KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Knowledge-guided Algorithms in Systems Biology

Charles Blatti

Research Scientist National Center for Supercomputing Applications University of Illinois Urbana-Champaign

Computational Genomics Course

Some Slides By **Amin Emad** Assistant Professor at McGill University http://www.ece.mcgill.ca/~aemad2/

KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Plan for this Lecture

Topic: Methods for analyzing omics datasets while integrating prior knowledge

- Systems Biology and Knowledge Networks
- Sample Clustering
- Gene Prioritization
- Gene Set Characterization

Emphasis: tools that take advantage of prior knowledge networks (KnowEnG)

Goal: understand basic concepts and aware of approaches and resources

Systems Biology

• Systems biology is the computational and mathematical modeling of complex biological systems.

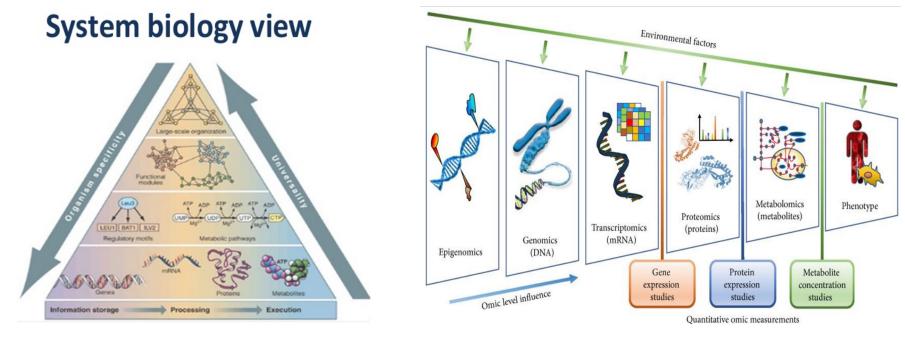


Figure from Oltvai , Z.N. and Barabasi Life's complexity pyramid.

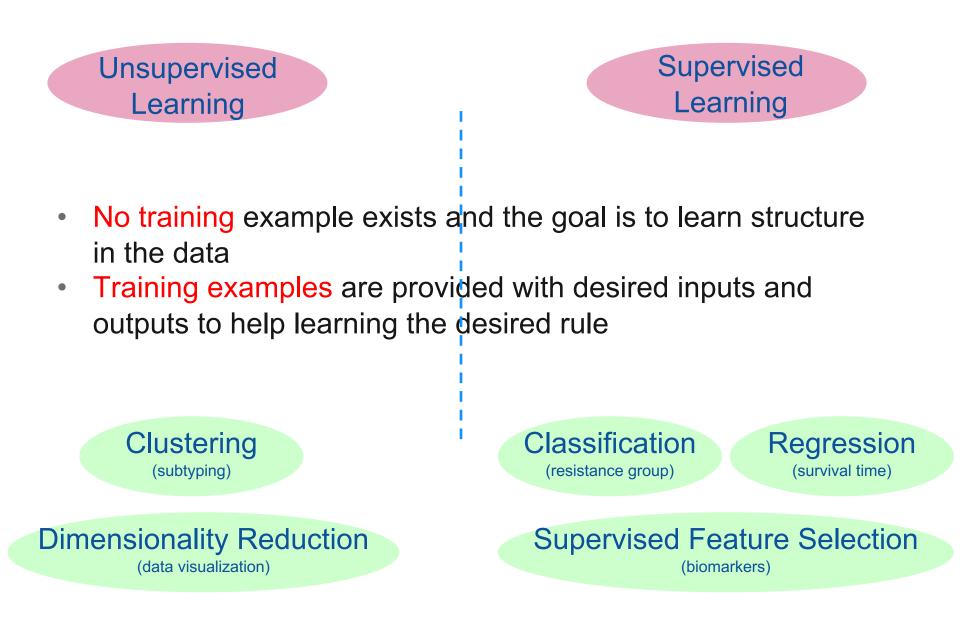
Figure from Angione, C. Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine. Biomed Res Int 2019.

 Studies the interactions between the components of biological systems such as genes, proteins, metabolites, etc. (i.e. biological networks), and how these interactions give rise to the function and behavior of that system (phenotype)

Statistical and Machine Learning Methods

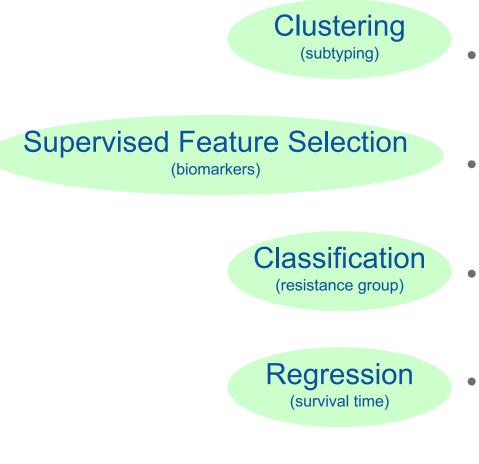
KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Applied to heterogeneous 'omics and phenotype data and prior knowledge



Some Example Applications

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE



- Identifying the subtypes of a disease
- Identifying genes associated with a disease
- Predicting whether a patient is sensitive or resistant to a drug
- Predicting the survival probability of a cancer patient

• etc.

Prior Knowledge as Biological Networks

- Existing prior knowledge in literature captures known interactions within and across different levels of the biological systems
- Knowledge Network a graphical representation of the interactions of the components of a biological systems

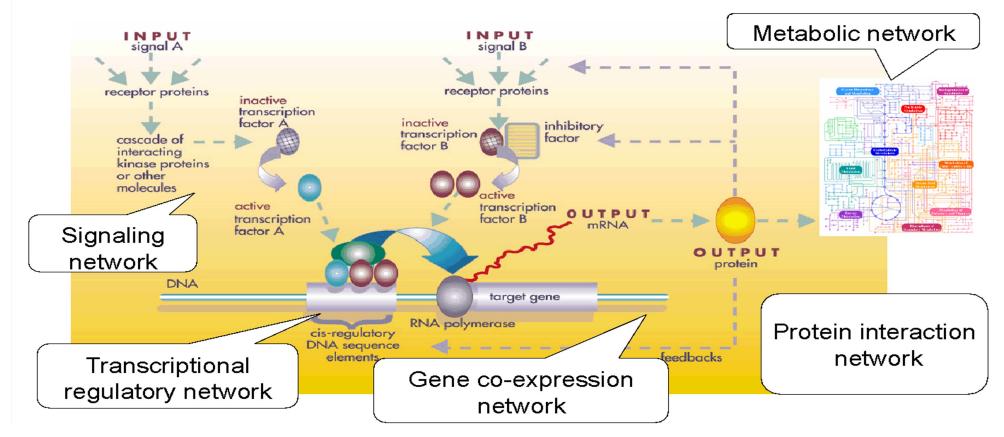


Figure from https://commons.wikimedia.org/wiki/File:Gene_Regulatory_Network.jpg

Directed Biological Networks

KNOWENG

Gene regulatory networks

- Nodes represent genes, proteins, etc.
- Edges show regulatory relationships between the nodes
- The network shows which entities (e.g. transcription factors) regulate the expression of each gene
- Edges can have meaningful weights

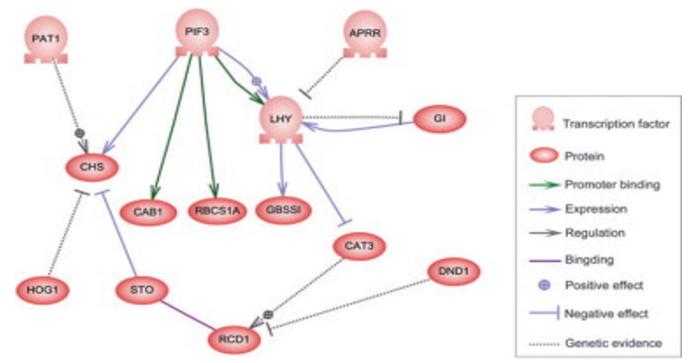
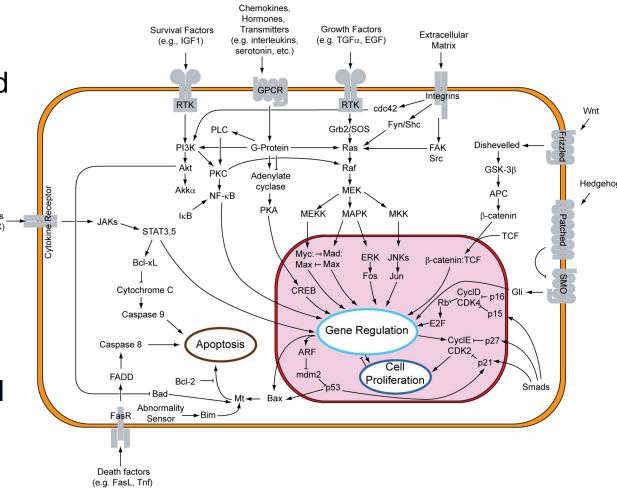


Figure from Song, et al. "Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice." *Molecular plant* 3.6 (2010).

Directed Biological Networks

Signaling Networks

- Represents communications within and between cells
- Responsible for receiving, transmitting and processing information
- The network is a graphical representation of the interactions of the components of a biological systems



Experimental Networks

Protein-protein interaction networks

- Nodes represent proteins
- Edges show interactions between proteins
- Interactions usually refer to different levels of physical contact and proximity of protein molecules

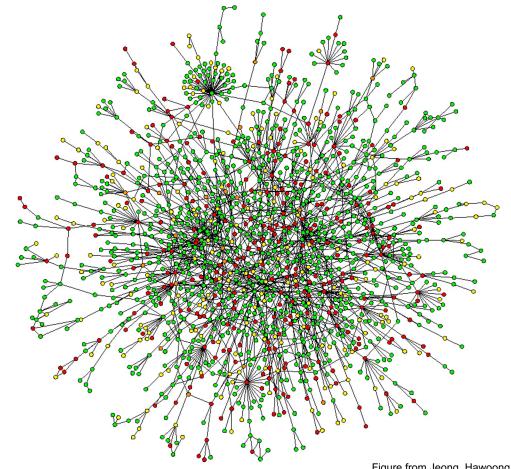


Figure from Jeong, Hawoong, et al. "Lethality and centrality in protein networks." *Nature* 411.6833 (2001).

Experimental Networks

Gene co-expression networks

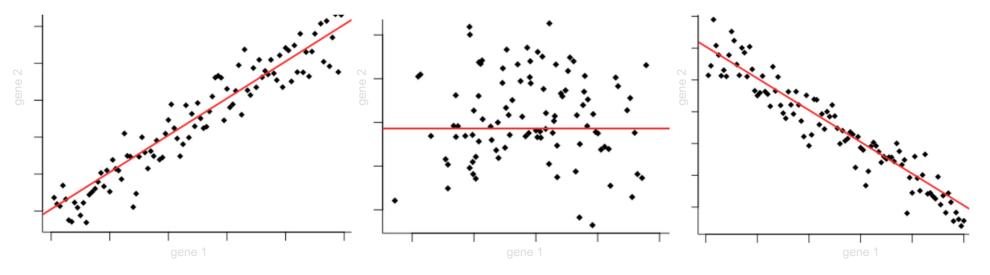
- Nodes represent genes
- An edge exists between two genes that are highly co-expressed across different samples

BMC Bioinformatics. 2008; 9: 559. Published online 2008 Dec 29. doi: <u>10.1186/1471-2105-9-559</u>

WGCNA: an R package for weighted correlation network analysis

Reviewed by Peter Langfelder¹ and Steve Horvath

Figure from https://commons.wikimedia.org/wiki/File:Gene_coexpression network with 7221 genes for 18 gastric cancer patients.png



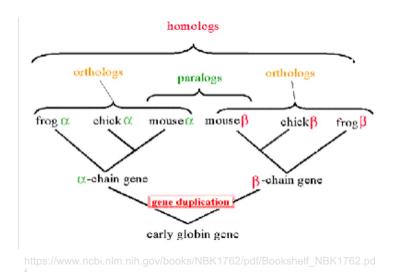
PMCID: PMC2631488

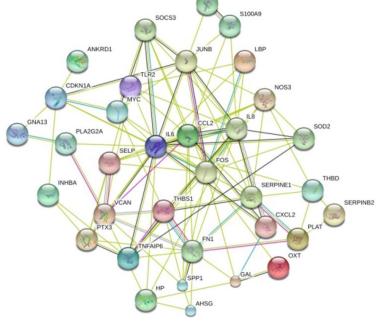
Figure from https://www.freecodecamp.org/news/how-machines-make-predictions-finding-correlations-in-complex-data-dfd9f0d87889/

Computational Networks

Evolutionary Conservation networks

- Nodes represent gene DNA or protein amino acid sequences
- Edges represent the similarity between the pair of sequences, the more similarly the more recently the nodes share an evolutionary history





S100A12

Text Mining networks

Nodes represent gene entities

Figure from Yahaya, et al. "Gene expression changes associated with the airway wall response to injury." *PloS one* 8.4 (2013).

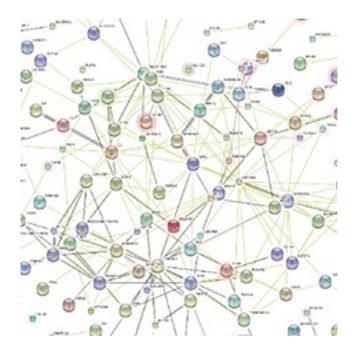
 Edges represent the frequency names, aliases, and synonyms for a pair of genes co-occur in literature abstracts

Computational Networks

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Integrated networks

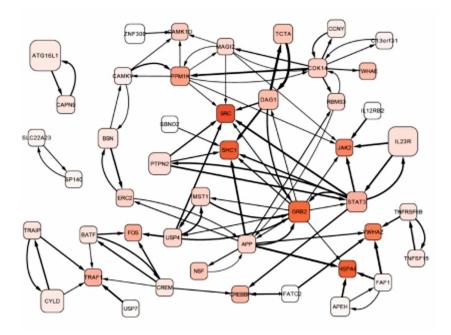
- Nodes represent gene or proteins
- Edges represent the weighted combination of normalized edge weights from many different types of network edges based on some predetermined criteria



Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. doi: 10.1093/nar/gku1003. Epub 2014 Oct 28.

STRING v10: protein-protein interaction networks, integrated over the tree of life.

<u>Szklarczyk D¹, Franceschini A¹, Wyder S¹, Forslund K², Heller D¹, Huerta-Cepas J², Simonovic M¹, Roth A¹, Santos A³, Tsafou KP³, Kuhn M⁴, Bork P⁵, Jensen LJ⁶, von Mering C⁷.</u>



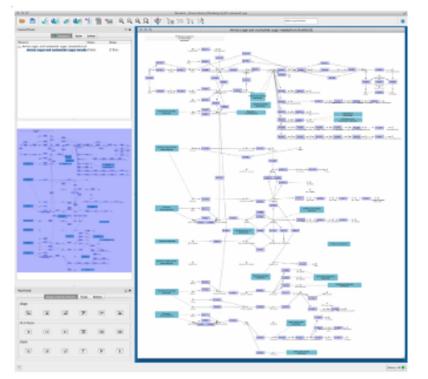
Genome Res. 2011 Jul;21(7):1109-21. doi: 10.1101/gr.118992.110. Epub 2011 May 2.

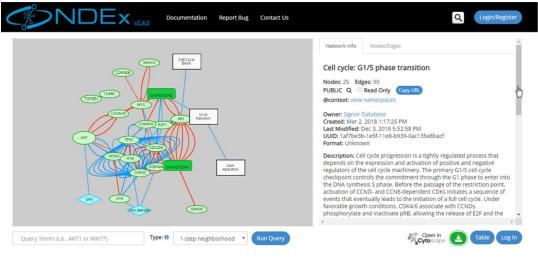
Prioritizing candidate disease genes by network-based boosting of genome-wide association data.

Lee I1, Blom UM, Wang PI, Shim JE, Marcotte EM.

Visualizing / Sharing Biological Networks

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE



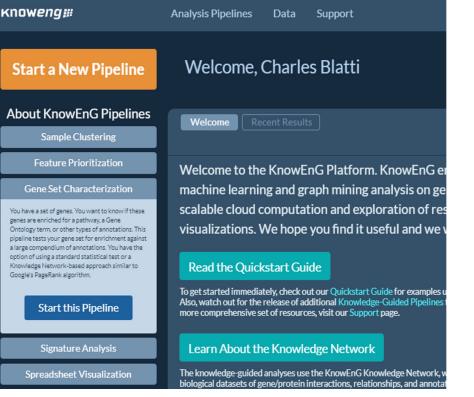


https://home.ndexbio.org/quick-start/

https://cytoscape.org/release_notes_3_2_1.html

KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

KnowEnG: Platform for Networkguided Analysis

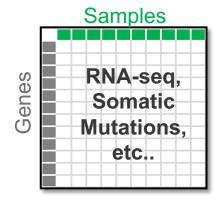


https://knoweng.org/analyze/

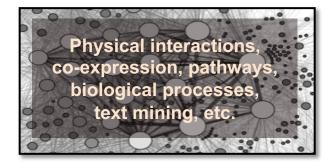
KnowEnG: Knowledge Engine for Genomics

KNOWENS BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

'omics Data Analysis Pipelines



Using Prior Knowledge



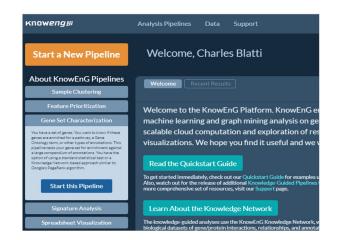
In a Scalable Cloud Platform

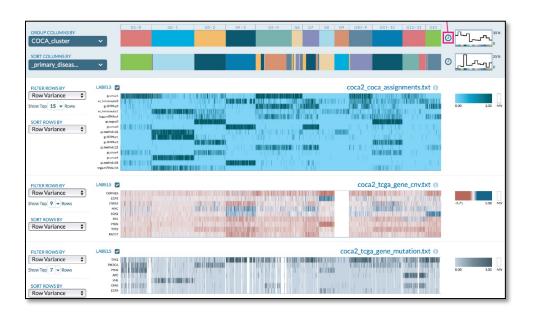
KnowEnG Pipelines and User Interface

KNOWENG

Sample Clustering

- What are the separate transcriptomic subtypes of patients and how do they relate to outcome?
- Feature(Gene) Prioritization
 - What genes are differentially expressed with respect to viral shedding
- Gene Set Characterization
 - What pathways do these differentially expressed genes relate to?
- Signature Analysis
 - Given a new patient, what subtype does their profile most resemble?
- Spreadsheet Visualization
 - Given multiple omics and clinical datasets on patient samples, what features relate to selected phenotypes?

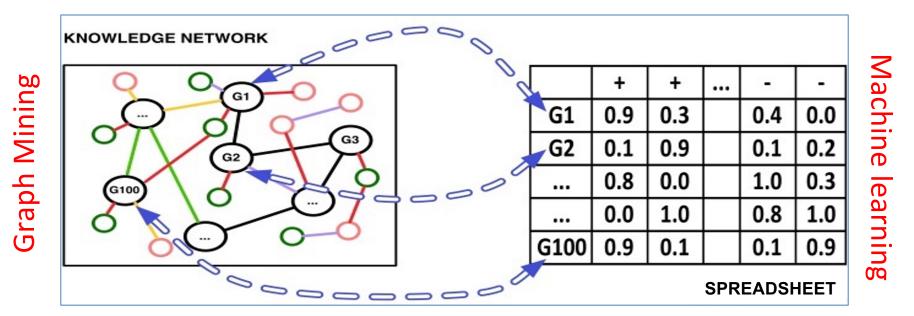




Analysis Pipelines Using Prior Knowledge

KNOWENG BIG DATA TO KNOWLEDG

- Knowledge Network (KN): heterogeneous graph whose nodes and edges encodes major public data sets as a network represented by genes/proteins, their properties, and relationships
- Omics data: a spreadsheet (rows = genes or proteins) to be analyzed



Knowledge network + user spreadsheet

KnowEnG Prior Knowledge Networks

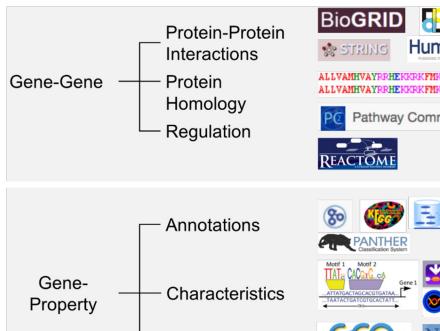
KNOWLEDGE NETWORK CONTENTS:			
Version:	KN-20rep-1702		
Number of Species:	20		
Number of Resources:	13		
Number of Datasets:	159		
Number of Edge Types:	43		
Number of Edges:	233,459,368		
Number of Nodes:	594,474		
Number of Gene Nodes:	404,868		
Number of Property Nodes:	189,605		

Int Act)

B

HumanNet 👬

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE



Experimental

Outcomes

	ALLVAMHVAYRRHEKKRKFMK
	Pc Pathway Commons
	REACTOME
	Image: Second system MSigDB Molecular Signatures Database Image: Second system Description
5	
	Gene Expression Omnibus

Project Achilles 🛷 Enrichr

ALLEN BRAIN ATLAS

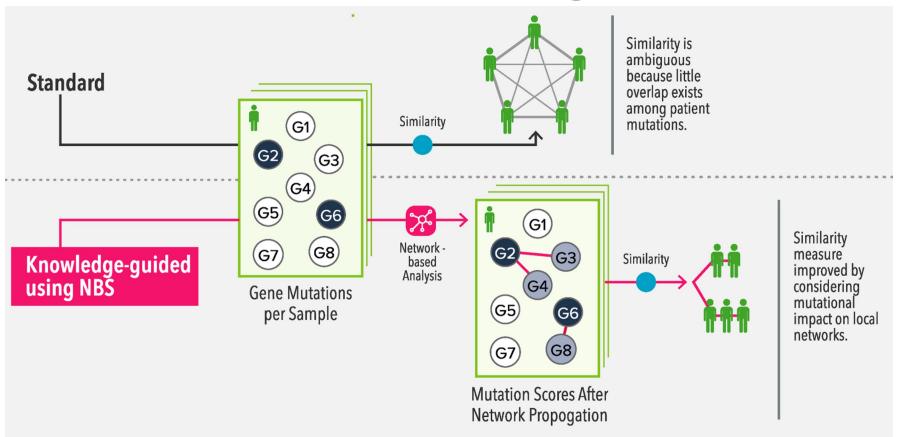
Edge Type Collection 🛛 🖨	Human Network Edges (millions)	Human Datasets	All Network Edges (millions)	All Datasets 🗢
Text_Mining/Integrated	9.0	2	130.6	19
Coexpression	7.3	2	119.8	19
Experimental_Interaction	5.4	4	108.7	21
Conservation/Proximity	1.6	2	26.1	36
Pathway_Database	1.1	3	63.4	20
Total	24.3	8	448.7	42

Edge Type 🗘	Human Network Edges (millions)	Human Property Nodes (thousands)	♦ Human Datasets	All Network Edges (millions)	All Property Nodes (thousands)
Tissue_Expression	13.7	25.9	32	13.7	25.9
Disease/Drug	6.0	82.3	13	6.3	83.4
Regulation	4.4	3.3	10	4.4	3.3
Pathways	0.6	16.9	5	1.4	34.6
Ontologies	0.3	17.2	5	1.8	23.5
Protein_Domains	0.0	6.2	2	0.5	7.8
Total	25.0	151.7	67	28.1	178.5

https://github.com/KnowEnG/KN Fetcher/blob/master/Contents.md

KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Network-guided Sample Clustering



Network-Guided Sample Clustering

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Goal:

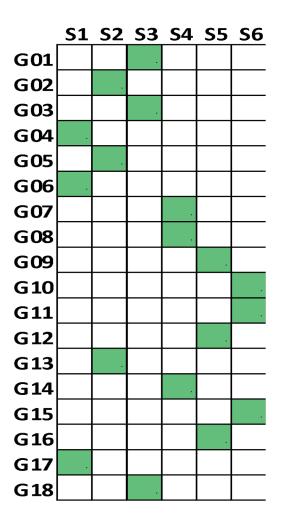
Stratification (clustering) of tumor samples based on somatic mutation profiles

Main Issue:

- The mutation data is very sparse and most conventional clustering techniques fail to identify reasonable patterns
- Although two tumors may not share the same somatic mutations, they
 may affect the same pathways and interaction networks

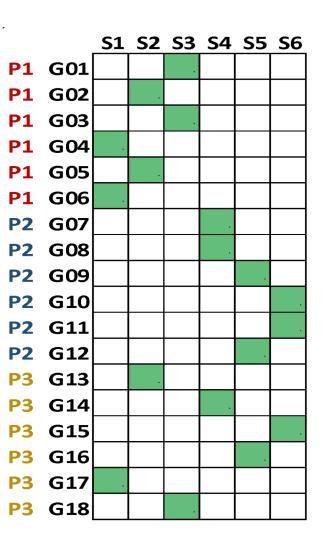
Knowledge-Guided Sample Clustering

- Problem: Data sparsity in gene-level somatic mutation data
- Toy Example
 - Due to the sparsity of the data, all samples are at equal distance of each other



Knowledge-Guided Sample Clustering

- Problem: Data sparsity in gene-level somatic mutation data
- Toy Example
 - Due to the sparsity of the data, all samples are at equal distance of each other
 - Pathway information clarifies the similarity among some samples



Knowledge-Guided Sample Clustering

- Problem: Data sparsity in gene-level somatic mutation data
- Toy Example
 - Due to the sparsity of the data, all samples are at equal distance of each other
 - Pathway information clarifies the similarity among some samples
 - Conventional clustering methods can then identify clusters based on networksmoothed features

S1 S2 S3 S4 S5 S6 P1 G01 **G02 P1** P1 G03 P1 G04 P1 605 P1 G06 P2 G07 **P2** G08 P2 G09 P2 G10 P2 G11 P2 G12 **P3** G13 P3 G14 P3 G15 P3 G16 P3 G17 **P3** G18

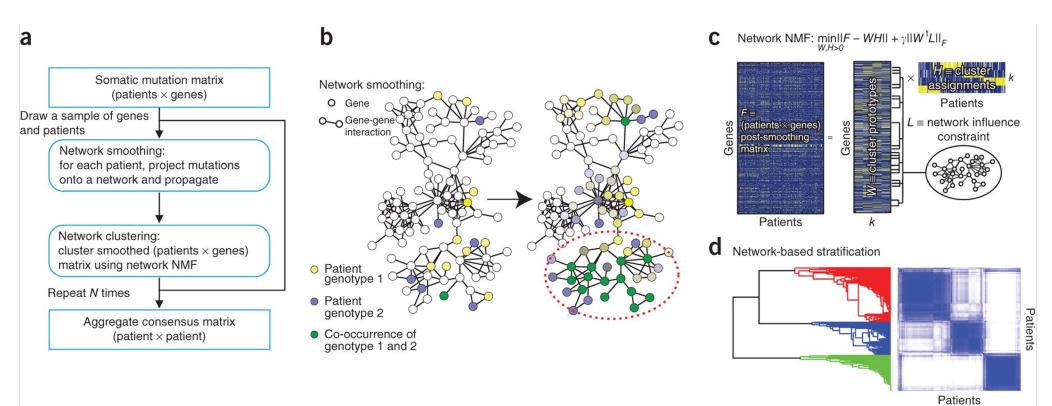
Network-based Stratification (NBS)

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Nat Methods. 2013 Nov;10(11):1108-15. doi: 10.1038/nmeth.2651. Epub 2013 Sep 15.

Network-based stratification of tumor mutations.

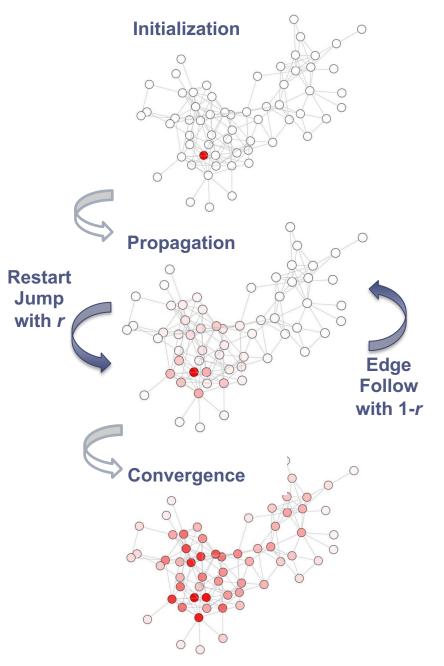
Hofree M¹, Shen JP, Carter H, Gross A, Ideker T.



- Network Smoothing Random Walk with Restart
- Patient Sampling for Robust Clustering

Random Walk With Restart Algorithm

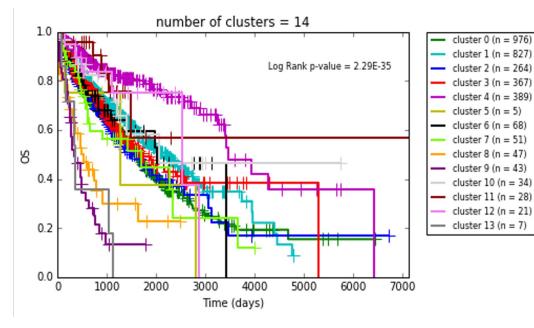
- Fast, scalable guilt-byassociation method
 - Same ideas as personalized PageRank
- Intuition
 - Walker at a node either
 - With probability 1-r, follows an outgoing edge
 - With restart probability *r*, returns to node in restart set
 - Converges to long run "stationary" distribution of the walker over the nodes
- Final node ranking based on distribution incorporates
 - Connectedness of node in network
 - Proximity of node to restart set



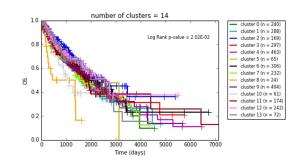
NBS Sample Clustering with KnowEnG

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

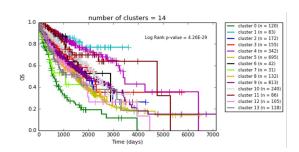
- 3276 tumor samples from TCGA from 12 cancer projects with sparse non-synonymous somatic mutation
- Perform standard and network-guided Sample Clustering in platform
- Knowledge-guided clusters significantly relate to survival outcome



 Much better than standard methods that do not incorporate prior knowledge



 In line with specialized method developed in TCGA paper that would be very difficult to reproduce

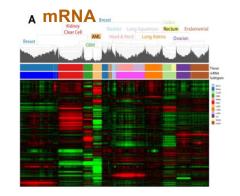


Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform

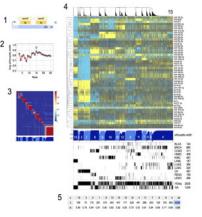
Charles Blatti III ன, Amin Emad 🔤, Matthew J. Berry, Lisa Gatzke, Milt Epstein, Daniel Lanier, Pramod Rizal, Jing Ge, Xiaoxia Liao, Omar Sobh, Mike Lambert, Corey S. Post, Jinfeng Xiao, [...].Saurabh Sinha 🛤 🖬 [view all]

Integrating Experimental Assays for Stratification

- Data from each experimental • assay is subjected to sample clustering to find cancer subtypes per assay
- Mutation data required • specialized knowledge guided methods (panel F)

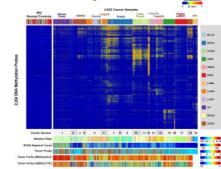


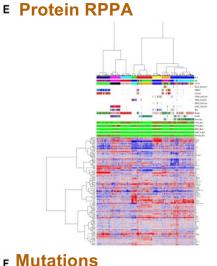
B miRNA

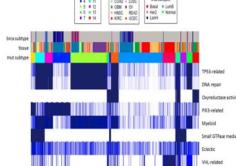


KNOWENCE: BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

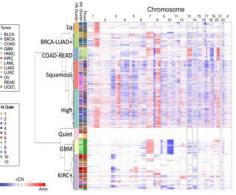
DNA Methyl







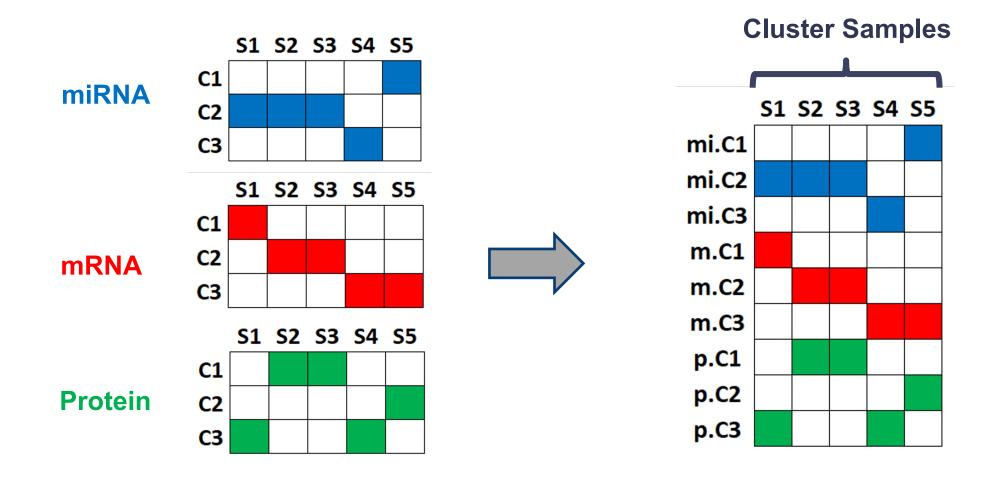
c Copy Number



	-					All Content
						💿 Cell 🔵 All cell.com
	Online Now	Current Issue	Archive	Journal Information ~	For Authors -	
< Previou	s Article			Volume 158, Issue 4,	p929–944, 14 August 2014	
RESOURCE						
Multip	latform /	Analysis of	12 Ca	ancer Types F	eveals Molecula	ar
Class	ification	within and	acros	s Tissues of C	Drigin	
					d Tamborero, Sam Ng, Max D.M	
					banl, Hul Shen ²² , Larsson Ombe J. Raphael, Li Ding, A. Gordon F	
					Cancer Genome Atlas Research I	Network,
Christophe	r C. Benz📴 🖂, C	harles M. Percu🗹	Joshua M	. Stuart 🌃 🔤		

Cluster-Of-Cluster-Assignments (COCA)

- Merge cluster assignments x samples matrices
- Cluster the samples in the multi-omics matrix



13 Cancer Subtypes from 6 Assays

 Strong relationship between subtypes & disease

Interesting
 relations
 between
 clusters of
 different
 data types

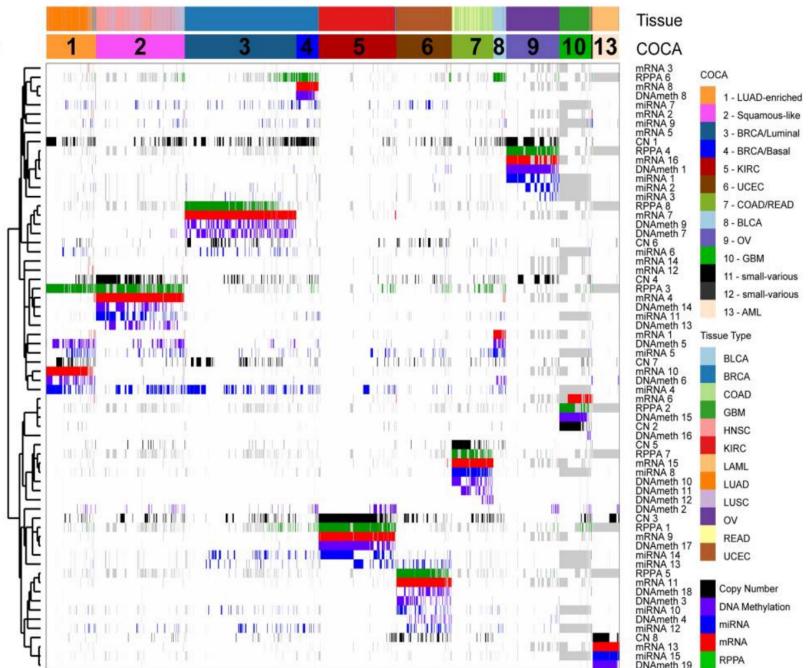
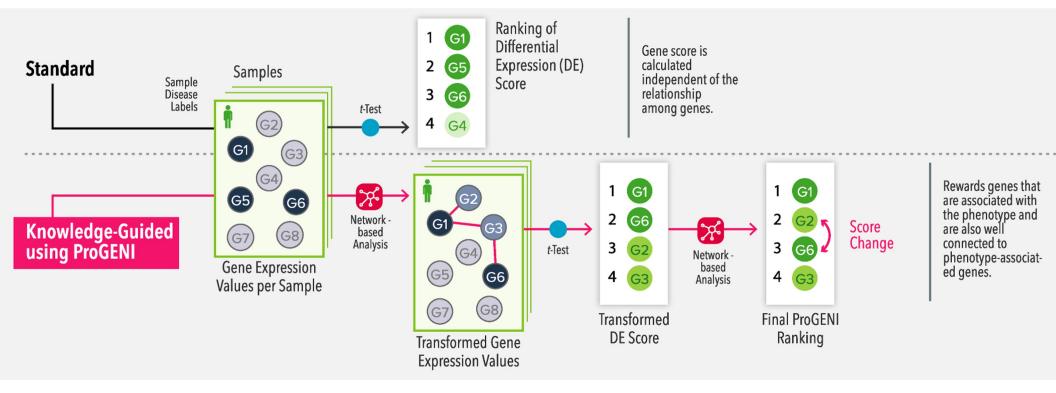


Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin." *Cell* 158.4 (2014).

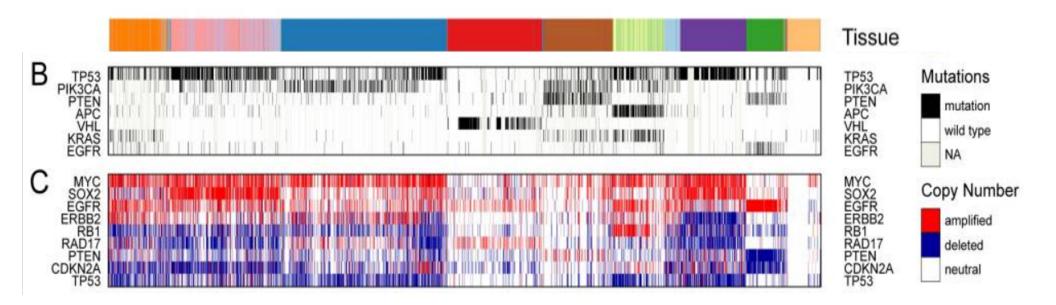
KNOWERGESS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Network-Guided Gene Prioritization



Characterizing Cancer Subtypes

- Find top related mutations and copy number alterations
- Compare each subtype vs `all others`
- KnowEnG calls this `Gene Prioritization`



Towards Network-Guided Gene Prioritization

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

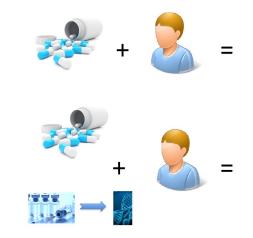
Drug Sensitivity Example

• Goal:

 Identifying genes whose basal mRNA expression determines the drug sensitivity in different samples (supervised feature selection)

Motivations:

- Overcoming drug resistance
- Revealing drug mechanism of action
- Identifying novel drug targets
- Predicting drug sensitivity of individuals



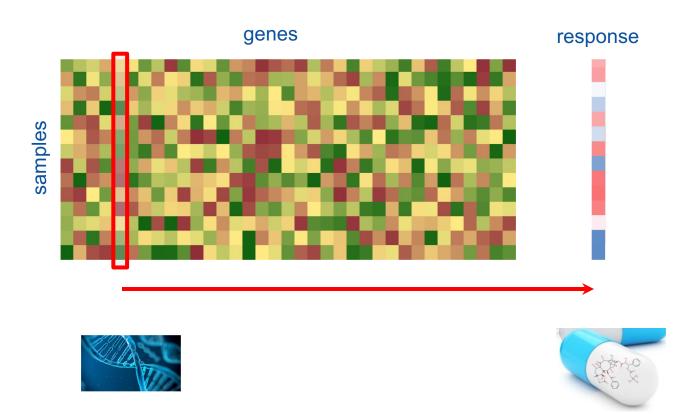
Standard Gene Prioritization

Examples of current methods:

 Score each gene based on the correlation of its expression with drug response

Correlating chemical sensitivity and basal gene expression reveals mechanism of action.

<u>Rees MG¹, Seashore-Ludiow B^{1,2}, Cheah JH^{1,2}, Adams DJ^{1,2}, Price EV^{1,2}, Gill S¹, Javaid S³, Coletti <u>ME¹, Jones VL¹, Bodycombe NE^{1,2}, Soule CK^{1,2}, Alexander B¹, Li A¹, Montgomery P¹, Kotz JD¹, <u>Hon</u> <u>CS¹, Munoz B¹, Liefeld T^{1,2}, Dančík V¹, Haber DA³, Clish CB¹, Bittker JA¹, Palmer M^{1,2}, Wagner BK¹, <u>Clemons PA¹, Shamji AF¹, Schreiber SL¹</u>.</u></u></u>



 $[\]underline{Nat \ Chem \ Biol.} \ 2016 \ Feb; 12(2): 109-16. \ doi: \ 10.1038/nchembio.1986. \ Epub \ 2015 \ Dec \ 14.$

Standard Gene Prioritization

Examples of current methods:

- Score each gene based on the correlation of its expression with drug response
- Use multivariable regression algorithms such as Elastic Net to relate multiple genes' expression values to drug response

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

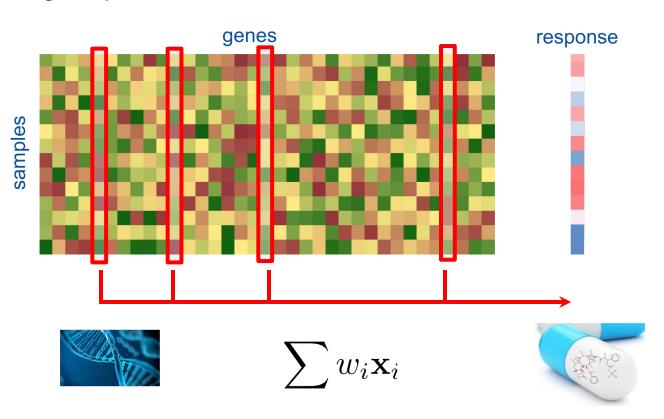
Correlating chemical sensitivity and basal gene expression reveals mechanism of action.

<u>Rees MG¹, Seashore-Ludiow B^{1,2}, Cheah JH^{1,2}, Adams DJ^{1,2}, Price EV^{1,2}, Gill S¹, Javaid S³, Coletti <u>ME¹, Jones VL¹, Bodycombe NE^{1,2}, Soule CK^{1,2}, Alexander B¹, Li A¹, Montgomery P¹, Kotz JD¹, Hon <u>CS¹, Munoz B¹, Liefeld T^{1,2}, Dančík V¹, Haber DA³, Clish CB¹, Bittker JA¹, Palmer M^{1,2}, Wagner BK¹, Clemons PA¹, Shamji AF¹, Schreiber SL¹.</u></u></u>

Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Barretina J¹, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan Y, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.



Augmenting Gene Prioritization

Examples of current methods:

- Score each gene based on the correlation of its expression with drug response
- Use multivariable regression algorithms such as Elastic Net to relate multiple genes' expression values to drug response

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression reveals mechanism of action.

<u>Rees MG¹, Seashore-Ludlow B^{1,2}, Cheah JH^{1,2}, Adams DJ^{1,2}, Price EV^{1,2}, Gill S¹, Javaid S³, Coletti <u>ME¹, Jones VL¹, Bodycombe NE^{1,2}, Soule CK^{1,2}, Alexander B¹, Li A¹, Montgomery P¹, Kotz JD¹, Hon <u>CS¹, Munoz B¹, Liefeld T^{1,2}, Dančík V¹, Haber DA³, Clish CB¹, Bittker JA¹, Palmer M^{1,2}, Wagner BK¹, <u>Clemons PA¹, Shamji AF¹, Schreiber SL¹</u>.</u></u></u>

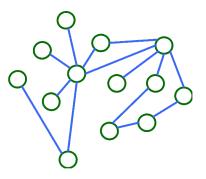
Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Barretina J¹, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.

Shortcoming:

 These methods do not incorporate prior information about the interaction of the genes

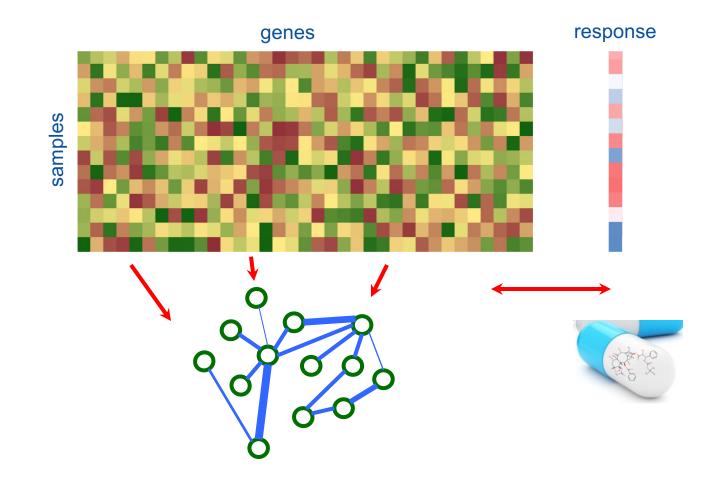


Network-Guided Gene Prioritization

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Hypothesis:

 Since genes and proteins involved in drug MoA are functionally related, prior knowledge in the form of gene interaction network (e.g. PPI) can improve accuracy of the prioritization task



ProGENI

ProGENI: Network-guided gene prioritization

An algorithm that incorporates gene network information to improve prioritization accuracy

Featured article: new insights into mechanisms of chemoresistance Emad et al. Genome Biology (2017) 18:153 DOI 10.1186/s13059-017-1282-3

Genome Biology

Open Access

CrossMark

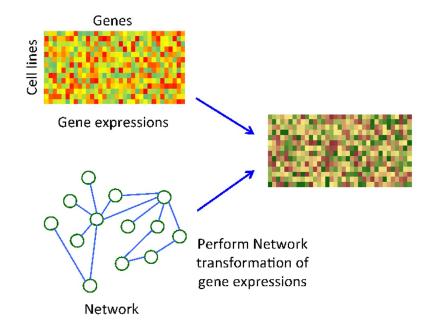
RESEARCH

Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance

Amin Emad¹^(b), Junmei Cairns², Krishna R. Kalari³, Liewei Wang^{2*} and Saurabh Sinha^{4*}

KNOWENG BIG DATA TO KNOWLEDGI CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and the activity level of their neighbors weighted proportional to their relevance



KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and the activity level of their neighbors weighted proportional to their relevance

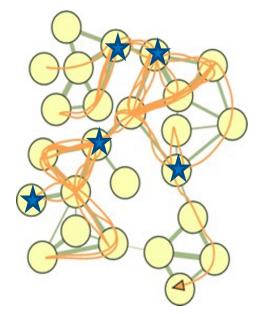
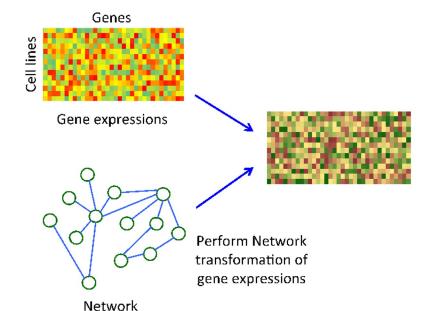


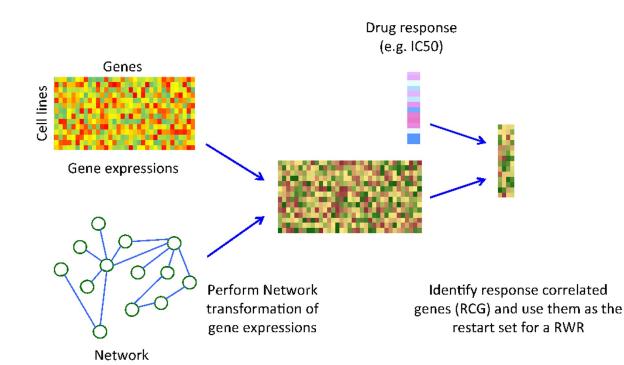
Figure from Rosvall and Bergstrom. "Maps of random walks on complex networks reveal community structure." *Proceedings of the national academy of sciences* 105.4 (2008).



KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

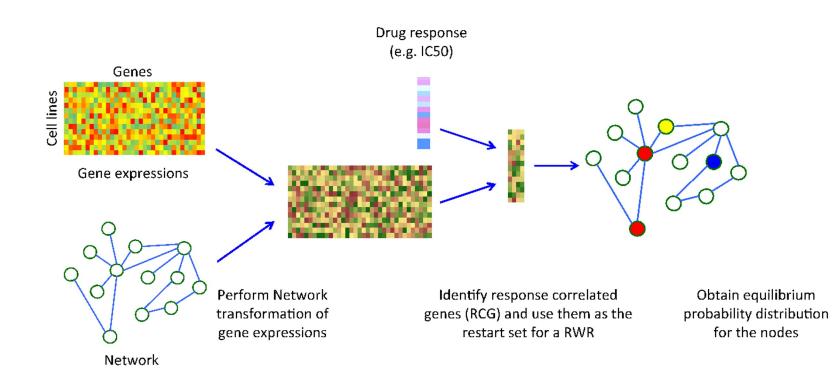


KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set



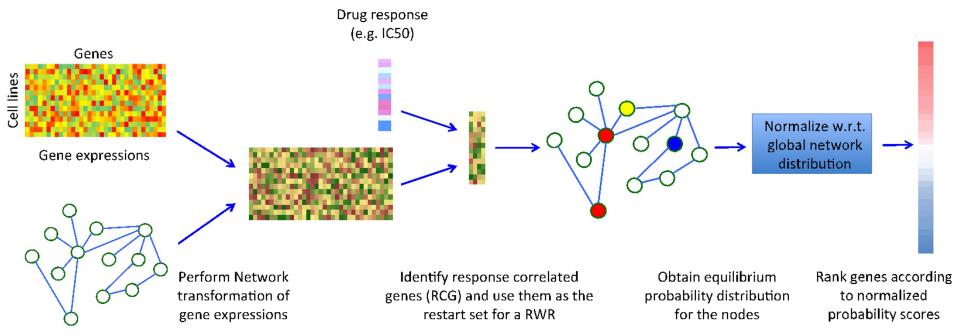
KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set

Step 4: Remove network bias by normalizing scores w.r.t. scores corresponding to global network topology



Network

ProGENI Analysis Datasets

- Human lymphoblastoid cell lines (LCL)
 - Gene expression (~17K genes of ~300 cell lines)
 - Drug response of 24 cytotoxic treatments

- Publicly available dataset from GDSC
 - Gene expression (~13K genes of ~600 cell lines from 13 tissues)
 - Drug response of 139 cytotoxic treatments

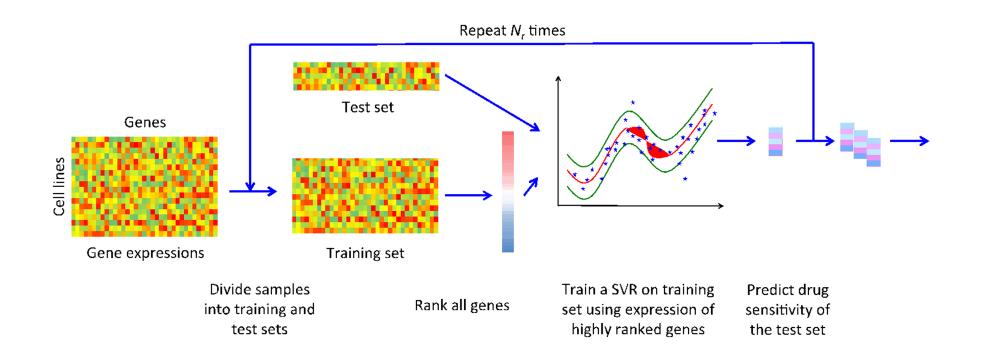
- Publicly available prior knowledge
 - Network of gene interactions (PPI and genetic interactions) from STRING (~1.5M edges, ~15.5K nodes)

MAYO

Validation Using Drug Response Prediction

KNOWENG

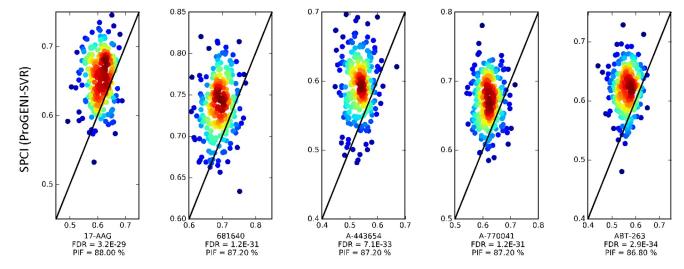
 Genes ranked highly using a good prioritization method are good predictors of drug sensitivity



Validation Using Drug Response Prediction

KNOWEN9 BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

LCL Dataset	Pearson	Elastic Net
Num. Drugs (out of 24) ProGENI > Baseline	14	20
FDR (Wilcoxon signed-rank test)	6.5 E-3	9.6 E-5
GDSC Dataset	Pearson	Elastic Net
GDSC Dataset Num. Drugs (out of 139) ProGENI > Baseline	Pearson 66	Elastic Net

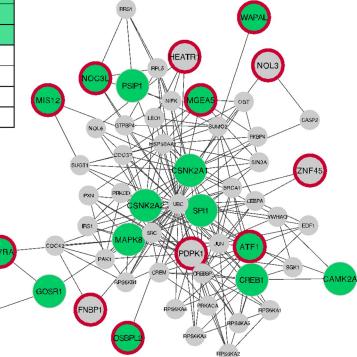


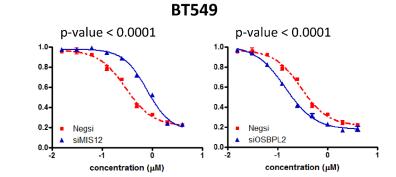
SPCI (EN-SVR)

Functional Validation

We validated role of 33 (out of 45) genes (73%) for three drugs.

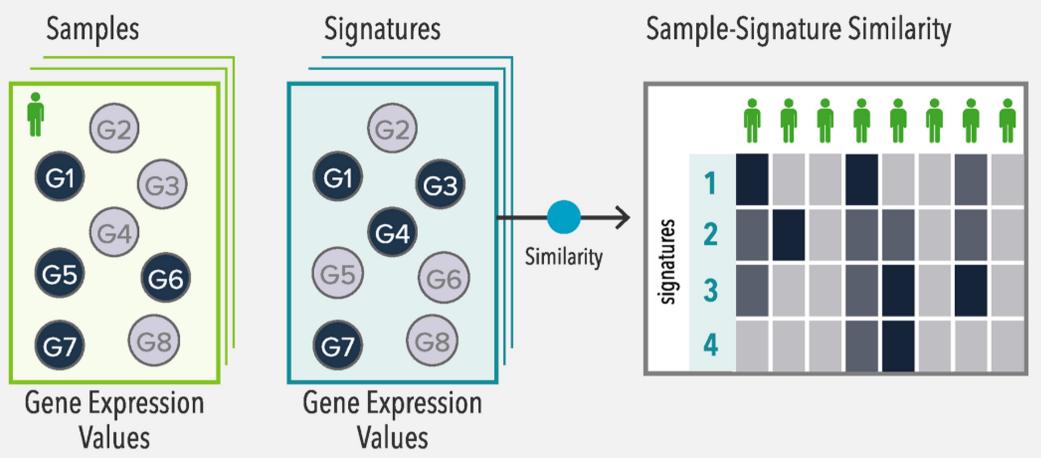
Gene Symbol	Rank (ProGENI)	Rank (Pearson)	Absolute value of Pearson correlation coefficient	Evidence
ATF1	1	1	0.2000	Direct (this study)
MIS12	2	4	0.1887	Direct (this study)
OSBPL2	5	6	0.1865	Direct (this study)
CSNK2A1	7	1587	0.0752	Direct (literature)
PSIP1 (LEDGF)	8	46	0.1537	Direct (literature)
CAMK2A	9	6991	0.0157	Direct (literature)
CSNK2A2	10	4870	0.0347	Direct (literature)
GOSR1	11	6867	0.0167	Direct (this study)
MAPK8	13	7574	0.0112	Direct (literature)
SPI1	14	6287	0.0217	Direct (literature)
CREB1	15	665	0.1000	Direct (literature)
NOC3L	3	3	0.1893	Not found
IL27RA	4	2	0.1911	Not found
MGEA5	6	7	0.1814	Not found
WAPAL	12	8	0.1805	Not found





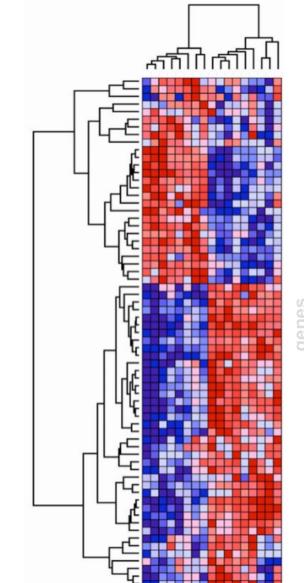
KNOWENGER BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Gene Expression Signatures



Gene Expression Signatures

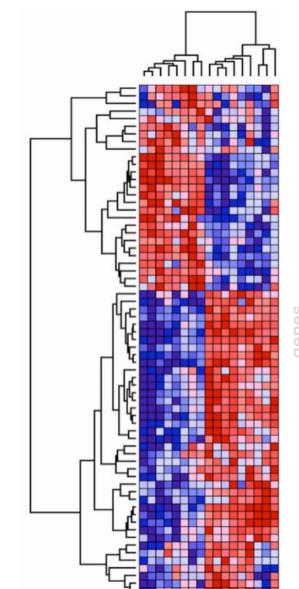
- Massive Transcriptomic Profiling Projects
 - TCGA and ICGC
 - GTEX and CCLE
 - LINCS
- Definitions
 - Projects produce expression vectors for samples (e.g. gene expression levels)
 - Scoring the difference in expression between samples of two (or more) conditions produces differential expression vectors
- **Signature** (of a biological state):
 - Gene Set differentially, characteristically expressed genes in that state relative to some reference (control or population)
 - Differential Expression Vector the differential expression scores for the subset of genes in the same comparison



samples

Gene Expression Signatures

- Example Comparisons
 - Mutated vs Wild-Type
 - Metastatic vs Primary
 - Tumor vs Normal
 - Perturbagens
 - Drug Treatment vs Placebo
 - Environmental Stimuli vs Control
- Gene Signatures provide a uniquely characteristic pattern of gene expression that is tied to its studied biological or medical phenomenon
 - Enable researchers to relate samples and other phenomenon by finding the similarity to the gene signatures
 - Focus understanding on underlying mechanism for phenomenon to a subset of gene behaviors



samples

Public Resources for Gene Signatures

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

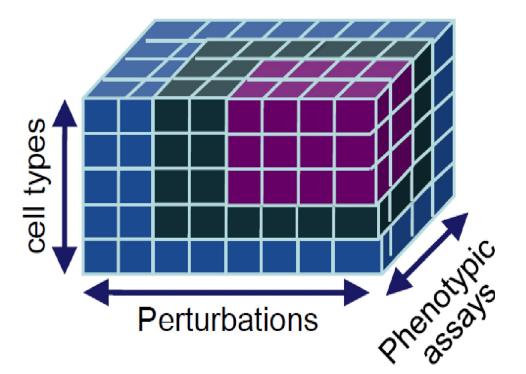
- There are many public resources for acquiring gene expression signatures
 - Extracting signatures yourself

Libraries of Curated Signatures

 Lab will use signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS)

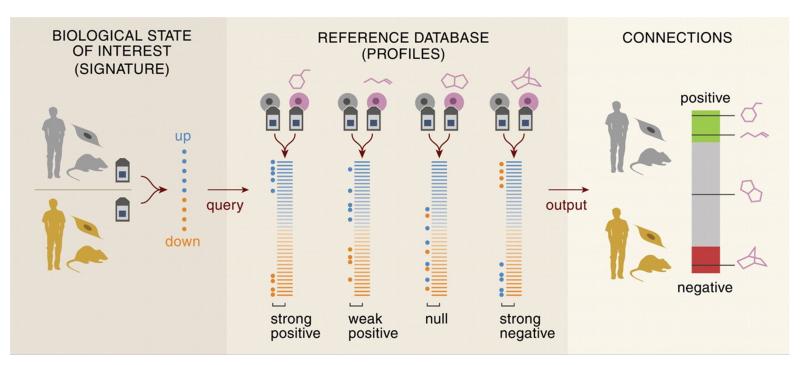
The LINCS DataCube of Signatures

- Gathering a data cube of gene signatures
- Using many different:
 - Cell Types
 - Dozens of cell lines
 - Induced pluripotent stem cells
 - Primary Cells
 - Perturbagens
 - Small molecules / Drugs
 - CRISPR overexpression and
 - shRNA knockdown
 - Microenvironments
 - Ligands
 - Experimental Assays
 - Gene expression: microarray, RNA-seq, L1000
 - Protein expression: RPPA, P100 mass spectrometry
 - Morphological and Proliferation: biochemical and imaging assays



Signature Similarity Analysis

 Given a query signature and a library of reference signatures, how do you find the similar signatures?
 Mol Cell Biol, 2008 Oct; 28(19):5951-64. doi: 10.1128/MCB.00305-08. Epub 2008 Aug 4. A gene signature-based approach identifies mTOR as a regulator



of p73.

Rosenbluth JM¹, Mays DJ, Pino MF, Tang LJ, Pietenpol JA

Types of Similarity Comparisons

Gene Set & Differential Expression Vector Differential Expression Vector & Differential Expression Vector Gene Set & Gene Set

Standard Similarity Measures

• When both signatures are represented as differential expression vectors:

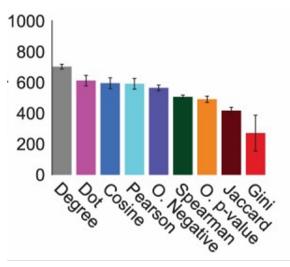
	Correlation	Formula (x, y)	Description	Study Pearson 1920 [29]		
	Pearson	$\frac{\sum_{T} (x_{t} - \overline{x})(y_{t} - \overline{y})}{\sqrt{\sum_{T} (x_{t} - \overline{x})^{2}} \sqrt{\sum_{T} (y_{t} - \overline{y})^{2}}}$	Linear similarity measure that uses mean-centering and normalization of the profiles.			
0082935	Cosine	$\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} r_{i}^{2}}}$	Linear similarity measure that uses normalization of the profiles.			
	Spearman	$\frac{\sum_{i} (r_i - r)(s_i - s)}{\sqrt{\sum_{i} (r_i - r)^2} \sqrt{\frac{\sum_{i} (s_i - s)^2}{\sqrt{\sum_{i} (s_i - s)^2}}}}$ where r_i is rank of x_i in $\mathbf{x}_i s_i$ is rank of y_i in \mathbf{y}_i .	Spearman correlation is Pearson correlation on the ranks of elements in the profile.	Spearman 1904 [34]		

 In one analysis, they did not observe a large performance difference between the possible measures

PLoS One. 2013 Jul 10;8(7):e68664. doi: 10.1371/journal.pone.0068664. Print 2013.

Comparison of profile similarity measures for genetic interaction networks.

Deshpande R¹, Vandersluis B, Myers CL.



Gene Set Enrichment Analysis

ad Sci U S A. 2005 Oct 25;102(43):15545-50. Epub 2005 Sep 30

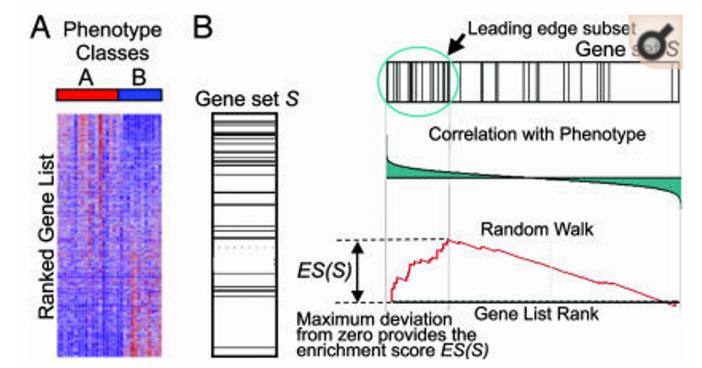
interpreting genome-wide expression profiles.

Golub TR, Lander ES, Mesirov JP.

Gene set enrichment analysis: a knowledge-based approach for

Subramanian A1, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL

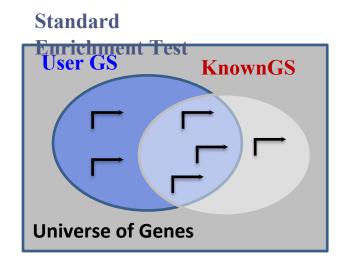
- When sample signature is **vector** and library signature is **gene set**
 - GSEA <u>http://software.broadinstitute.org/gsea/index.jsp</u>



- Modification of the Kolmogorov-Smirnov Statistic
 - Calculate the enrichment score (ES) that represents the amount the genes in the gene set are over-represented in the top or the bottom of the signature vector
 - Estimate statistical significance of the ES by permuting the mappings between the data
 - Adjust for multiple hypothesis testing when analyzing a large number of gene sets

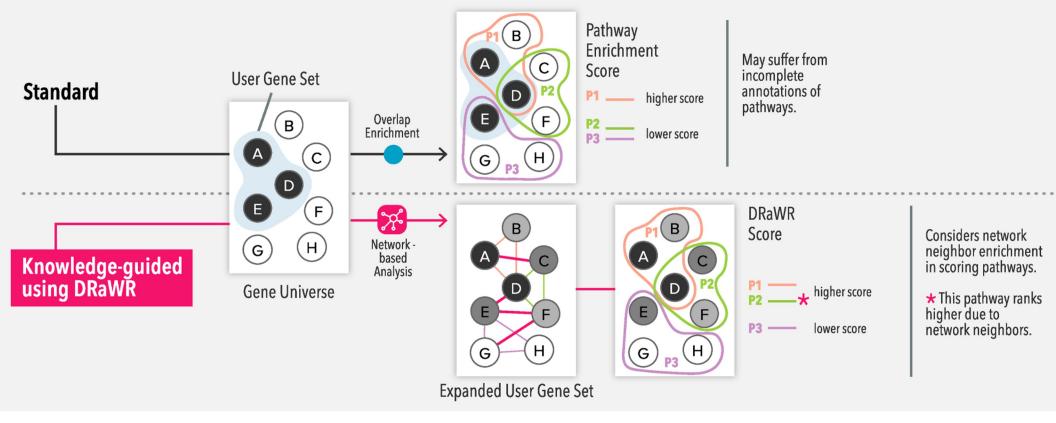
Gene Set Association Tests

- For use when **both** signatures are **gene sets**
 - Also known as Gene Set Characterization
- One-sided exact Fisher / Hypergeometric distribution tests
 - Covered by Saurabh this morning
- Available through tools like:
 - DAVID <u>https://david.ncifcrf.gov/</u>
 - Enrichr <u>http://amp.pharm.mssm.edu/Enrichr/</u>
 - Metascape <u>http://metascape.org/gp/index.html</u>



KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Network-Guided Gene Set Characterization

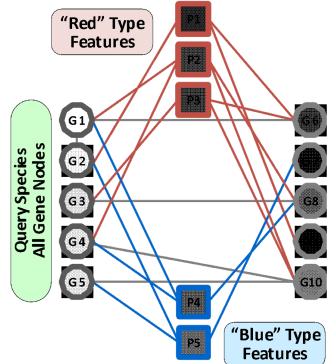


Idea for a Network-based Method

- Use guilt-by-association principles to find out which annotations are well connected to the query genes in a
- heterogeneous network.

•

- These well connected annotations should be specific to the query genes, and not simply hub nodes in the network.
- Developed Discriminative Random Walks with Restart (DRaWR)



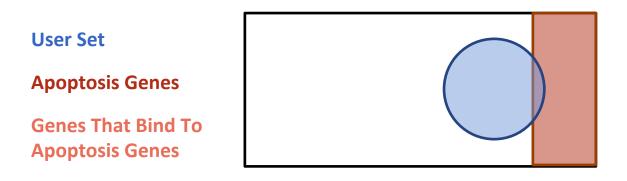
Bioinformatics. 2016 Jul 15;32(14):2167-75. doi: 10.1093/bioinformatics/btw151. Epub 2016 Mar 19.

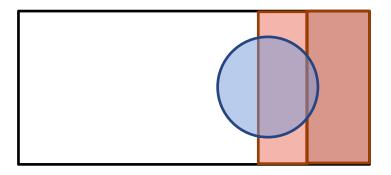
Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.

<u>Blatti C¹, Sinha S².</u>

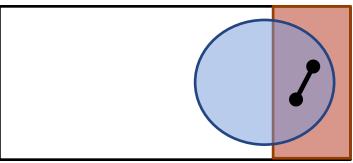
Value of Network-Guided Analysis

• Take advantage of gene neighbors



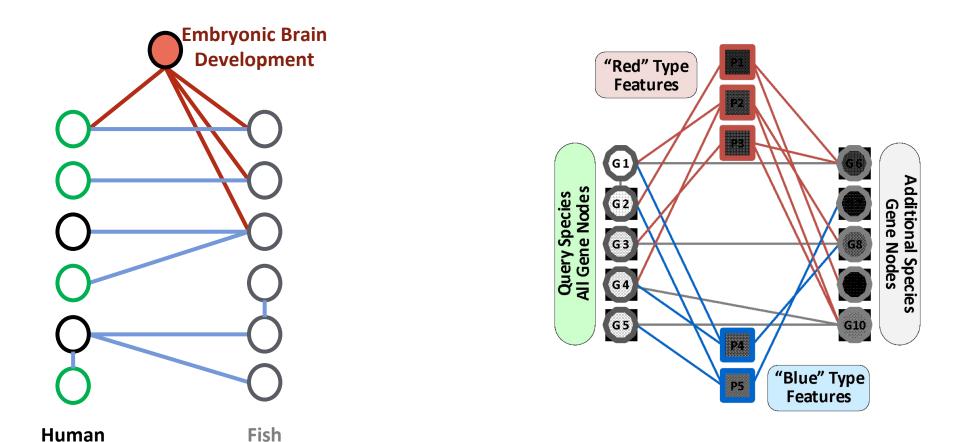


 Incorporate dependencies from separate knowledge in analysis



Value of Network-Guided Analysis

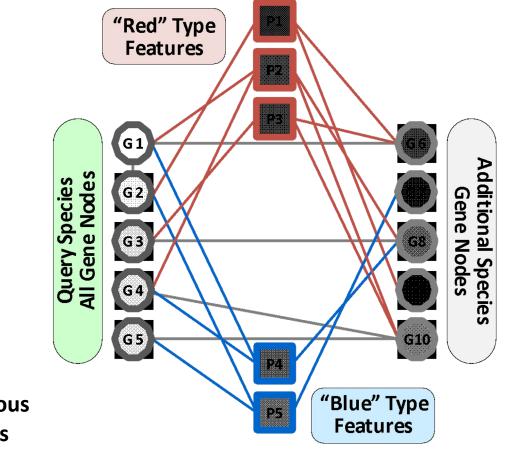
Extension to poorly annotated domains



Integrating multiple data types

Network-based DRaWR Method

- DRaWR using random walks on a network
 - Construct a heterogeneous network of interest



Heterogeneous Edge Types

type_A

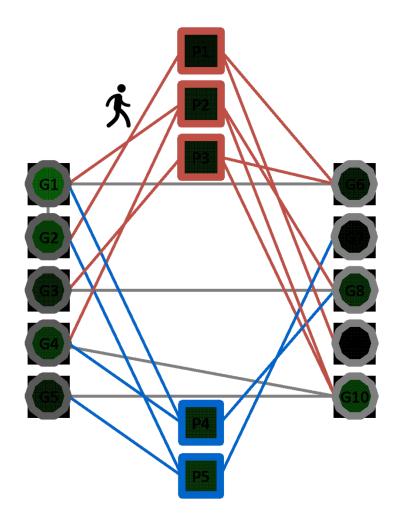
type_B type_C Bioinformatics. 2016 Jul 15;32(14):2167-75. doi: 10.1093/bioinformatics/btw151. Epub 2016 Mar 19.

Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.

<u>Blatti C</u>¹, <u>Sinha S</u>².

Network Methods for GSC

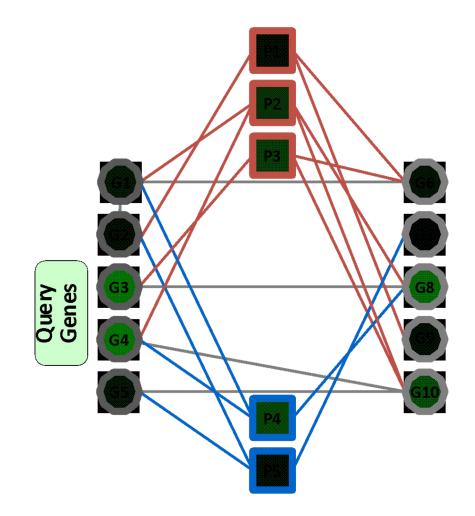
- DRaWR using random walks on a network
 - Construct a network of interest
 - Find stationary distribution on network



KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

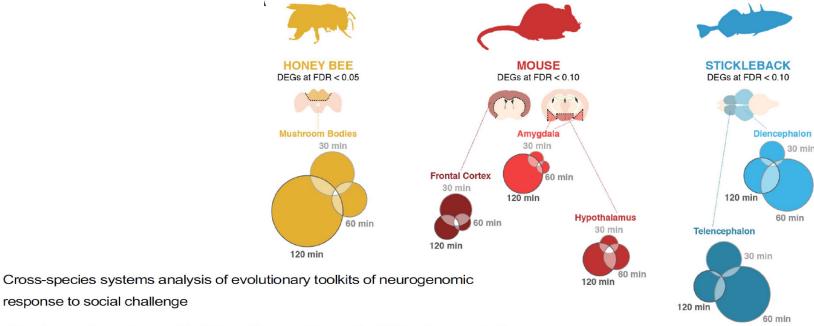
Network Methods for GSC

- DRaWR using random walks on a network
 - Construct a network of interest
 - Find stationary distribution on network
 - Find gene set specific distribution
 - Return annotation nodes that are especially related to the query



Social Aggression Study Application

- Idea: Evolutionary "toolkits" genes and modules with lineage-specific • variations but deep conservation of function
- Questions: Are there toolkits that underlie social behaviors
 - Such as aggressive response to territorial intrusions?
- Study: gather brain transcriptomic responses to social challenge from three social species – honey bees, mice, and stickleback fish
 - With and without exposure to intraspecies intruder •
 - From different brain regions and/or durations after event
- Results: sets of differentially expressed genes across three species

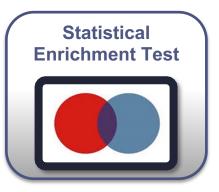


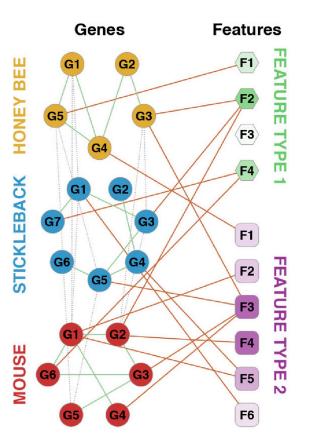
response to social challenge

Sinha^{1,2,10,*}

Failure of Standard Approach

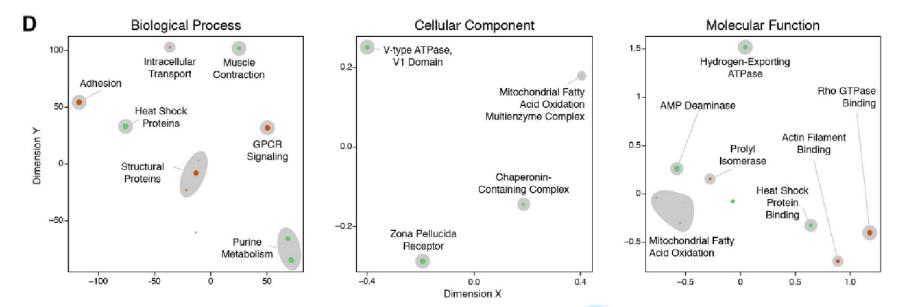
- Would like to find Gene Ontology annotations that:
 - Relate to DE gene sets of all three species
 - However, Gene Ontology annotation quality varies greatly in three species
 - Or relate to DE genes sets of the Mouse
 - However, the corresponding sets from the other species might have greatly different function
- Solution:
 - Integrate Orthology and Gene Ontology information in a three species network
 - Find Gene Ontology terms that are strongly connected to the DE gene sets of all three species simultaneously





Findings with DRaWR

• Annotations of two (red and green) conserved Gene Modules



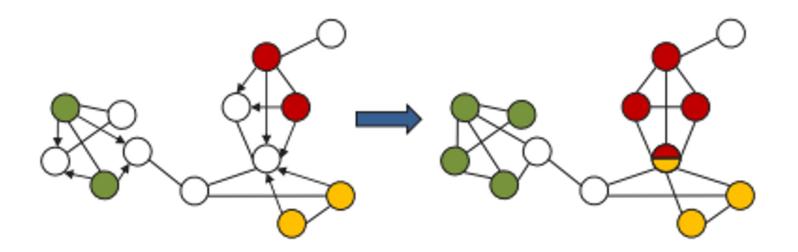
· Specific results for red module

: 14			#Ar	nnota	ted	DR	aWR G	0 Ter	m Ran	k		Fisher	Pvalue	•
Branch	GO ID	GO Description	HB	MM	SB	Combo	HB	MM	SB	Max	HB	MM	SB	Min
BP	GO:0032366	intracellular sterol transport		2		0.3%	1.6%	0.1%	0.4%	1.6%		0.040		0.040
BP	GO:0071704	organic substance metabolic process	3	5	4	2.3%	2.2%	0.3%	0.4%	2.3%	0.134	0.040		0.040
BP	GO:0016043	cellular component organization	4	9	12	2.3%	2.2%	2.9%	0.8%	2.9%	0.175	0.151	0.002	0.002
BP	GO:0007160	cell-matrix adhesion	5	74	16	2.5%	0.4%	3.5%	1.8%	3.5%	0.002	0.001		0.001
MF	GO:0017048	Rho GTPase binding	6	30	13	3.1%	2.0%	3.9%	0.8%	3.9%	0.020	0.024	0.002	0.002
BP	GO:0038032	termination of G-protein coupled recepto	11	1	44	1.6%	6.8%	1.4%	0.3%	6.8%			0.000	0.000
MF	GO:0051015	actin filament binding	17	114	9	7.6%	4.0%	8.0%	8.3%	8.3%	0.013	0.125		0.013
MF	GO:0003755	peptidyl-prolyl cis-trans isomerase activit	22	42	17	4.7%	2.1%	9.1%	1.3%	9.1%	0.031		0.108	0.031
BP	GO:0031032	actomyosin structure organization	2	18		1.8%	0.4%	2.7%	9.6%	9.6%	0.047			0.047
MF	GO:0003779	actin binding	48	284	78	8.7%	10.0%	6.9%	8.3%	10.0%	0.086	0.021	0.001	0.001

Gene Ranking / Function Prediction

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

- Given:
 - Novel gene set(s) generated by a genomic researcher
- Task:
 - **Rank** genes for the strength of their relationship to the user's gene set(s)...
 - ... in order to assess the coherence of the genes in the experimental gene set or identify putative related genes



- GeneMANIA stands for
 - Multiple Association Network Integration Algorithm
- Main Idea
 - Given a gene set with a known functions
 - And several gene-gene interaction affinity networks
 - Find genes that relate to the functional set through the edges of the given networks
- Approach
 - Find out how well each network predicts the membership of the given set
 - A linear regression-based algorithm that calculates a single composite functional association network from multiple data sources
 - Do label propagation guilt-by-association algorithm on the composite functional association network

<u>Genome Biol.</u> 2008;9 Suppl 1:S4. doi: 10.1188/gb-2008-9-s1-s4. Epub 2008 Jun 27. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function.

Mostafavi S¹, Ray D, Warde-Farley D, Grouios C, Morris Q.

GeneMANIA Performance

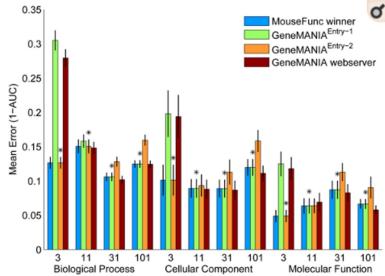
 Participated in grand challenge for this function prediction task on Mouse genes

ne Biol. 2008;9 Suppl 1:S2. doi: 10.1188/gb-2008-9-s1-s2. Epub 2008 Jun 27.

A critical assessment of Mus musculus gene function prediction using integrated genomic evidence.

Peña-Castillo L¹, Tasan M, Myers CL, Lee H, Joshi T, Zhang C, Guan Y, Leone M, Pagnani A Krumpelman C, Tian W, Obozinski G, Qi Y, Mostafavi S, Lin GN, Berriz GF, Gibbons FD, J, Grant C, Barutcuoglu Z, Hill DP, Warde-Farley D, Grouios C, Ray D, Blake JA, Deng M, Noble WS, Morris Q, Klein-Seetharaman J, Bar-Joseph Z, Chen T, Sun F, Troyanskaya OG, Hughes TR, Roth FP.

 Did extraordinary well in the competition and has improve method since then 0.35



Has easy to use webserver for running functional • prediction with small genesets

In this Lecture and the Lab

BIG DATA TO KNOWLEDGE

CENTER OF EXCELLENCE

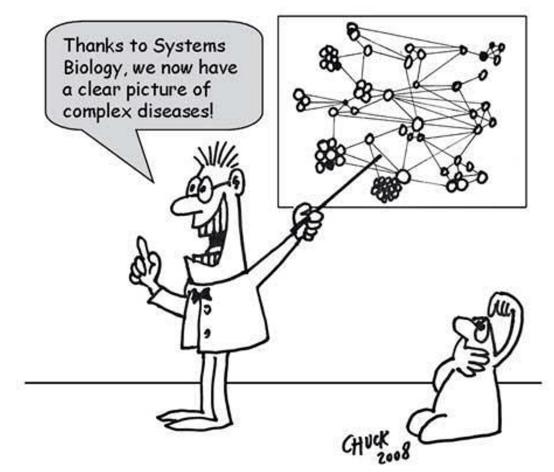
- Biological Knowledge Networks
 - KnowEnG Platform

KNOW*eng*

- Network-Guided Sample Clustering
 - Network Based Stratification, COCA
- Network-Guided Gene Prioritization
 - ProGENI
- Gene Signatures and Similarity Methods
 - LINCS, GSEA, Enrichr, DAVID
- Network-based Gene Set Characterization
 - DRaWR
- Network-based Function Prediction
 - GeneMANIA

KNOWERS BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Thank you, Any Questions?



KNOWENGE BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

KnowEnG Resources

- Also Check Out:
 - Network Preparation for uploading your custom network to the platform for analysis
 - Signature Analysis for mapping samples to signatures by correlation of omics profiles
- Tutorials:
 - Quickstarts: <u>https://knoweng.org/quick-start/</u>
 - YouTube: https://www.youtube.com/channel/UCjyIIolCaZIGtZC20XLBOyg
- Resources:
 - Data Preparation Guide: <u>https://github.com/KnowEnG/quickstart-</u> demos/blob/master/pipeline_readmes/README-DataPrep.md
 - Knowledge Network Contents:
 - Summary: <u>https://knoweng.org/kn-data-references/</u>
 - Download: <u>https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md</u>
- Research
 - Knowledge-guided analysis of omics Data (KnowEng cloud platform paper): <u>https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000583</u>
 - TCGA Analysis Walkthrough: <u>https://github.com/KnowEnG/quickstart-demos/tree/master/publication_data/blatti_et_al_2019</u>
- Source Code:
 - Docker Images: <u>https://hub.docker.com/u/knowengdev/</u>
 - Github Repos: <u>https://knoweng.github.io/</u>
- Other Cloud Platforms
 - <u>https://cgc.sbgenomics.com/public/apps#q?search=knoweng</u>
- Contact Us with Questions and Feedback: <u>knoweng-support@illinois.edu</u>

KNOWENS BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

Using A Permanent KnowEnG Account

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

- For permanent account:
 - Go to <u>https://knoweng.org/analyze/</u> Click on "Create an account"
 - Follow the instructions

PLATFORM IS NOW AVAILABLE !

Welcome to the KnowEnG Platform !

KnowEnG enables knowledge-guided machine learning and graph mining analysis on genomic datasets using scalable cloud computation and exploration of results with interactive visualizations.

KNOWLEDGE-GUIDED PIPELINES

Researchers can upload their data in form of a spreadsheet and choose from several analysis

LOGIN OR REGISTER

WATCH OUR VIDEO TUTORIALS

Regression algorithms

 Lasso: learns a linear model from the training data using only a few features (sparse linear model)

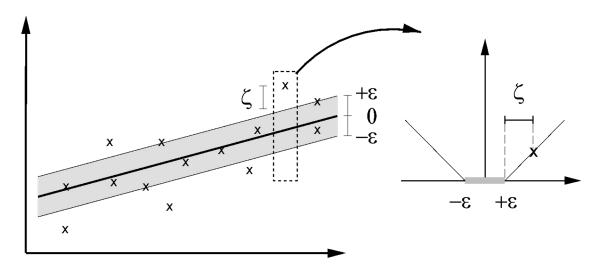
$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left(||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda_1 ||\boldsymbol{\beta}||_1 \right)$$

 Elastic Net: learns a linear model from the training data by linearly combining ridge and Lasso regression regularization terms (a generalization of both Lasso and ridge regression)

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left(||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + \lambda_2 ||\boldsymbol{\beta}||_2 + \lambda_1 ||\boldsymbol{\beta}||_1 \right)$$

Regression algorithms

- Kernel-SVR:
 - Linear SVR learns a linear model such that it has at most ε-deviation from the response values and is as flat as possible





 Kernel-SVR generalizes the idea to nonlinear models by mapping the features to a high-dimensional kernel space

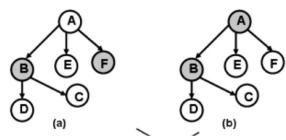
Other Network Based Characterization Methods

Bioinformatics. 2009 Jan 1;25(1):75-82. doi: 10.1093/bioinformatics/btn577. Epub 2008 Nov 5.

A novel signaling pathway impact analysis.

Tarca AL1, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R.

SPIA Idea:



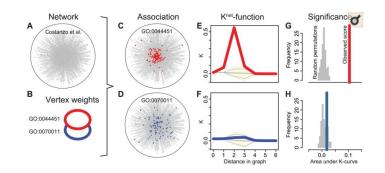
- Combine with standard enrichment p-value that asks about the significance of the number of perturbed genes in the pathway
- Perturbagen p-value, which asks if the amount of total accumulated perturbation after one network propagation step is significant when considering the value it takes with random controls

PLoS Comput Biol. 2014 Sep 11;10(9):e1003808. doi: 10.1371/journal.pcbi.1003808. eCollection 2014 Sep.

SANTA: quantifying the functional content of molecular networks.

Cornish AJ¹, Markowetz F².

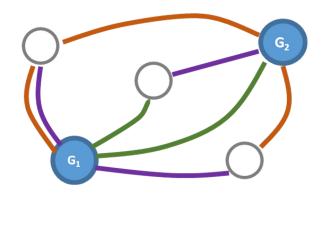
Shortest Path Length criteria



KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE

 DRaWR random walks on heterogeneous networks make no consideration / memory of the edge *types* they have followed



Paths from G1 -> G2: type_A type_A - type_B type_C- type_C type_B - type_C (x2)

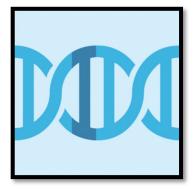
meta-path:

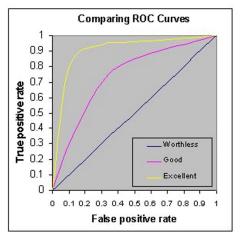
a path defined by sequence of edges types between two nodes

 Explore if similarity in a gene set can best be described by particular *types of meta-paths* amongst its genes.

Ranking Genes for Disease

KNOWENG BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE





- Initial Study:
 - 53 MSigDB DE gene sets from separate cancer studies
- Question:
 - If we hide a subset of genes disrupted by the development of cancer, what types of networks are best suited to recover them?
- Evaluation:
 - Partition 75% of DE genes for training, 25% for testing
 - Use DRaWR on KnowNet subnetworks and training data to rank genes
 - Report average AUCs of ranking using test genes as truth

Networks Under Consideration

- Gene-Gene Edge Types
 - H: Homology
 - CoEx: Co-Expression
 - TM: Text Mining
 - Exp: Experimental Interaction
- Gene-Property Edge Types
 - PD: Protein Domains
 - GO: Gene Ontology

- Number of Species
 - Human: only
 - 2sp: Human and Mouse
- Specificity of the edges
 - Specific: high confidence edges
 - Loose: all edges of that types
- Combinations of Edge Types
 - 1ty: One primary type
 - 2ty: Primary type + homology
 - Many: 3+ edge types

- Gene Ontology annotations and Text Mining relations are the best edge types for recovering cancer set DE genes
- Networks with all edges (Loose) are better at recovering gene than networks with only high confidence edges
- Protein Domain annotations are poor predictors for cancer DE genes, but great for embryonic development

Species 💌		EdgeType		dgeThresh	Ŧ	avg 💌	min 💌	max 💌
Human	many	GO.TM.H		.oose		0.723	0.610	0.847
Human	many	All		.oose		0.722	0.614	0.863
2sp	many	GO.TM.H		.oose		0.721	0.610	0.843
2sp	many	All		.oose		0.714	0.606	0.852
2sp	2ty	GO.H		.oose		0.706	0.578	0.862
2sp	2ty	TM.H		.oose		0.701	0.567	0.813
Human	many	All		Specific		0.701	0.590	0.838
Human	many	GO.TM.H		Specific		0.701	0.584	0.855
Human	many	GO.TM		.oose		0.701	0.545	0.870
2sp	many	GO.TM.H		Specific		0.699	0.579	0.848
2sp	many	All		Specific		0.698	0.594	0.824
2sp	many	GO.TM		.oose		0.695	0.537	0.863
2sp	2ty	GO.H		Specific		0.694	0.555	0.853
Human	1ty	Text Mining		.oose		0.693	0.544	0.838
Human	1ty	Gene Ontolog		.oose		0.690	0.541	0.851
2sp	1ty	Gene Ontolog		.oose		0.689	0.538	0.848
Human	many	GO.TM		Specific		0.675	0.539	0.831
2sp	2ty	TM.H		Specific		0.673	0.563	0.797
2sp	many	GO.TM		specific		0.671	0.541	0.823
2sp	2ty	PPI.H		.oose		0.668	0.557	0.800
2sp	1ty	Gene Ontology		Specific		0.666	0.515	0.844
Human	1ty	Gene Ontolog ^y		Specific		0.664	0.534	0.842
2sp	2ty	CoE.H		.oose		0.663	0.508	0.827
2sp	2ty	Exp.H		Specific		0.656	0.549	0.769
Human	1ty	Text Mining		Specific		0.656	0.555	0.812
2sp	2ty	Exp.H		.oose		0.647	0.533	0.763
2sp	2ty	PPI.H		Specific		0.644	0.515	0.746
Human	1ty	Co-expression		.oose		0.629	0.498	0.840
Human	1ty	Experimental		Specific		0.604	0.455	0.756
Human	1ty	Co-expression		Specific		0.601	0.353	0.875
Human	1ty	Prot-Prot Inter		.oose		0.598	0.475	0.730
zsp	Ζτγ	COE.H		респіс		0.598	0.477	U.725
2sp	2ty	PD.H		.oose		0.592	0.481	0.701
Human	1ty	Experimental	I	.oose		0.589	0.424	0.778

KNOWENG BIG DATA TO KNOWLEDG CENTER OF EXCELLENCE