Translational use of multifaceted RNA-Seq bioinformatics analysis in genetic disease investigation

Eric W. Klee, PhD
Director of Bioinformatics, Center for Individualized Medicine
Associate Professor of Biomedical Informatics
Outline

• Discussing the role of RNA-sequencing in rare and undiagnosed disease

• Unit consists of four lectures:
 – Introduction to Rare and Undiagnosed Disease
 – Expression Analysis for Outlier Observations
 – Fusion analysis in RNA-sequencing data
 – Splicing analysis

• Lectures given by Gavin Oliver and Eric Klee
Introduction

• What is rare genetic disease?
• A common problem - when rare isn’t rare
• Rare genetic disease diagnosis in the era of next-generation sequencing
• The promise of RNA-Seq in improving rare genetic disease diagnosis
In the United States, a rare disease is defined as a condition that affects fewer than 200,000 people in the US. This definition was created by Congress in the Orphan Drug Act of 1983. There may be as many as 7,000 rare diseases. rarediseases.info.nih.gov

The European Union defines a disease or condition as rare if it affects fewer than 1 in 2,000 (1) people within the general population. Currently, there are over 6,000 (2) known rare diseases. raredisease.org.uk

80% have a genetic component [Rare Genomics Institute](http://rarediseases.info.nih.gov)
Faces of Rare Genetic Disease
A common problem - when rare isn’t rare

An estimated **300 million people** worldwide are affected by a rare disease globalgenes.org

1 in 10 Americans have a rare disease raregenomics.org

6% to 8% of the population of the **European Union** is affected by a rare disease eurodis.org

30% of patients with rare disease will not live to see their 5th birthday

Rare diseases are responsible for 35% of deaths in the first year of life raregenomics.org
Proliferation of Exome Diagnostic Testing

Clinical Exome Sequencing for Genetic Identification of Rare Mendelian Disorders - JAMA

“Results—Of the 814 cases, the overall molecular diagnosis rate was 26%”

Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation – NEJM

“A molecular diagnosis was rendered for 2076 of 7374 patients (28.2%)”

“We analyzed 119 trios to...”

“We obtained a genetic diagnosis for 29 (24%)...”
RNA Sequencing to Improve Diagnostic Rate

Putative Inversion

SLC35F2 Exon 8 SLC35F2 Exons 1-7 RAB39A CUL5 ACAT1 NPAT

ATM Exons 1-16 ATM Exon 17-63

Gene Fusion

SLC35F2 Exon 8 ATM Exons 1-16 NPAT ACAT1 CUL5 RAB39A

Gene Fusion

SLC35F2 Exons 1-7 ATM Exons 17-63

c.1365+1G>A: Exon 8 Skipping

Patient

Control 1

Control 2

Normalized RPKMs

RNA Expression

Patient

Control #1

Control #2

Control #3

Control #4

Control Average

C2CD3 Exons

0 1 2 3 4 5 6 7 8 9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
1. Patient #1: GNPTAB – cryptic splicing
2. Patient #2: ATM – expressed fusion
3. Patient #3: CASK – outlier expression
4. Patient #4: SGSH – allele-specific expression
Age: 9y female
Reason for Referral: Mild global developmental delay, brain MRI abnormal joint contractures, slightly distinctive facial features

Clinical Testing reported compound heterozygous variants in MEGF10, which upon further review did not seem a good fit.

Requested raw data from the testing provider and reanalyzed

<table>
<thead>
<tr>
<th>Label</th>
<th>ID</th>
<th>Meta ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide pubic symphysis</td>
<td>HP:0003183</td>
<td></td>
</tr>
<tr>
<td>Vertebral hypoplasia</td>
<td>HP:0008417</td>
<td></td>
</tr>
<tr>
<td>Short stature</td>
<td>HP:0004322</td>
<td></td>
</tr>
<tr>
<td>Posterior scalloping of vertebral bodies</td>
<td>HP:0005121</td>
<td></td>
</tr>
<tr>
<td>Platyspondyly</td>
<td>HP:0009296</td>
<td></td>
</tr>
<tr>
<td>Periorbital fullness</td>
<td>HP:000629</td>
<td></td>
</tr>
<tr>
<td>Pectus carinatum</td>
<td>HP:000768Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Narrow forehead</td>
<td>HP:000341</td>
<td></td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>HP:001634Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>HP:001653Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Lumbar hyperlordosis</td>
<td>HP:0002938</td>
<td></td>
</tr>
<tr>
<td>Intellectual disability</td>
<td>HP:0001249</td>
<td></td>
</tr>
<tr>
<td>Hypoplastic distal radial epiphyses</td>
<td>HP:0006386</td>
<td></td>
</tr>
<tr>
<td>Global developmental delay</td>
<td>HP:001263Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
<td>HP:0002020</td>
<td></td>
</tr>
<tr>
<td>Flexion contracture</td>
<td>HP:0001371</td>
<td></td>
</tr>
<tr>
<td>Flattened humeral heads</td>
<td>HP:0003888</td>
<td></td>
</tr>
<tr>
<td>Epicanthus</td>
<td>HP:0000286</td>
<td></td>
</tr>
<tr>
<td>Dysarthria</td>
<td>HP:0001260</td>
<td></td>
</tr>
<tr>
<td>Coarse facial features</td>
<td>HP:000280Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Cafe-au-lait spot</td>
<td>HP:0000957</td>
<td></td>
</tr>
<tr>
<td>Broad nasal tip</td>
<td>HP:0000455</td>
<td></td>
</tr>
<tr>
<td>Beaking of vertebral bodies</td>
<td>HP:0004568</td>
<td></td>
</tr>
<tr>
<td>Asymmetry of the ears</td>
<td>HP:0010722</td>
<td></td>
</tr>
<tr>
<td>Aortic regurgitation</td>
<td>HP:001659Mild HP:0012825</td>
<td></td>
</tr>
<tr>
<td>Abnormality of the skeletal system</td>
<td>HP:0000924</td>
<td></td>
</tr>
<tr>
<td>Abnormality of the glenoid fossa</td>
<td>HP:0011912</td>
<td></td>
</tr>
</tbody>
</table>
A deep intronic variant was found in trans with a loss of function frame-shift variant.

If the intronic variant impacts gene splicing it may explain the patients phenotype.
The intronic variant creates a predicted splice acceptor at c.3434+642 and there is a cryptic splice donor at 3434+1244.
RNAsel confirms presence of a cryptic exon

GNPTAB

TWO HET c.3281_3282delGT, p.C1094fs* – mother is het, father is neg

C.3434+639G>C, p.?splice – de novo, parents are neg

Disease: Mucolipidosis alpha/beta AR type II (MIM:252500) or III (MIM:252600)

Read Depth

Untreated:

Untreated: \(\frac{32+27}{32+27+45} = 56\%\) of splice reads from exon 18

donor

Treated:

Treated: \(\frac{56+53}{56+53+191} = 36\%\) of splice reads from exon 18

donor

New cryptic exon

RNAseq confirms presence of a cryptic exon

[Diagram showing read depth and new cryptic exon]
Patient Example Case #2

Single pathogenic variant in ATM (recessive condition) that would explain patient symptoms

<table>
<thead>
<tr>
<th>Disease</th>
<th>Inher. pattern</th>
<th>Gene</th>
<th>Location</th>
<th>variant</th>
<th>inherited from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ataxia Telangiectasia</td>
<td>AR</td>
<td>ATM</td>
<td>chr11:108143540_108143542</td>
<td>c.3245_3247delinsTGAT p.His1082Leufs*14</td>
<td>Dad het</td>
</tr>
</tbody>
</table>

Patient Symptoms:

- Tested positive for SCID by newborn screening
- Evidence of radiation sensitivity (partial)
- B and T-cell lymphopenia (T-B-NK+)
- TCR vbeta spectratyping is suggestive of polyclonal gaussian repertoire which is most likely suggestive of a combined immune deficiency
- Thrombocytosis
- Some ataxia-related phenotype potentially manifesting recently
- Elevated AFP
Protein testing to evaluate diagnosis

Protein studies in proband and parents showed that the ATM protein was present in all three individuals, but non-functional in the proband.
RNAseq identifies a gene fusion in ATM

Gene Fusion Analysis:
Paired reads mapping to ATM exon 16 and SLC35F2 exon 8 in proband RNA
Reads supporting fusion:
- 7 spanning reads
- 3 split reads
- 4 hybrid reads

Gene Fusion Analysis:
Paired reads mapping to SLC35F2 exon 7 and ATM exon 17 and in proband RNA
Reads supporting fusion:
- 20 spanning reads
- 12 split reads
- 11 hybrid reads

Fewer reads demonstrate splicing of exon 16 to exon 17.
Fusion caused by DNA inversion

Putative Inversion

Gene Fusion

SLC35F2 Exon 8

SLC35F2 Exons 1-7

RAB39A

CUL5

ACAT1

NPAT

ATM Exons 1-16

ATM Exon 17-63

Fusion transcripts detectable by RNA sequencing (undetectable by WES)

In-frame fusion mRNA

Gene transcription
Patient Example Case #3

Patient Symptoms:
- 12 month old female
- GNAO1 related epileptic encephalopathy with cerebral and cerebellar atrophy
- corpus callosum dysgenesis
- left optic nerve hypoplasia
- Microphthalmia
- Cataract
- cleft soft palate
- ASD
- dysmorphic facies
- small size
- microcephaly

Mate-pair sequencing to investigate karyotype:
\[t(X;18)(p11.2;q11.2) \]
Mate-pair characterizes t(X;18)(p11.2;q11.2)

Chr18:
Disrupts LOC105372028 (non-coding RNA); haploinsufficiency not known to result in any abnormal phenotypes

ChrX:
No gene was disrupted at the Xp11.4 breakpoint, however CASK is located ~173 kb distal

CASK deficiencies are a strong phenotypic fit for the patient’s symptoms
Epigenetic Profiling

Hypothesis: epigenetic gene repression on chromosome 18 near the breakpoint that has been put upstream of CASK in this patient from the t(X;18) that is now causing repression of CASK expression.

Evaluate: H3K9me, H3K27me, H3K4me and H2K9Ac (activating mark) to see if these features are present near the breakpoints in blood lineage cells of unaffected individuals.

ChIP-seq experiment on the patient’s blood sample to determine if there is a difference in the patient.

CASK:

- p-value (unadjusted) = 4.08x10^{-8}
- p-value (adjusted) = 0.0003
- Z-score = -5.61
- Log₂(fold change) = -0.99
Patient Example Case #4

Phenotype

- Adult-onset hepatomegaly
- Hypertrophic cardiomyopathy
- Stroke (2014)
- A. Fib
- Non-dysmorphic

Mucopolysaccharidosis type IIIA

- Mucopolysaccharidosis type III A (Sanfilippo syndrome type A; MPS IIIA) is characterized by psychomotor and speech delay, neurological regression, and behavioral disturbances.
- Somatic changes are usually milder than other MPSs, and include mild coarsening, mild dysostosis multiplex, and contractures. About half of patients have hepatomegaly but splenomegaly is infrequent.
- MPS IIIA is caused by biallelic pathogenic variants in SGSH resulting in a deficiency of sulfamidase, a lysosomal enzyme. The inability to degrade heparan sulfate leads to cellular accumulation of this glycosaminoglycan and increased excretion in urine.

- There is only one report of a patient with sulfamidase deficiency, increased excretion of heparan sulfate, and late-onset cardiomyopathy without neurological phenotype. However, focused genetic analysis failed to identify variants in SGSH. (Van Hove et al, 2003)

Glycosaminoglycans in Cerebrospinal Fluid:
GAGs in the CSF are **50-100 times higher** than controls in others MPS with neurological compromise
RNA Sequencing Reveals Allele-Specific Expression

ASE was noted initially in the blood, with a modest 65%-35% skew. Expression studies in a heart biopsy revealed complete skew 100%-0%.
Conclusions

Rare genetic disease can be individually rare, but collectively is quite common.

NGS has transformed how rare genetic disease is tested, enabled considerably higher diagnostic rates and novel disease gene discovery.

RNAseq can increase overall diagnostic yield in this patient population.

RNAseq analysis is complex and involves looking at multiple event types.
Questions