\sim NID(0, \sigma_{AB}^2)$
- ε_{ijk} : Error term of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor $A \sim NID(0, \sigma_e^2)$

Mixed model $Y_{ijk} = (\mu) + (\alpha_i) + (\beta_j) + (\alpha\beta)_{ij} + \varepsilon_{ijk}$

• Y_{ijk} : *Y*-value of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor *A*

Mixed models are flexible and can be adapted for many different quantitative genetics analyses

receiving j^{th} level of Factor *B* and i^{th} level of Factor *A* $\sim NID(0, \sigma_{AB}^2)$

• ε_{ijk} : Error term of k^{th} replicate receiving j^{th} level of Factor *B* and i^{th} level of Factor $A \sim NID(0, \sigma_e^2)$

Genome-wide association study (GWAS)

Association with Vitamin E Levels in Maize Grain

Markers exhibiting peak associations with traits are potential targets for markerassisted selection (MAS)

• Identify genomic regions associated with a phenotype

- Fit a statistical model at each SNP in genome
- Use fitted models to test H_0 : No association with SNP and phenotype

Genetic diversity can lead to false positives in a GWAS

Genetic Diversity of 2,815 Maize Inbreds

 Solution: GWAS models include fixed and random effects to account for false positives

- Two sources for false positives:
 - Population Structure

2

- Familial Relatedness

Unified mixed linear model (MLM) Grand Mean $Y_{i} = \mu + \sum_{i=1}^{p} \beta_{i} P C_{ii} + \alpha x_{i} + Line_{i} + \varepsilon_{i}$ Random effects: account for familial relatedness

- Variance component estimation is computationally intensive
- Computational approaches are available to reduce this computational burden

•
$$(Line_1, \dots, Line_n) \sim MVN(\mathbf{0}, 2K\sigma_G^2)$$

• K = kinship matrix

Measures relatedness between individuals

• $\varepsilon_i \sim \text{i.i.d. } N(0, \sigma_E^2)$

or

Approach 1: Compressed mixed linear model

 $Y_i = \mu + \sum_{j=1}^p \beta_j P C_{ji} + \alpha x_i + Gincap_i + \varepsilon_i$

Perform hierarchical

- Reduces computational time because it works with a smaller kinship matrix
- (*Gimmup.*₁, ..., *Liber Jup* WWW(VN20K $2K_C \sigma_G^2$) • K_C + kgrobup (matrix pressed") kinship matrix • $\varepsilon_i \sim \text{i.i.d. N}(0, \sigma_E^2)$

Zhang et al. (2010)

Approach 2: Population parameters previously determined (P3D)

Reduces computational time because intensive variance component estimation is conducted only once **Approximation: tends to underestimate** most significant associations • Λ_C – group (compressed) kinsnip matrix • $\varepsilon_i \sim \text{i.i.d. N}(0$

Zhang et al. (2010)

Approach 3: GEMMA

$$Y_{i} = \mu + \Sigma_{j=1}^{p} \beta_{j} P C_{ji} + \alpha x_{i} + Line_{i} + \varepsilon_{i}$$

- Same reduction in computational time as **P3D**
 - Exact: enables statistically optimal estimation of marker-trait associations

•
$$\mathcal{E}_i \sim \text{i.i.d. N}(0, \hat{\sigma}_E^2)$$

Zhou and Stephens (2012)

- Various frequentist and Bayesian models are commonly used
 - Most produce approximately the same prediction accuracies

Heffner et al. (2009)

- Predict phenotypic values using markers distributed throughout the genome
- Enables selection without phenotyping individuals
- Developed to speed up breeding cycles

Genotyping

Training

Basic GS statistical model

- Trait is the response variable (Y_i)
- All markers are the explanatory variables $(x_{1i}, ..., x_{pi})$

$$Y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \varepsilon_i$$

Number of markers (*p*) typically exceeds sample size (*n*): *n*<<*p*

Issues with n << p

- Problem:
 - Unique estimates of marker effects do not exist
- Solution 1(Non-Bayesian):
 - Add a penalty that restricts values of the marker effects (e.g., ridge regression, LASSO)
- Solution 2 (Bayesian):
 - Assign a "prior distribution" on the marker effects (e.g., Bayes A, Bayes B, ...)

Ridge regression best linear unbiased prediction (RR-BLUP) for genomic selection

Random marker effect $\sim N(0, \sigma_G^2)$

All predicted marker values are equally penalized so that they are shrunk to zero

Best linear unbiased predictors (BLUPs) of the β'_k s are subjected to the ridge regression penalty:

$$J(\beta) = \sum_{k=1}^{p} \beta_k^2$$

Meuwissen et al., *Genetics* (2001); Whittaker et al., *Genetics Research* (2000)

- Repeat so that each fold gets a chance to be the test set
- Prediction accuracy: average correlation between observed and predicted traits across folds

Differences between GS and GWAS

- The overall objectives differ:
 - Main objective of GWAS is to find genomic regions associated with a trait
 - Main objective of GS is to determine how well marker sets predict trait breeding values
- The statistical models differ:
 - Typical GWAS models in plants test one marker at a time
 - Typical GS models include all markers in the model at once

Differences between GS and markerassisted selection (MAS)

- GS:
 - Uses genome-wide marker sets for predictions
 - Can account for both major- and minor-effect QTL
 - Ideal for predicting complex traits
- MAS:
 - Focuses on marker(s) linked to genes of major effect
 - Accounts for only major-effect QTL
 - Adequate for predicting simple and oligogenic traits

How to choose the best model for GWAS

• It is critical to account for population structure and familial relatedness in a typical GWAS:

Suggested strategy:

- Use unified mixed linear model
- If/when quantifying interesting GWAS result needs further refinement, use more sophisticated models

Accounting for variance heterogeneity

- Multi-locus, multi-trait models

Examples of GWAS in crops

- Rincker et al. (2016): Targets for brown stem rot resistance in soybean
- Owens/Lipka et al. (2014): Targets for boosting provitamin A and other carotenoid levels in maize grain
- Fernandes and Lipka (2020) and Fernandes et al (2021): Simulations to test performance of multi-trait GWAS models

Example: Rincker et al. (2016)

- Brown stem rot (BSR) and
 - Three genes associated with BSR resistance, *Rbs1-3*, have been identified in previous studies
 - Critical need to obtain a more precise location of these loci
 - Result in more efficient MAS for BSR
 resistance

Source: cornandsoybeandigest.com/

Separate GWAS performed on four association panels

Table 1. Characteristics of association panels analyzed with genome-wide association study and stepwise procedures.

		Symptoms measured	Accessions	SNP† markers	Box-Cox Iambda	BSR Score‡		
Panel	Data type					Mean	SD§	h²¶
N-1989	Binary	Foliar and stem	2773	33,240	Πα	na	na	na#
B-1997	Proportion 0–1	Foliar	540	33,486	log	0.09	0.15	0.49
B-1997	Proportion 0–1	Stem	540	33,486	1	0.38	0.20	0.61
B-2000	Proportion 0–1	Foliar	825	32,150	0.25	0.33	0.29	0.93
P-2003	Proportion 0—1	Stem	606	29,815	0.75	0.39	0.25	0.68

- N-1989 panel:
 - Binary phenotype: logistic regression + stepwise model selection
- Other panels:
 - Quantitative phenotype: Unified MLM + multi-locus mixed model

Unified MLM GWAS identifies signals near *Rbs1-Rbs3*

 Multi-locus mixed model identified two peak SNPs from this region in the final model

• GWAS was reran using these two peak SNPs as covariates

> ³² 33 34 35 36 37 Position (Chr. 16 Glyma.Wm82.a2) x 10⁶

0.

Multi locus mixed model (MLMM) quantifies associations of multiple markers

Peak SNPs from MLMM reduces explains most of *Rbs1-Rbs3* signal

• Similar findings were obtained in the other association panels

Breeding Ramifications

Source: blogs.ext.vt.edu

- Previous *Rbs1-Rbs3* signals been refined to a 0.3 Mb region on Chromosome 16
- Should facilitate both MAS-based approaches and gene cloning efforts
- Demonstrates the utility of GWAS in soybean

Biofortification

• Identify target genes with nutrients

Source: www. aboutharvest.com

- Increase nutritional value of local crop varieties by selecting on these target genes
- Results in increased availability of essential nutrients

Targeting vitamin A deficiency through biofortification

- Vitamin A deficiency (VAD):
 - Affects 17-30% of children under 5
 - 250-500,000 children become
 blind every year
 - Infant morbidity and mortality
 - Maize is a primary food source in many vitamin A deficient regions
- Biofortification: breed locally-adapted maize lines for increased provitamin A levels in grain

Work in maize provitamin A biofortification prior to Owens/Lipka et al. (2014)

• Candidate gene studies identified loci in maize (Harjes et al., 2008; Vallabheneni et al., 2010; Yan et al. 2010)

Owens/Lipka et al (2014): 1.) Conduct a GWAS to identify new candidate genes 2.) Determine a minimal marker set to accurately predict carotenoid levels OTL (Kandianis et al., 2013)

Source: Chandler/Lipka et al., 2013

Data analyzed in Owens/Lipka et al. (2014)

- Maize lines with white kernels do not produce measureable carotenoids
 We only analyzed a subset of 201 lines that range from light yellow to dark orange kernel color
- Compound levels quantified in grain:
 Carotenoids for 252 lines

GWAS found significant marker-trait associations near carotenoid pathway genes

DOXP IPP GGPP

Adjusting for multiple testing at the genome-wide level was conservative
We also conducted a pathway-level analysis, where only markers near 58 *a priori* genes were considered

Significant at the

 This work identified potential targets for marker-assisted selection (MAS)
 Are selecting for these target loci sufficient for improving provitamin A content in maize grain?

Prof. Samuel Fernandes

Simulation of Pleiotropic, Linked and Epistatic Phenotypes

 Multivariate quantitative genetics approaches have great potential
 CRAN/R package: simplePHENOTYPES: simulate univariate and multivariate traits based on user-inputted marker data

utility

- We know genetic architectures of simulated traits
- We directly assess true and false positive identification rates

How well can GWAS models differentiate between pleiotropy and linkage?

Fernandes et al., Frontiers in Genetics (2021)

Unified mixed linear model can become

individuals

• $\varepsilon_i \sim \text{i.i.d. } N(0, \sigma_E^2)$

Examples of GS in crops

- Lipka et al. (2014): Basic GS example in switchgrass
- Olatoye et al. (2020): More advanced GS example in *Miscanthus*

Genomic selection (GS) could speed up switchgrass breeding cycle

- GS on simple-to-measure traits approximating biomass yield could revolutionize switchgrass breeding efforts
- We evaluated the potential of GS using the latest genotypic and phenotypic resources

Switchgrass Association Panel

Photo taken 17 August 2010; Caldwell Field Cornell University, Ithaca NY

- 515 members
- Grown in Ithaca, NY in 2009-2011
- Tetraploids and octoploids included
- Predominantly northern-adaptaed upland germplasm

Genotypic and Phenotypic Data

- 7 morphological traits
- 13 biomass quality traits (Vogel et al., *Bioenergy Resources*, 2011)
- 16,669 SNPs using genotyping-by-sequencing (GBS) techniques
- SNPs were anchored to the *Panicum virgatum* v1.1 reference genome
 - Used to impute missing SNP values

GS study

- Three popular GS models:
 - RR-BLUP
 - Elastic net
 - LASSO
- RR-BLUP should perform best for complex traits
- LASSO should perform best for simple traits
- 10-fold cross validation to evaluate performance

Main finding: GS appears to work

- Three GS models produced similar prediction accuracies
- High prediction accuracies obtained for most traits
 - Standability had the highest (0.52)
- Morphological traits generally had higher prediction accuracies than the biomass quality traits

Do we need to "account" for population structure in GS?

First two principal components (PCs) of 16,669 SNPs

• We used first two PCs to factor out SNP effects from population structure

 \circ

• No longer agree that we need to factor out population structure from GS models

Miscanthus is a sustainable source of lignocellulosic ethanol biofuel production

Species 2: M. sacchariflorus

One clone of an interspecific cross of Species 1 × Species 2 (M × g) used for biofuel purposes in North America and Europe

Miscanthus sp.: Perennial grass from eastern Asia

Both species have substantial subpopulation structure

Dr. Marcus Olatoye

Contribution of pop structure to prediction accuracy?

Panel 1: *Msi* panel

Panel 2: Msa panel

If pop structure is important, then prediction accuracy of PCs model should be close to GS model

Population structure accounts for substantial portion of GS prediction accuracy

My current opinion: do not "factor out" population structure in GS models

What did we just learn, and why is it important?

- What we learned:
 - The basics of association tests
 - GWAS
 - **GS**
- GWAS and GS are the two most widely used applications association tests