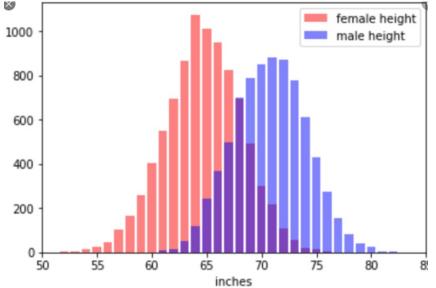
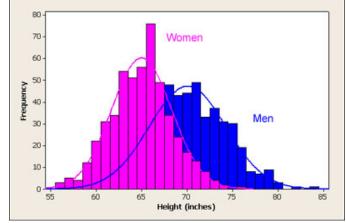

Confounding variable correction and outlier expression analysis

Eric Klee, PhD

Confounding variables

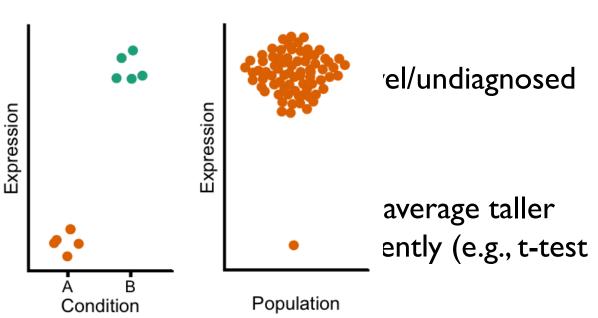
- We sample a population many times and find the following data
- A 5' tall man is unusually short, but if we did not factor in sex then we would not see 5' tall adult as an outlier
- A 5' male peds patient not an outlier so age also confounder





- Yao Ming is a male with 90" height
- Outlier detection has the goal of seeing this example and flagging it as an outlier or anomaly since *it is unlikely* within the population
- There are many methods for quantitatively deciding what is "unlikely" but we will discuss the broad class of methods based on statistical hypothesis tests/p-values

- MEDICINE * 4 W 1000
- First define a model, for example a separate bell curve for men and women
- Collect "normal" data and fit models to the data
 - "normal" depends on scientific question; e.g., outlier in NBA versus general population
- Calculate p-values
- Conclude outlier when p-value sufficiently small

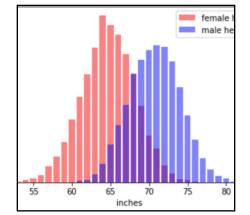

Traditional RNA-seq differential analysis

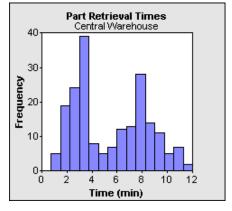
Rather than outlier
 group-wise comparient
 – Normal versus c

Experiment scheme

Differential expression analysis (DESeq2/edgeR) Outlier detection (OUTRIDER) l test is a

- Lung versus brai
- Requires "replicates disease
- Not an individual-le
- This is more akin tc than women and the or linear models)


Closer look at the p-values



- Suppose we estimate from data the average male is 70 inches and the standard deviation is 4 inches
- P-value for Yao Ming's height asks: "what is the probability that someone 90 inches or taller is randomly selected from the population"
 - Here we can calculate this as: $zscore = (90-70)/4 = 5 \rightarrow p$ -value = 0.00001
- Interpretation: it is highly unlikely that I randomly selected Yao Ming by chance from the population of heights
 - This is true. I specifically chose him due to his notoriously large height, and so outlier analysis has correctly identified an anomaly

Not all distributions are Gaussian

- The aforementioned procedure is general, but a good model should match the data generation process
- Normal distribution is good for heights but not the below graph
 - Note in the case of heights the situation was actually similar if we didn't account for sex
 - Height only looked Gaussian for each sex separately
- Z-scores sometimes used instead of p-value; incorrect unless Gaussian

- RNA extracted from the cells and sequenced
- Each sequencing read can be mapped (not always uniquely) to a given transcript/gene
- We extract counts of reads coming from each gene
- Counts need context and are not useful in isolation
 - Long genes have more RNA-bases per transcript expressed
 - Samples sequenced to higher depths will have more total counts for technical and not biological reasons
- Models for RNA counts need to account for both

Over-simplified view: just use TPM

Gene Name	Rep1 Counts	Rep2 Counts	Rep3 Counts		
A (2kb)	10	12	30		
B (4kb)	20	25	60		
C (1kb)	5	8	15		
D (10kb)	0	0	1		
Total reads:	35	45	106		
Tens of reads:	3.5	4.5	10.6		

UALIZED

MEDICI

First normalize by gene length

Original data:

Gene Name	Rep1 Counts	Rep2 Counts	Rep3 Counts
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1

INDIVIDUALIZED

* H H

MEDICINE

RPK – scaled by gene length:

Gene Name 🤇	Rep1 RPK	Rep2 RPK	Rep3 RPK
A (2kb)	5	6	15
B (4kb)	5	6.25	15
C (1kb)	5	8	15
D (10kb)	0	0	0.1

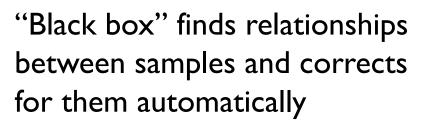
Now normalize by sequencing depth

Gene Name	Rep1 RPK	Rep2 RPK	Rep3 RPK
A (2kb)	5	6	15
B (4kb)	5	6.25	15
C (1kb)	5	8	15
D (10kb)	0	0	0.1
Total RPK:	15	20.25	45.1
Tens of RPK:	1.5	2.025	4.51

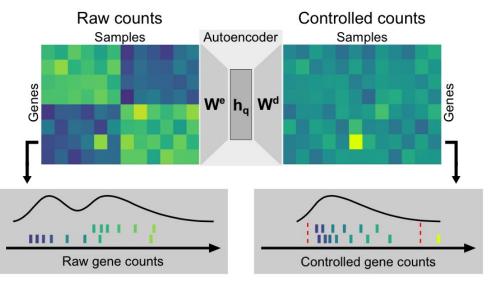
INDIVIDUALIZED

MEDICI

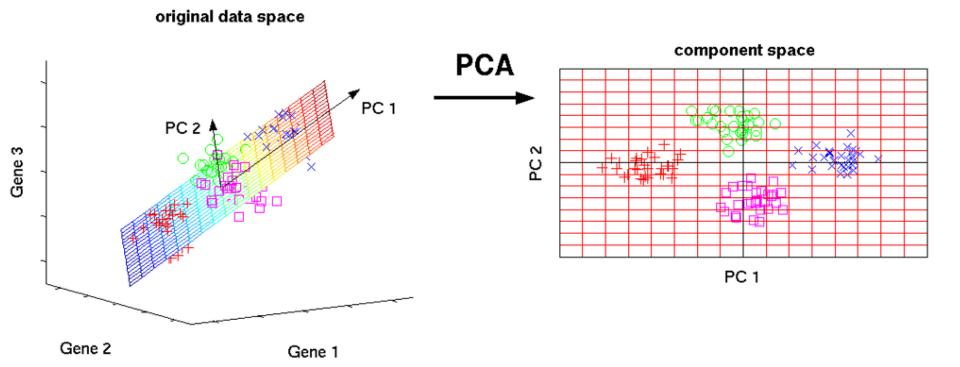
Gene Name	Rep1 TPM	Rep2 TPM	Rep3 TPM
A (2kb)	3.33	2.96	3.326
B (4kb)	3.33	3.09	3.326
C (1kb)	3.33	3.95	3.326
D (10kb)	0	0	0.02


- Use a Gaussian distribution as before, but now using TPMs that are comparable across genes and samples
- Most sophisticated RNA-seq analysis avoid this route and model the counts directly (often with negative binomial distribution) while accounting for gene length and sequencing depth but idea is similar
- Once you model your "normal" cohort, just do outlier detection via p-values as before
 - Trick in rare disease is to use patients as "normal" cohort

MAYO CLINIC


- Variables that are not of interest that affect your variable of interest
 - sex, age, smoking status, technical artifacts, cell admixture in whole blood, etc
- If your "normal" population was mostly males and you measured an average female's height you might incorrectly label them an outlier
- One option is directly accounting for them as we did with sex in heights (e.g., PEER package)
 - Pros: intuitive model we control and interpret
 - Cons: requires much more data, and corresponding meta data (i.e., sex labels)

Autoencoder



- Pros: no meta data needed, less samples needed, accounts for hidden confounders
- Cons: not easily interpretable output...need to "trust" the black-box

IZED

- 9 year old male, non-consanguineous family
- Mild global developmental delay
- General Convulsive Intractable Epilepsy
- Nevus sebaceous
- Constipation due to colonic dysmotility
- Outside diagnosis of mitochondrial disorder

Outlier-centric View

								• •					ATAGATA
												* /	N H
OUTRIDER_GeneName	GeneID OI	UTRIDER_pValu OU	JTRIDER_padjust OUTR	IDER_zScore O	UTRIDER_I2fc OUTRI	DER_rawcount OUTRI	DER_normcount OUTRI	DER_meanCorrecte OU1	RIDER_thetaOU	ITRIDER_aberran	tOUTRIDER_p_ranlOUTR		
CSNK2B	ENSG0000204435	1.22036E-07	0.001949652	-5.4	-0.69	1841	1524.95	2461.48	153	TRUE	1	1	
CSNK2B-LY6G5B-1181	ENSG0000263020	3.364E-07	0.002687164	-5.21	-0.63	1817	1516.36	2351.36	168.85	TRUE	2	2	
AC073325.2	ENSG0000226999	3.46634E-06	0.018459439	2.75	3.3	25	29.17	2.89	1.22	TRUE	3	48	
GSTP1	ENSG0000084207	2.59942E-05	0.103820922	-4.43	-0.89	2153	1780.14	3299.21	58.84	FALSE	4	4	
RP11-51L5.7	ENSG0000270033	8.23433E-05	0.263103403	-4.33	-1.82	22	23.47	85.77	20.71	FALSE	5	5	
RP11-396K3.1	ENSG0000233365	0.000101432	0.270078801	-4	-1.62	71	71.08	213	19.89	FALSE	6	6	
TNFSF14	ENSG00000125735	0.000267456	0.610410669	2.49	0.45	489	406.51	297.07	172.93	FALSE	7	104	
HIST3H3	ENSG0000168148	0.000437147	0.872981839	-4.63	-4.34	1	0.51	19.15	4.33	FALSE	8	3	
RP11-481K16.2	ENSG00000248924	0.000637564	1	-3.56	-2.39	11	6.52	36.64	9.36	FALSE	9	7	
URI1	ENSG00000105176	0.00065336	1	3.1	0.42	5130	3363.09	2496.51	126.41	FALSE	10	18	
GLB1L	ENSG00000163521	0.000741336	1	-2.81	-1.25	109	97.55	233.85	23.32	FALSE	11	41	
RP11-281015.7	ENSG00000253144	0.000786234	1	2.62	1.24	137	71.84	29.08	12.28	FALSE	12	71	
GRK6	ENSG0000198055	0.000860632	1	-3.17	-0.31	10809	8341.19	10418.61	266.19	FALSE	13	15	
RP11-465N4.5	ENSG0000273478	0.001061198	1	2.48	0.62	907	602.62	388.97	52.54	FALSE	14	110	
RABEPK	ENSG0000136933	0.001097795	1	3.06	0.42	1128	832.65	622.92	128.49	FALSE	15	19	
RNFT1	ENSG00000189050	0.001202253	1	-2.6	-0.4	995	732.3	965.15	169.02	FALSE	16	74	
PRIM2	ENSG00000146143	0.001253101	1	-2.5	-0.4	1001	707.48	939.25	169.89	FALSE	17	103	
DHRSX	ENSG00000169084	0.001362622	1	3.03	0.51	3547	3193.24	2242.72	72.98	FALSE	18	24	
DOCK7	ENSG00000116641	0.00142356	1	-2.32	-0.55	760	626.74	926.89	88.36	FALSE	19	166	
ттсэс	ENSG00000162222	0.001684196	1	-3.13	-0.36	1071	788.22	1008.42	208.26	FALSE	20	17	
TRMT1L	ENSG00000121486	0.001724813	1	-3.14	-0.3	2577	2012.85	2468.78	280.11	FALSE	21	16	
LINC00341	ENSG0000229645	0.002022927	1	-3.26	-0.78	123	95.56	164.2	52.8	FALSE	22	12	
MIS12	ENSG00000167842	0.002136719	1	-2.79	-0.6	334	229.31	359.9	74.65	FALSE	24	44	
CTD-3105H18.18	ENSG0000269755	0.002333196	1	-3.22	-1.06	103	66.41	138.73	26.37	FALSE	25	13	
CCAR2	ENSG00000158941	0.002451789	1	2.92	0.13	11157	8666.38	7903.24	1154.95	FALSE	26	32	
PRPF39	ENSG00000185246	0.002555492	1	-2.87	-0.25	1605	1126.31	1346.39	381.45	FALSE	27	38	
AC022154.7	ENSG0000268093	0.002564261	1	-3.01	-0.79	103	54.27	89.97	50.07	FALSE	28	27	
MLX	ENSG00000108788	0.002581751	1	-3.05	-0.28	5048	4219.44	5123.05	273.33	FALSE	29	22	
LGALS12	ENSG00000133317	0.002593172	1	2.04	0.97	2243	1351.58	672.57	15.04	FALSE	30	338	
RP11-59O6.3	ENSG0000235880	0.002619733	1	2.24	2.07	81	52.89	11.65	2.3	FALSE	31	214	
GOLPH3L	ENSG00000143457	0.002684957	1	-3.06	-0.58	421	314.28	470.58	73.64	FALSE	32	20	
Clorf228	ENSG00000198520	0.002703953	1	-3.34	-1.1	395	267.82	581.55	21.3	FALSE	33	10	
UEVLD	ENSG00000151116	0.002858978	1	-3.06	-0.44	431	378.34	512.42	139.08	FALSE	34	21	
HSPD1P1	ENSG00000213430	0.002866232	1	-3.39	-1.9	37	25.47	97	9.04	FALSE	35	9	
SCAP	ENSG00000213430	0.002977004	1	2.88	0.28	10030	7861.61	6450.55	212.95	FALSE	36	36	
RNGTT	ENSG00000114030	0.00299625	1	2.86	0.29	4060	3192.15	2617.22	212.55	FALSE	37	39	
RP11-514P8.7	ENSG00000270249	0.003139331	1	2.80	0.29	6693	5490.71	3417.01	215.85	FALSE	38	307	
AC037445.1	ENSG00000233635	0.003289253	1	-3.27	-1.12	91	59.81	125.45	20.85	FALSE	39	11	
FNIP1	ENSG00000233032	0.003305608	1	-3.27	-0.26	6902	6048.01	7261.18	288.96	FALSE	40	29	
KRT72	ENSG00000217128	0.003369706	1	2.09	-0.26	1989	1043.01	348.42	4.26	FALSE	40	301	
KR172 KCNAB2	ENSG00000170480	0.003369706	1	2.09	0.3	8844	7507.06	348.42 6027	4.20	FALSE	41	301	
LSM10		0.003651975	1	-2.92		643				FALSE	42	33	
RP11-448G4.2	ENSG00000181817		1		-0.41		493.91	653.14 50.89	142.15		43	33	
RP11-448G4.2 TAF1A	ENSG00000235582	0.00366658 0.003682766	1	-2.86	-1.15 -0.76	33 337	23.41		26.08	FALSE	44	40 23	
1AF1A \$10046	ENSG00000143498	0.003682766	1	-3.04 ว.6	-0.76	337	245.42	417.26	40.29	FALSE	45	23	
	ding Splice Combin		1	2.6	11.21	/1/10	5500 /11			ENTEL	46	15	

INDIVIDUALIZED

MEDICINE

MAYO CLINIC

Outlier-centric View (top hit)

		INDIVIDUAL	
OUTRIDER GeneName	CSNK2B	highestCADD NonCoding	7.6
Genero	EIN5GUUUUUUUUUU4435	highestCfeature_NonCoding	3PRIME
OUTRIDER nValue	1 22036F-07	sigCADD NonCoding	5FKIIVII 7
OUTRIDER padjust	0.001949652	insigCADD_NonCoding	6
OUTRIDER zScore	-5.4	highestCADD_Coding	21
OUTRIDER I2tc	-0.69	highestCADD_Coding	SYNONY
OUTRIDER rawcounts	1841	sigCADD Coding	1
OUTRIDER_rawcounts	1524.95	insigCADD_Coding	0
OUTRIDER meanCorrected	2461.48	highestCADD_Splice	4
-	153		
OUTRIDER_theta		highestCfeature_Splice	STOP_G
OUTRIDER_aberrant	TRUE	sigCADD_Splice	1
OUTRIDER_p_rank	1		
OUTRIDER_z_rank	1	highestCADD	4(
OUTRIDER_apprLowBound	2075	highestCfeature	STOP_G
OUTDIDED appellppDound	2070	0100100	
isOMIM	TRUE	insigCADD	6
Сплоепнарюзсоге			
Clin Contribution			
DECIPHERhaplo	0.799053456		
DECIPHERpercent	5.87		
gnomAD_oe_lof	0		
gnomAD_oe_lof_lower	0		
gnomAD_oe_lof_upper	0.254		
gnomAD_oe_mis	0.21333		
gnomAD_oe_mis_lower	0.154		
gnomAD_oe_mis_upper	0.298		
momAD mis z	2 0005		
	0.07000		
gnomAD_pLI	0.97899		
gnomAD_ptl gnomAD_ptec	0.97899		

INDIVIDUALIZED

7.61 3PRIME_UTR

40 STOP_GAINED 1

0 40 STOP_GAINED

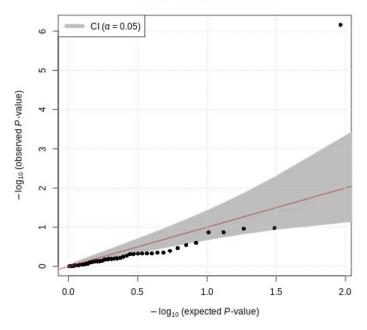
6

Variant-centric View

		PolyPhenCat	NA	Segway	GM1	OUTRIDER GeneName	CSNK2B
Chrom	6	PolyPhenVal	NA	EncH3K27Ac	5.8	OUTRIDER pValue	1.22E-07
Pos	31636321	priPhCons	0.989	EncH3K4Me1	7.84	OUTRIDER padjust	0.001949652
Ref	G	mamPhCons	1	EncH3K4Me3	7.6	OUTRIDER_zScore	-5.4
Alt	Т	verPhCons	1	EncExp	2281.35	OUTRIDER 12fc	-0.69
Туре	SNV	priPhyloP	0.587	EncNucleo	1.7	OUTRIDER_rawcounts	1841
Length	0	mamPhyloP	2.789	EncOCC	NA	OUTRIDER normcounts	1524.95
AnnoType	CodingTranscript	verPhyloP	5.74	EncOCCombPVal	NA	OUTRIDER meanCorrected	2461.48
Consequence	STOP GAINED	bStatistic	878	EncOCDNasePVal	NA	OUTRIDER_theta	153
Consocore	U	targetScan	NA	EncOCFairePVal	NA	OUTRIDER aberrant	TRUE
ConsDetail	stop gained	mirSVR.Score	-1.0579	EncOCpollIPVal	NA	OUTRIDER p rank	1
GC	0.516556291	mirSVR.E	-16.34	EncOCctcfPVal	NA	OUTRIDER z rank	1
CpG	0.04	mirSVR.Aln	143	EncOCmycPVal	NA		
motifECount	NA	cHmmTssA	0	EncOCDNaseSig	NA		
motifEName	NA	cHmmTssAFInk	0	EncOCFaireSig	NA		
motifEHIPos	NA	cHmmTxFlnk	0.008	EncOCpollISig	NA		
motifEScoreChng	NA	cHmmTx	0.795	EncOCctcfSig	NA		
oAA	E	cHmmTxWk	0.047	EncOCmycSig	NA		
nAA	*	cHmmEnhG	0.15	Grantham	NA		
FeatureID	ENST00000375882	cHmmEnh	0	Dist2Mutation	31		
GeneName	CSNK2B	cHmmZnfRpts	0	Freq100bp	0		
CCDS	CCDS4712.1	cHmmHet	0	Rare100bp	0		
later.	NIA	cHmmTssBiv	0	Sngl100bp	4		
Exon	4/7	cHmmBivFlnk	0	Freq1000bp	2		
		cHmmEnhBiv	0	Rare1000bp	1		
relcDNApos	0.355485232	cHmmReprPC	0	Sngl1000bp	59		
CDSpos	181	cHmmReprPCWk	0	Freq10000bp	23		
relCDSpos	0.279320988	cHmmQuies	0	Rare10000bp	59		
protPos	61	GerpRS	595	Sngl10000bp	603		
relProtPos	0.28372093	GerpRSpval	1.63E-110	dbscSNV.ada_score	NA		
Domain	Icompl	GerpN	5.9	dbscSNV.rf score	NA		
Dst2Splice	6	GerpS	5.9	RawScore	7.635756		
Dst2SplType	ACCEPTOR	TFBS	1	PHRED	40		
minDistTSS	575	TFBSPeaks	1	CADDscoreGreaterThan20	1		
minDistTSE	303	TFBSPeaksMax	23.3496				
SIFTcat	NA	tOverlapMotifs	NA				
SIFTval	NA	motifDist	NA				

INDIVIDUALIZED

* # 1 14


MEDICINE

21

Case summary

- OUTRIDER:
 - p-value = IE-7
 - zScore = -5.4
 - 12fc = -0.69
- Gene's top CADD variant is case solving variant
- Nonsense variant p.Glu61*, consistent with the near complete allelic loss of expression

Q-Q plot for gene: CSNK2B

Slides curtesy of Garrett Jenkinson

OUTRIDER

We assume that the count k_{ij} of gene j = 1, ..., p in sample i = 1, ..., n follows a NB distribution with gene-specific dispersion parameter θ_j and expected value c_{ij} :

$$P(k_{ij}) = \text{NB}(k_{ij} \mid \mu_{ij} = c_{ij}, \theta_j).$$
 (Equation 1)

The used parameterization of the NB distribution can be found in the Supplemental Material and Methods. We limited the parameter range for θ_i to the interval [0.01, 1000]. The lower limit prevents convergence issues for genes with unusual high dispersion (θ_i close to zero), and the upper limit is used to avoid overfitting. The expected count c_{ij} is the product of the sample-specific size factor s_i and the exponential of the factor y_{ij} :

$$c_{ij} = s_i \cdot \exp(y_{ij})$$
 (Equation 2)

The size factors s_i capture variations in sequencing depth; they are robustly estimated as the median of the ratios of the gene read counts to their geometric means as implemented in DESeq.²⁴ The factors y_{ij} capture covariations across genes. They INDIVIDUALIZED MEDICINE

(Equation 3)

 $\mathbf{h}_{i} = \widetilde{\mathbf{x}}_{i} \mathbf{W}_{e}, \qquad (\text{Equation 4})$

where the $p \times q$ matrix \mathbf{W}_e is the encoding matrix, the $q \times p$ matrix \mathbf{W}_d is the decoding matrix, the *q*-vector \mathbf{h}_i is the encoded representation, and the *p*-vector \mathbf{b} is a bias term. Having a decoding matrix that is not the transpose of the encoding matrix, unlike for principal-component analysis (PCA), turned out to be important, most likely because the property that the matrix inverse equals the matrix transpose does not generalize to the NB loss function. The input vector to the autoencoder \mathbf{x}_i is computed as follows:

 $\mathbf{y}_i = \mathbf{h}_i \mathbf{W}_d + \mathbf{b},$

$$\tilde{x}_{ij} = x_{ij} - \overline{x_j}$$
, where (Equation 5)

$$x_{ij} = \log\left(\frac{k_{ij}+1}{s_i}\right),$$
 (Equation 6)

where we add 1 to prevent computing the logarithm of 0, we divide by the size factor to control for sequencing depth, and we center gene-wise by subtracting the mean $\overline{x_j}$. In the following, we call the combination of Equations 2–6 the autoencoder or, in short, $c_{ij} = AE(k_{ij})$.

2.2 Fitting of the parameters

All notations are introduced in the Materials and Methods section.

Negative Binomial model

We use the following parameterization of the negative binomial distribution:

$$P(k|\mu,\theta) = \frac{\Gamma(k+\theta)}{\Gamma(\theta)k!} \left(\frac{\mu}{\mu+\theta}\right)^k \left(\frac{\theta}{\mu+\theta}\right)^{\theta}$$

where the variance of the distribution is given by:

$$Var = \mu + rac{\mu^2}{ heta}$$

Negative log-likelihood

The negative log-likelihood nll of the model is given by:

$$nll = -\sum_{ij} k_{ij} \log (\mu_{ij}) - \sum_{ij} \theta_j \log (\theta_j) + \sum_{ij} (k_{ij} + \theta_j) \log (\mu_{ij} + \theta_j)$$
$$-\sum_{ij} \log (\Gamma(k_{ij} + \theta_j)) + \sum_{ij} \log (\Gamma(\theta_j) k_{ij}!)$$

For the optimization of the model only the first and third term of the nll need to be considered, as all other terms are independent of \mathbf{W}_e and \mathbf{W}_d , yielding the following truncated form of the negative log likelihood:

$$\operatorname{nll}_{\mathbf{W}} = -\sum_{ij} \left[k_{ij} \log \left(\mu_{ij} \right) - \left(k_{ij} + \theta_j \right) \log \left(\mu_{ij} + \theta_j \right) \right] \tag{1}$$

We use L-BFGS to fit the autoencoder model as described in Methods. We implemented the following gradients.

The expectations μ_{ij} are modeled by:

$$\mu_{ij} = s_i e^{y_{ij}}$$

Hence, nll_W can be rewritten as:

$$\operatorname{nll}_{\mathbf{W}} = -\sum_{ij} \left[k_{ij} \log(s_i) + y_{ij} - (k_{ij} + \theta_j) \cdot \left(\log(s_i) + y_{ij} + \log\left(1 + \frac{\theta_j}{s_i \cdot e^{y_{ij}}}\right) \right) \right]$$

In the following the y_{ij} are the elements of the Y defined as:

$$\mathbf{Y} = \mathbf{X} \mathbf{W}_e \mathbf{W}_d^T + \mathbf{b},\tag{2}$$

where the element (i, j) of the matrix **X** is given by: $\log\left(\frac{k_{ij}+1}{s_i}\right) - \bar{x}_j$.