Genome Assembly

CHRIS FIELDS, HPCBIO
MAYO-ILLINOIS COMPUTATIONAL GENOMICS WORKSHOP JUNE 20, 2023

Overview

- Sequencing technologies (2023)
- Steps in a standard genome assembly
- Assembly quality assessment
- Planning an assembly project
- Genome graphs
- Genome annotation

Ideal World!

I have this joke slide (thx to Torsten Seemann) on all my past talks...

AGTCTAGGATTCGCTACAGAT TCAGGCTCTGAAGCTAGATCG CTATGCTATGATCTAGATCTC GAGATTCGTATAAGTCTAGGA TTCGCTATAGATTCAGGCTCT
GATATAT

46 complete, haplotyperesolved, chromosome sequences

Ideal World!

We may not be too far from this now.

Science,
March 2022

$=$	TIME	SUB ScRIBE
	\leftarrow THE 100 MOST INFLUENTIAL PEOPLE OF 2022	

Michael Schatz, Karen Miga, Evan Eichler, and Adam Phillippy

Time, May 2022

Ideal World!

Earth Biogenome Project
Pangenomics

Announced 2018,
started early 2022
Nature,
May 2023

EBP website

The international journal of science/11 May 2023

nature

HPRC Nature issue

Current Sequencing Technologies

Illumina

Millions to billions of short but highly accurate reads (>99.9\%)
Can be paired-end (sequence ends of fragments)

Advantages

Highly accurate (~99.9\%)
Relatively even coverage of the genome
Well-vetted technology
Most cost-effective, as low as $\$ 10$ per billion bases
(Generally) robust to sample issues

Disadvantages

Requires high depth for many applications ($50 \mathrm{x}+$ for assembly) Sequence length (100-150nt reads) problematic for repeats
Maximum fragment length (<800bp) is an issue

Cost per Human Genome

'Long reads'

Pacific Biosciences (PacBio)

Oxford
 Nanopore (ONT)

Alberto Magi et al, Briefings in Bioinformatics, Volume 19, Issue 6, November 2018

Oxford Nanopore

Oxford Nanopore

E. coli: genome assembly in 8 reads

Read	Length	Ref start	Ref end	Time (m)
1	876991	4398844	634183	32.48
2	696402	470003	1166405	25.79
3	799047	1137438	1936485	29.59
4	642071	1759431	2401502	23.78
5	826662	2106227	2932889	30.61
6	883962	2699626	3583588	32.73
7	825191	3285196	4110387	30.56
8	463341	3995967	4459308	17.16

1x coverage!

Oxford Nanopore

2021 - New flow cells (R10), kits

Methodology | Open Access | Published: 14 December 2022
Species-specific basecallers improve actual accuracy of nanopore sequencing in plants
Scott Ferguson \boxminus, Todd McLay, Rose L. Andrew, Jeremy J. Bruhl, Benjamin Schwessinger, Justin Borevitz \& Ashley Jones \boxtimes

Plant Methods 18, Article number: 137 (2022) | Cite this article
2609 Accesses | $\mathbf{2}$ Citations | 8 Altmetric \mid Metrics

B

Rhoads and Au, Genomics, Proteomics \& Bioinformatics, 13(5), Oct 2015

Pacific Biosciences

PacBio
 Continuous Long Read Sequencing (aka PacBio CLR)

Optimized for length
25-50kb long reads
90\% accuracy
Yields of $\sim 125 G b+$ per SMRT cell
Need ~50-90x coverage
Needs error correction, polishing
1-2 SMRT cells per human sample

PacBio Circular Consensus Sequencing (aka PacBio HiFi)

Optimized for accuracy
10-15kb long reads
99\% accuracy
Yields of $\sim 25 G b$ per SMRT cell
Need ~25-50x coverage
No error correction/polishing required
~2-3 SMRT cells per human sample

'Long Reads'

Advantages

- Reads can be very long ($1 \mathrm{~kb}-100 \mathrm{~kb}$)
- Relatively even coverage of the genome
- PacBio HiFi, ONT using latest release - Highly accurate (99\%)
- PacBio HiFi, ONT - DNA modifications (RNA mods for ONT)
- ONT - real-time sequencing, portable, direct RNA

Disadvantages

- Expensive compared to Illumina short reads
- Need very high quality, high MW DNA samples
- Least expensive options are error-prone
- Depending on technology, can have systematic errors (homopolymer issues), but getting better

Genome assembly steps

Collect DNA - samples are fragmented and sequenced.
(b) Sequence - many millions/billions of (possibly short) unordered DNA fragments from random positions in the genome.
(c) Compare - how do sequence fragments connect with one another
(d) Graph - capture relationships in a large assembly graph
(e) Simplify- The assembly graph is refined to correct errors and simplify
f) Scaffold - Use long reads, mates, markers, other long-range information to order/orient assembly (contigs) into large scaffolds
(g) Clean - resolve artifacts, remove contaminants, check gene completeness, contiguity, etc
h) Annotate - Add features to the genome. Don't forget RNA if you want to predict genes, preferably from a broad range of tissues/conditions

Schatz et al. Genome Biology 2012 13:243

Let's Do a Genome Assembly!

- Sequence a sample, and have the computer do the rest?
- How do you find overlaps between sequences (when you have millions to billions of them)?
- You compare them all (overlapping pieces)
- You find shorter perfectly overlapping segments
- Faster but has a lot of assumptions!!!
- How do you store all this information?
- How long does it take?

The way it used to be... aka 'the short read days'

- You spent your entire grant on getting sequence data and buy a monster multicore high-memory server
- You assemble your genome with your favorite genome assembly tool
- You waited a week to a month and you now have results!
- Wait, why do I have a million scaffolds? And why is my server on fire?!?

Biology

Steps

- Basic DNA sequence cleanup and evaluation (pre-assembly)
- Contig building
- Scaffolding
- Post-assembly processing and analyses

Basic cleanup and evaluation

- Is the DNA sequence high quality?
- Does it need to be trimmed?
- Evaluate libraries for read 'coverage'
- Any additional sequence preparation steps

DNA Quality (FASTQC)

Adapters

OOverrepresented sequences

Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT	8122	8.122	Illumina Paired End PCR Primer 2 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAG	5086	5.086	Illumina Paired End PCR Primer 2 (97\% over 36bp)
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC	1085	1.085	Illumina Single End PCR Primer 1 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGAAG	508	0.508	Illumina Paired End PCR Primer 2 (97\% over 36bp)
AATTATACGGCGACCACCGAGATCTACACTCTTTCCCTAC	242	0.242	Illumina Single End PCR Primer 1 (97\% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAAGATCGGAA	235	0.23500000000000001	Illumina Paired End Adapter 2 (96\% over 31bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCGAGATCGGAAGA	228	0.22799999999999998	Illumina Paired End Adapter 2 (96\% over 28bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACG	205	0.20500000000000002	Illumina Paired End PCR Primer 2 (97\% over 36bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGATCGGAA	183	0.183	Illumina Paired End Adapter 2 (1008 over 32bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGTCGGAAG	183	0.183	Illumina Paired End Adapter 2 (100% over 32bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAACT	164	0.164	Illumina Paired End PCR Primer 2 (97\% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGTCT	129	0.129	Illumina Paired End PCR Primer 2 (97\% over 40bp)
	123	0.123	No Hit
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACT	122	0.122	Illumina Paired End PCR Primer 2 (97\% over 36bp)
CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC	113	0.11299999999999999	Illumina Paired End PCR Primer 2 (96\% over 25bp)

Coverage

- Requires highly accurate reads
- Illumina
- PacBio HiFi
- Kmer read distribution

GenomeScope Profile
len:152,727,721bp uniq:68.7\% het:1.07\% kcov:22.1 err:0.337\% dup:0.463

Arabidopsis trio-binning assembly

Coverage

- Requires highly accurate reads
- Illumina
- PacBio HiFi
- Kmer read distribution

Merqury
Rhie, Walenz, Koren, Phillipy, Genome Biology (2020)

Other pre-assembly steps

Depending on the assembler and technology you use, you may want to:

- Assess reads for contaminants
- Join paired-end reads into longer reads
- Error correction of reads (e.g. fix sequencing errors)

Starting the assembly

Contig building

Greedy assembly
Seed and extend
Overlap graph
de Bruijn graphs
String graphs
..etc etc

> ... all essentially doing similar things,
> but taking different 'shortcuts' based on needs

Contigs

Assembly recipe

- Find all overlaps between reads
- hmm, sounds like a lot of work...
- Build a graph
- a picture of read connections
- Simplify the graph
- sequencing errors will mess it up a lot
- Traverse the graph
- trace a sensible path to produce a consensus

Graph

Review: A structure where objects are related to one another somehow
Nodes/Vertices = objects (sequence)
Edges = relationship (overlap)

[^0]Compeau et al, Nature Biotech, 29(11), 2011; https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Simple?

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

Erm...

http://armbrustlab.ocean.washington.edu/seastar

In essence...

For each unconnected graph:

Find a path which visits each node once

This is referred to as a Hamiltonian path/cycle

Form consensus sequences from paths
use all the overlap alignments each of these collapsed paths is a contig

Overlap Layout Consensus Assembly

Used for longer read data
Sanger
Newer variants for PacBio and Oxford Nanopore

By Estevezj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23264166

For each unconnected graph, at least one per replicon in original sample

Find a path which visits each node once

Form consensus Sequences from paths

OLC assembly steps

Calculate overlays

- Can use BLAST-like methods, but finding common strings (k-mers) more efficient

Assemble layout graph, try to simplify graph and remove nodes (reads) - find Hamiltonian path

Generate consensus from the alignments between reads (overlays)

Some OLC-based assemblers

Canu - is a fork of the Celera Assembler designed for high-noise single-molecule sequencing (PacBio, Oxford Nanopore)

HiCanu - PacBio HiFi assembler
Newbler, a.k.a. GS de novo Assembler - designed for 454 sequences, but works with Sanger reads

Hifiasm - a hybrid diploid assembler

De Bruijn graph assemblers

Developed to deal with highthroughput highly accurate short-read data

Uses shotgun data (generally paired-end fragments of 300-500nt)

Figure 6B: Paired-End Sequencing

Adapters containing attachment sequences (A1 \& A2) and sequencing primer sites (SP1 \& SP2) are ligated onto DNA fragments (e.g., genomic DNA). The resulting library of single molecules is attached to a flow cell. Each end of every template is read sequentially.

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was		thevbesth	stimfetsiniesyat thas thorstor	of times, it was the	488	,	a	Soblicstsness,	
It was tlimerrassthe			of times, it was the ie worst of times, it was the the agendidxcisdoimwits th				thevagethefagtisdfifieolishne\$s		

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

$\|$It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times, was the worst of times, wisdom, it was the age worst of times, it was

Greedy Reconstruction

```
It was the best of
    was the best of times,
        \begin{array} { | c | } { \hline \text { the best of times, it } } \\ { \hline \text { best of times, it was} } \\ { \hline } \end{array}
                of times, it was the
                times, it was the worst
                times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_{k}=(V, E)$
- $\mathrm{V}=$ All length- k subfragments ($\mathrm{k}<\mathrm{I}$)
- $\mathrm{E}=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment
It was the best of
Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

De Bruijn graphs - concept

- de Bruijn graph
- k-dimensional graph over four symbols $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- vertex: k-mer -- a string of k nucleotides
- edge: $(k+1)$-mer

Scaffolding

- Now, you have a huge pile of contigs but you want to make them larger. How?
- Add context!
- Link together contigs using other genomic information
- Infer contigs position on the genome relative to one another

HiC (Chromosome Conformation Capture)

Linking Contigs via DNA Seq

PacBio/ONT long-reads

10-100 kb+

Illumina sequencing

Contigs to scaffolds

Long reads

HiC

Chromosome Conformation Technology

Optical Mapping

Using high resolution single-molecule restriction mapping combined with fluorescent dyes and fluorescence microscopy to produce a genomic map

4. Each DNA molecule is stained with a fluorescent dye. An optical map of single molecules are derived by measuring the fluorescent intensity.

】

5. Overlapping of the multiple single-molecule maps gives us the consensus genomic optical map

Starting a new assembly project

Planning a genome sequencing project?

BUDGET!!!

- Technological costs
- Computational costs
- Person costs (time)!

Biology!

- Size: how large and/or complex is my genome?
- Ploidy: number of sets of chromosomes of the genome?
- Multinucleated: can cells have more than one nucleus?
- Repetitive: How much of the genome is repetitive? Repeat size distribution?
- Heterozygosity: Is my genome highly heterozygous? Inbred (homozygous)?
- Public data: Is a good quality genome of a related species available?

How do you start (2023)?

- Short reads (billions of reads)

Sequencing costs - \$\$

- Compute costs - \$\$\$\$\$\$\$
- Results - fragmented, requires significant 'cleanup'
- Long error-prone reads
- Sequencing costs - \$\$\$\$
- Compute costs - \$\$\$\$
- Results -better quality, but requires polishing, can't easily phase
- Long accurate reads
- Sequencing costs - \$\$\$\$\$\$
- Compute costs - \$\$\$
- Results - best (partly) phased diploid assembly***
*** - doesn't help much if you have higher ploidy! (though this will likely change)

GenomeScope Profile

len:559,804,355bp uniq:62\% het:1.95\% kcov:42.7 err:0.731\% dup: 1.96

How large is my genome?

The size and complexity of the genome can be estimated from the ploidy of the organism and the DNA content per cell

This will affect:
How many reads will be required to attain sufficient coverage (typically 10x to 100x, depending on read length)
What sequencing technology to use (short vs. long reads)
What computational resources will be needed (generally amount of memory needed and length of time resources will be used)

Genome size/complexity

By Abizar at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19537795

Heterozygosity

Heterozygous - Locus-specific; diploid organism has two different alleles at the same locus.

Heterozygosity is a metric used to denote the probability an individual will be heterozygous at a given allele.

Higher heterozygosity $==$ more diverse $==$ harder to assemble

Unfortunately, assemblies are represented (for now) as haploid. So this is a major problem!

Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/

Heterozygosity

Short reads - initial assembly has mix of homozygous and heterozygous regions

Long reads - can get partial to fully phased diploid assemblies

May need multiple technologies to do this
long reads

2 haplotypes

Phased diploid assembly

Ploidy

Number of sets of chromosomes in a cell (N)

Bacteria - 1 N
Vertebrates - 2 N (human, mouse, rat)
Amphibians -2 N to 12 N
Plants -2 N to ??? (wheat is 6 N)

Root knot nematode (GenomeScope)

Repetitive sequences

Most common source of assembly errors

If sequencing technology produces reads > repeat size, impact is much smaller

Most common solution: generate reads or mate pairs with spacing > largest known repeat

GenomeScope Profile

Root knot nematode (GenomeScope)

What is a repeat?

A segment of DNA
which occurs more than once in the genome sequence

- Very common
- Transposons (self replicating genes)
- Satellites (repetitive adjacent patterns)
- Gene duplications (paralogs)

Assembling repeats

Repeat copy $1 \quad$ Repeat copy 2

4 contigs

Repeat mis-assembly

Long reads

$$
O \cdot 2
$$

Genome(s) from related species

Preferably of good quality, with large reliable scaffolds
Help verifying the completeness of the assembly
Can themselves be improved in some cases
Help guiding the assembly of the target species

- But to be used with caution - can cause errors when genome architecture is different!
- Large-scale genomic rearrangement in particular is a problem

Typical sequencing strategies

Small genomes (bacteria, fungal)

- If you can can get HMW DNA!
- PacBio Hifi
- Oxford Nanopore sequences at 40-50x coverage, 'polish' with hybrid correction (using Illumina data) and assembly using Unicycler, Canu, Flye
- This may be changing with newer flow cells (R10.4.1 + 'kit14', as of May 2022)
- $2 \times 300 b p$ overlapping paired-end reads from Illumina MiSeq works okay but will get fragments

Larger genomes

- If you can afford it and can get HMW DNA
- PacBio Hifi
- HiC for scaffolding
- ONT (ultralong prep)

T2T strategy

Human assemblies
HMW DNA preps
50x PacBio HiFi reads or higher
15-30x Oxford ultralong reads (>100kb)

This is also in flux!
\$\$\$\$\$\$\$\$\$\$

HOME > SCIENCE > VOL. 376, NO. 6588 > THE COMPLETE SEQUENCE OF A HUMAN GENOME
(0) SPECIAL ISSUE RESEARCH ARTICLE HUMAN GENOMICS

The complete sequence of a human genome

```
SERGEY NURK (D), SERGEY KOREN (D), ARANG RHIE (D) MIKKO RAUTIAINEN (D) ANDREY V. BZIKADZE (D) ALLA MIKHEENKO, MITCHELLR. VOLLGER (D).NICOLAS ALTE-
MOSE (D).LEV URALSKY (D) L.l ADAMM. PHILLIPPY (D) +91 authors Authors Info & Affiliations
```

SCIENCE - 31 Mar 2022 - Vol 376,1ssue 6588 - pp. $44-53$ - DOI: 10.1126/science.abj6987

Science,
March 2022

Assembly strategies and algorithms

For long reads (>500 nt), Overlap/Layout/Consensus (OLC) algorithms work best.

- Examples: hifiasm (PacBio Hifi only), Canu, Redbean, Flye, Shasta
- Hifiasm is generally recommended for PacBio Hifi data

For short reads, De Bruijn graph-based assemblers are most widely used

- Examples: MEGAHIT, SPAdes

Key points:

- There is no simple solution, best to try different assemblers and strategies
- Use simple metrics to gauge quality of assembly
- The field is rapidly evolving, like the sequencing technology

NEXT YEAR THIS PRESENTATION WILL CHANGE AGAIN!

Assessing your assembly

How good is my assembly?

How much total sequence is in the assembly relative to estimated genome size?
How many pieces, and what is their size distribution?
Are the contigs assembled correctly?
Are the scaffolds connected in the right order / orientation?
How were the repeats handled?
Are all the genes I expected in the assembly?

N 50 : the most common measure of assembly quality

Comparative analysis

Compare against

- A close reference genome
- Results from another assembler
- Self-comparison
- Versions of the same assembly

Whole genome alignment

- MUMmer
- Lastz

Generates an alignment and a dot plot

Dot Plot

- How can we visualize whole genome alignments?
- With an alignment dot plot
- N x M matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell (i,j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf
From M. Schatz and A. Phillipy : Alignment and Assembly Lecture

BUSCO: conserved gene sets

BUSCO Assessment Results

Complete (C) and single-copy (S)Complete (C) and duplicated (D) Fragmented (F) Missing (M)BUSCO: From Evgeny Zdobnov's group, University of Geneva

QUAST

QUality ASsessment Tool
Small (bacterial, fungal) and large (eukaryotic) genomes

Metagenomes

Icarus for contig alignment visualization

Can compare multiple assemblies against one another
Compare against a known (or close) reference

Optional: Predict genes or include annotations (checks for odd issues like frameshifts)
Generates a summary HTML report

Blob plots

Analyses checking for contaminants, endosymbionts, etc.

Interactive version: BlobToolKit

Genome graphs

Assembly, variant, and pangenome graphs

With the release of the latest human genome reference, there is more pressure to represent more data with a genome.

Current representations are mainly haploid (one copy)
Assembly graphs can retain haplotype information or raw assembly connectivity
Variant graphs can be generated from a reference genome and a variant file from other samples
Pangenome graphs capture information across populations of samples from the same species

Pangenome graphs

New tools are available and actively being developed to generate and compare multiple high quality genome assemblies

Structural variants, including complex regions

Population genomics

Pangenome graph of the C4 locus with 90 haplotypes (44 diploid de novo assemblies plus the GRCh38 and CHM13 reference genomes).

Andrea Guarracino, MemPanG23 workshop/conference, May 2023

Pangenome graphs

New tools are available and actively being developed to generate and compare multiple high quality genome assemblies

Structural variants, including complex regions

Population genomics

HPRC Main Paper
Acrocentric chromosomes

Acknowledgements

Materials from this slide deck include figures and slides from many publications, Web pages and presentations by:

- Carver Biotechnology Center (HPCBio, DNA Sequencing Core)
- M. Schatz, A. Phillipy, T. Seemann, S. Salzberg, K. Bradnam, D. Zerbino, M. Pop, G. Sutton, Nick Loman, Carson Holt, Ryan Wick.
- I highly recommend Ben Langmead's teaching materials; he has a ton fabulous (and much more in-depth) notes on his lab page: http://www.langmead-lab.org/teaching-materials/
- Thank you!

[^0]: ÀtgGcgT
 1111
 GGCGTGC
 CGTGCAA
 11111
 TGCAATG
 CA'III
 11111
 I I I I I
 Genome: ATGGCGTGCAATGGCGT

