
Genome Assembly
CHRIS FIELDS,  HPCBIO

MAYO-ILLINOIS COMPUTATIONAL GENOMICS WORKSHOP 
JUNE 20,  2023



Overview

2

◦ Sequencing technologies (2023)

◦ Steps in a standard genome assembly

◦ Assembly quality assessment

◦ Planning an assembly project

◦ Genome graphs

◦ Genome annotation



Ideal World!
I have this joke slide (thx to 
Torsten Seemann) on all my 
past talks…
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AGTCTAGGATTCGCTACAGAT
TCAGGCTCTGAAGCTAGATCG
CTATGCTATGATCTAGATCTC
GAGATTCGTATAAGTCTAGGA
TTCGCTATAGATTCAGGCTCT
GATATAT

Human DNA

Sample

iSequencer™

46 complete, 
haplotype-
resolved, 

chromosome 
sequences

T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Ideal World!
We may not be too far from this 
now.
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Time, May 2022

Science, 
March 2022



Ideal World!
Earth Biogenome Project

Pangenomics
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Announced 2018, 
started early 2022

Nature, 
May 2023

HPRC Nature issue

EBP website



Current Sequencing Technologies

6



Illumina
Millions to billions of short but highly accurate reads (>99.9%)

Can be paired-end (sequence ends of fragments)

Advantages
◦ Highly accurate (~99.9%)
◦ Relatively even coverage of the genome
◦ Well-vetted technology
◦ Most cost-effective, as low as $10 per billion bases
◦ (Generally) robust to sample issues

Disadvantages
◦ Requires high depth for many applications (50x + for assembly)
◦ Sequence length (100-150nt reads) problematic for repeats
◦ Maximum fragment length (<800bp) is an issue
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data



‘Long reads’

Pacific 
Biosciences 

(PacBio)

Oxford 
Nanopore 

(ONT)
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MinION

Pacific Biosciences Oxford Nanopore

https://www.pacb.com/
https://nanoporetech.com/products/minion


Oxford Nanopore
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Alberto Magi et al, Briefings in Bioinformatics, Volume 19, Issue 6, November 2018

https://doi.org/10.1093/bib/bbx062


Total bases: 
5,014,576,373 (5Gb) 
Number of reads: 
150,604
N50: 63,747
Mean: 33,296.44
Accuracy: 80-85%

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/N. Loman, ASM Microbe 2017
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Nanopore Readlengths 

Max: 146,992bp  
8x over 20kb 

41x over 10kbp 

Spike-in 

Mean: 5473bp  

noise 

 Oxford Nanopore Sequencing at CSHL 
30 runs, 267k reads, 122x total coverage 

Between 11 and 73k reads per run!  
Mean flow cell: 50 Mbp in 2 days 
Max flow cell: 446Mbp in 2 days 

 

~2016

Oxford Nanopore



E. coli: genome assembly in 8 reads

Read Length Ref start Ref end Time (m)

1 876991 4398844 634183 32.48
2 696402 470003 1166405 25.79
3 799047 1137438 1936485 29.59
4 642071 1759431 2401502 23.78
5 826662 2106227 2932889 30.61
6 883962 2699626 3583588 32.73
7 825191 3285196 4110387 30.56
8 463341 3995967 4459308 17.16

miniasm

N50 4Mb
Time: 1.5s (1 CPU)

1x coverage!
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/N. Loman, ASM Microbe 2017

2017Oxford Nanopore



2021 – New flow cells (R10), kits

Oxford Nanopore

Oxford Nanopore

https://nanoporetech.com/about-us/news/r103-newest-nanopore-high-accuracy-nanopore-sequencing-now-available-store


Pacific Biosciences
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Rhoads and Au, Genomics, Proteomics & Bioinformatics, 13(5), Oct 2015 

https://www.sciencedirect.com/science/article/pii/S1672022915001345?via%3Dihub


PacBio 
Continuous Long 
Read Sequencing
(aka PacBio CLR)
Optimized for length

25-50kb long reads

90% accuracy

Yields of ~125Gb+ per SMRT cell

Need ~50-90x coverage

Needs error correction, polishing

1-2 SMRT cells per human sample

14
Pacific Biosciences

https://www.pacb.com/


PacBio Circular 
Consensus 
Sequencing 
(aka PacBio HiFi)
Optimized for accuracy

10-15kb long reads

99% accuracy

Yields of ~25Gb per SMRT cell

Need ~25-50x coverage

No error correction/polishing required

~2-3 SMRT cells per human sample

15
Pacific Biosciences

https://www.pacb.com/


‘Long Reads’
Advantages

◦ Reads can be very long (1kb – 100kb)
◦ Relatively even coverage of the genome
◦ PacBio HiFi, ONT using latest release - Highly accurate (99%)
◦ PacBio HiFi, ONT - DNA modifications (RNA mods for ONT)
◦ ONT - real-time sequencing, portable, direct RNA

Disadvantages
◦ Expensive compared to Illumina short reads
◦ Need very high quality, high MW DNA samples
◦ Least expensive options are error-prone
◦ Depending on technology, can have systematic errors (homopolymer issues), but getting better

17



Genome assembly steps
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(a) Collect DNA – samples are fragmented and sequenced. 

(b)  Sequence - many millions/billions of (possibly short) unordered DNA 
fragments from random positions in the genome. 

(c)  Compare – how do sequence fragments connect with one another

(d)  Graph – capture relationships in a large assembly graph

(e)  Simplify- The assembly graph is refined to correct errors and simplify

(f)  Scaffold – Use long reads, mates, markers, other long-range information to 
order/orient assembly (contigs) into large scaffolds

(g)  Clean – resolve artifacts, remove contaminants, check gene completeness, 
contiguity, etc

(h)  Annotate – Add features to the genome. Don’t forget RNA if you want to 
predict genes, preferably from a broad range of tissues/conditions

19
Schatz et al. Genome Biology 2012 13:243



Let’s Do a Genome Assembly!
◦ Sequence a sample, and have the computer do the rest?

◦ How do you find overlaps between sequences (when you have millions to billions of 
them)?
◦ You compare them all (overlapping pieces)
◦ You find shorter perfectly overlapping segments

◦ Faster but has a lot of assumptions!!!

◦ How do you store all this information? 

◦ How long does it take?

20



The way it used to be…
aka ‘the short read days’
◦ You spent your entire grant on getting sequence data and buy a monster multi-

core high-memory server 

◦ You assemble your genome with your favorite genome assembly tool

◦ You waited a week to a month and you now have results!

◦ Wait, why do I have a million scaffolds? And why is my server on fire?!?

Biology

21
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Steps

◦ Basic DNA sequence cleanup and evaluation (pre-assembly)

◦ Contig building

◦ Scaffolding 

◦ Post-assembly processing and analyses

23



Basic cleanup and evaluation

◦ Is the DNA sequence high quality?  

◦ Does it need to be trimmed?

◦ Evaluate libraries for read ‘coverage’

◦ Any additional sequence preparation steps

24



DNA Quality (FASTQC)
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Good!
Bad, 
need to
Trim heavily

Illumina Data

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Adapters

26https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Coverage
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Genomescope

• Requires highly accurate reads
• Illumina
• PacBio HiFi

• Kmer read distribution

Rannallo T, Jaron K, Schatz M, Nature Comm, 1432(2020)

Arabidopsis F1 cross

http://qb.cshl.edu/genomescope/genomescope2.0/analysis.php?code=example6
https://www.nature.com/articles/s41467-020-14998-3


Coverage
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Merqury

• Requires highly accurate reads
• Illumina
• PacBio HiFi

• Kmer read distribution

Rhie, Walenz, Koren, Phillipy, Genome Biology (2020)

Arabidopsis trio-binning assembly

https://github.com/marbl/merqury/wiki/2.-Overall-k-mer-evaluation
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02134-9


Other pre-assembly steps
Depending on the assembler and technology you use, you may want to:

◦ Assess reads for contaminants

◦ Join paired-end reads into longer reads

◦ Error correction of reads (e.g. fix sequencing errors)

29



Starting the assembly

30



Contig building
Greedy assembly

Seed and extend

Overlap graph

de Bruijn graphs

String graphs

..etc etc

… all essentially doing similar things, 
but taking different ‘shortcuts’ based on

needs 

31T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Contigs
Contiguous, unambiguous 
stretches of assembled DNA 
sequence

Contigs ends correspond to
◦ Real ends (for linear DNA 

molecules)
◦ Dead ends (missing 

sequence)
◦ Decision points (forks in the 

road)

32T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Graph
Review: A structure where objects are related to one another somehow

Nodes/Vertices = objects (sequence)

Edges = relationship (overlap)

34

NATURE BIOTECHNOLOGY  VOLUME 29   NUMBER 11   NOVEMBER 2011 989

states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Compeau et al, Nature Biotech, 29(11), 2011; https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

Simple?
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http://armbrustlab.ocean.washington.edu/seastar

Erm…



In essence…
For each unconnected graph:

◦ Find a path which visits each node 
once
◦ This is referred to as a 

Hamiltonian path/cycle

◦ Form consensus sequences from 
paths
◦ use all the overlap alignments 
◦ each of these collapsed paths is 

a contig

37HPCBio data



Overlap Layout 
Consensus
Assembly
Used for longer read data

Sanger 

Newer variants for PacBio and Oxford 
Nanopore

38

By Estevezj - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=23264166
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For each unconnected 
graph, at least one per 
replicon in original 
sample

Find a path which 
visits each node once

Form consensus 
Sequences from 
paths

Contig

M. Schatz, Feb 2015 Course, JHU



OLC assembly steps
Calculate overlays
◦ Can use BLAST-like methods, but finding common strings (k-mers) more 

efficient

Assemble layout graph, try to simplify graph and remove nodes (reads) – find 
Hamiltonian path

Generate consensus from the alignments between reads (overlays)



Some OLC-based assemblers
Canu – is a fork of the Celera Assembler designed for high-noise single-molecule 
sequencing (PacBio, Oxford Nanopore)

HiCanu – PacBio HiFi assembler

Newbler, a.k.a. GS de novo Assembler - designed for 454 sequences, but works 
with Sanger reads

Hifiasm – a hybrid diploid assembler



De Bruijn 
graph 
assemblers

Developed to deal with high-
throughput highly accurate 
short-read data

Uses shotgun data (generally 
paired-end fragments of 
300-500nt) 

42Illumina

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf


Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

M. Schatz, Feb 2015 Course, JHU 43



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 

44M. Schatz, Feb 2015 Course, JHU



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 

M. Schatz, Feb 2015 Course, JHU 45



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 

M. Schatz, Feb 2015 Course, JHU 46



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 

47M. Schatz, Feb 2015 Course, JHU



The full tale 
… it was the best of times it was the worst of times … 

… it was the age of wisdom it was the age of foolishness … 
… it was the epoch of belief it was the epoch of incredulity … 
… it was the season of light it was the season of darkness … 
… it was the spring of hope it was the winder of despair … 

it was the winter of despair 

worst 

best 

of times 

epoch of 
belief 

incredulity 

spring of hope 

foolishness 

wisdom 

light 

darkness 

age of 

season of 

48M. Schatz, Feb 2015 Course, JHU



De Bruijn graphs - concept

M. Schatz, Feb 2015 Course, JHU



Scaffolding
◦ Now, you have a huge pile of contigs but you want to make them larger.   How?

◦ Add context!

◦ Link together contigs using other genomic information

◦ Infer contigs position on the genome relative to one another

50



PacBio/ONT long-reads
10-100 kb+

Linking Contigs 
via DNA Seq

Illumina sequencing

Paired-end reads

Mate pair reads
>5kb fragment

<500bp fragment

Linked reads
>50kb fragments

HiC (Chromosome Conformation Capture) Wikipedia

https://en.wikipedia.org/wiki/Chromosome_conformation_capture


Contigs to scaffolds

52

Contigs

Paired-end read

Scaffold Gap Gap

Mate-pair read

T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Long reads

53T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


HiC
Chromosome Conformation 
Technology

54Dovetail Genomics

Wikipedia

https://dovetailgenomics.com/omni-c/
https://en.wikipedia.org/wiki/Chromosome_conformation_capture


Optical 
Mapping
Using high resolution single-molecule 
restriction mapping combined with 
fluorescent dyes and fluorescence 
microscopy to produce a genomic map

55



Starting a new assembly project

56



Planning a genome sequencing project?
BUDGET!!!
◦ Technological costs 
◦ Computational costs
◦ Person costs (time)!

Biology!
◦ Size: how large and/or complex is my genome?
◦ Ploidy: number of sets of chromosomes of the genome?
◦ Multinucleated: can cells have more than one nucleus?
◦ Repetitive: How much of the genome is repetitive? Repeat size distribution?
◦ Heterozygosity: Is my genome highly heterozygous? Inbred (homozygous)?
◦ Public data: Is a good quality genome of a related species available?

57



How do you start (2023)?

• Short reads (billions of 
reads) 
• Sequencing costs - $$ 
• Compute costs - $$$$$$$$
• Results – fragmented, 

requires significant ‘cleanup’

• Long error-prone reads 
• Sequencing costs - $$$$ 
• Compute costs - $$$$$ 
• Results –better quality, but 

requires polishing, can’t 
easily phase

• Long accurate reads 
• Sequencing costs - $$$$$$
• Compute costs - $$$
• Results – best (partly) 

phased diploid assembly***

58

*** - doesn’t help much if you have higher 
ploidy! (though this will likely change)



How large is my 
genome?
The size and complexity of the genome 
can be estimated from the ploidy of the 
organism and the DNA content per cell

This will affect:
◦ How many reads will be required to 

attain sufficient coverage (typically 
10x to 100x, depending on read 
length)

◦ What sequencing technology to use 
(short vs. long reads)

◦ What computational resources will 
be needed (generally amount of 
memory needed and length of time 
resources will be used)

59

Oyster (GenomeScope)

http://qb.cshl.edu/genomescope/genomescope2.0/


Genome size/complexity

60

By Abizar at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19537795



Heterozygosity
Heterozygous – Locus-specific; diploid 
organism has two different alleles at 
the same locus. 

Heterozygosity is a metric used to 
denote the probability an individual 
will be heterozygous at a given allele.  

Higher heterozygosity == more 
diverse == harder to assemble

Unfortunately, assemblies are 
represented (for now) as haploid.  So 
this is a major problem!

62

Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/



Heterozygosity
• Short reads - initial assembly has 

mix of homozygous and 
heterozygous regions

• Long reads – can get partial to fully 
phased diploid assemblies
• May need multiple technologies to 

do this

63T. Seemann

Unphased haploid assembly
Haplotypes are separate contigs (haplotigs)

Phased diploid assembly

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Ploidy
Number of sets of chromosomes in a 
cell (N)

◦ Bacteria – 1N
◦ Vertebrates – 2N (human, mouse, 

rat)
◦ Amphibians – 2N to 12N
◦ Plants – 2N to ???  (wheat is 6N)

64
Root knot nematode (GenomeScope)

http://qb.cshl.edu/genomescope/genomescope2.0/


Repetitive 
sequences
Most common source of assembly 
errors

If sequencing technology produces 
reads > repeat size, impact is much 
smaller

Most common solution: generate 
reads or mate pairs with spacing > 
largest known repeat

65
Root knot nematode (GenomeScope)

http://qb.cshl.edu/genomescope/genomescope2.0/


66T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Assembling repeats

67T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


68T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf
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Long reads

70T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf
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Genome(s) from related species
Preferably of good quality, with large reliable scaffolds

Help verifying the completeness of the assembly

Can themselves be improved in some cases

Help guiding the assembly of the target species
◦ But to be used with caution – can cause errors when genome architecture is different!  
◦ Large-scale genomic rearrangement in particular is a problem

73



Typical sequencing strategies
Small genomes (bacteria, fungal)

◦ If you can can get HMW DNA!
◦ PacBio HiFi
◦ Oxford Nanopore sequences at 40-50x coverage, 'polish’ with hybrid correction (using Illumina data) and assembly 

using Unicycler, Canu, Flye
◦ This may be changing with newer flow cells (R10.4.1 + ’kit14’, as of May 2022)

◦ 2 x 300bp overlapping paired-end reads from Illumina MiSeq works okay but will get fragments

Larger genomes
◦ If you can afford it and can get HMW DNA

◦ PacBio HiFi
◦ HiC for scaffolding
◦ ONT (ultralong prep)
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T2T strategy

But we are not too far from this!

• Human assemblies

• HMW DNA preps

• 50x PacBio HiFi reads or higher

• 15-30x Oxford ultralong reads 
(>100kb)

• This is also in flux!

• $$$$$$$$$$

76
Time, May 2022

Science, 
March 2022



Assembly strategies and algorithms
For long reads (>500 nt), Overlap/Layout/Consensus (OLC) algorithms work best.  

◦ Examples: hifiasm (PacBio HiFi only), Canu, Redbean, Flye, Shasta
◦ Hifiasm is generally recommended for PacBio HiFi data

For short reads, De Bruijn graph-based assemblers are most widely used
◦ Examples: MEGAHIT, SPAdes

Key points: 
◦ There is no simple solution, best to try different assemblers and strategies
◦ Use simple metrics to gauge quality of assembly
◦ The field is rapidly evolving, like the sequencing technology

NEXT YEAR THIS PRESENTATION WILL CHANGE AGAIN!
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Assessing your assembly
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How good is my assembly?
How much total sequence is in the assembly relative to estimated genome size?

How many pieces, and what is their size distribution?

Are the contigs assembled correctly?

Are the scaffolds connected in the right order / orientation?

How were the repeats handled?

Are all the genes I expected in the assembly?
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N50: the most common measure of 
assembly quality

80

N50 = length of the shortest 
contig in a set making up 
50% of the total assembly 
length (Larger is better)

NG50 = length of the 
shortest contig in a set 
making up 50% of the 
estimated genome size

NG50 is generally better



Comparative analysis
Compare against
◦ A close reference genome
◦ Results from another assembler
◦ Self-comparison
◦ Versions of the same assembly

Whole genome alignment
◦ MUMmer
◦ Lastz

Generates an alignment and a dot plot
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Dot Plot
• How can we visualize whole genome alignments?
• With an alignment dot plot

– N x M matrix
• Let i = position in genome A
• Let j = position in genome B
• Fill cell (i,j) if Ai shows similarity to Bj

T

G

C

A

A C C T

– A perfect alignment between A and B would completely fill  
the positive diagonal

From M. Schatz and A. Phillipy : Alignment and Assembly Lecture 
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B

A

B

Translocation Inversion Insertion

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

From M. Schatz and A. Phillipy : Alignment and Assembly Lecture 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf
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BUSCO: conserved gene sets

86

BUSCO: From Evgeny Zdobnov’s group,
University of Geneva

Coverage is indicative of quality
and completeness of assembly

HPCBio data



QUAST

QUality ASsessment Tool
◦ Small (bacterial, fungal) and large 

(eukaryotic) genomes
◦ Metagenomes 
◦ Icarus for contig alignment 

visualization

Can compare multiple assemblies 
against one another
Compare against a known (or close) 
reference
Optional: Predict genes or include 
annotations (checks for odd issues 
like frameshifts)
Generates a summary HTML report
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Blob plots

Analyses checking for 
contaminants, endosymbionts, etc.
Interactive version: BlobToolKit

88

https://blobtoolkit.genomehubs.org/


Genome graphs
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Assembly, variant, and pangenome 
graphs
With the release of the latest human genome reference, there is more pressure to represent more data 
with a genome.

Current representations are mainly haploid (one copy)

Assembly graphs can retain haplotype information or raw assembly connectivity

Variant graphs can be generated from a reference genome and a variant file from other samples

Pangenome graphs capture information across populations of samples from the same species

90Novak et al, bioRxiv: https://doi.org/10.1101/101378 10x Genomics



Pangenome 
graphs
New tools are available and actively 
being developed to generate and 
compare multiple high quality genome 
assemblies

Structural variants, including complex 
regions

Population genomics

91

Pangenome graph of the C4 
locus with 90 haplotypes (44 
diploid de novo assemblies 
plus the GRCh38 and 
CHM13 reference genomes).

Andrea Guarracino, MemPanG23 workshop/conference, May 2023

HPRC Main Paper Acrocentric chromosomes

https://www.nature.com/articles/s41586-023-05896-x
https://www.nature.com/articles/s41586-023-05976-y


Pangenome 
graphs
New tools are available and actively 
being developed to generate and 
compare multiple high quality genome 
assemblies

Structural variants, including complex 
regions

Population genomics
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HPRC Main Paper Acrocentric chromosomes

https://www.nature.com/articles/s41586-023-05896-x
https://www.nature.com/articles/s41586-023-05976-y
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◦ Thank you!
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