REGULATORY GENOMICS



The importance of gene regulation



DNA, RNA, Proteins

Gene: a piece of DNA, has the “code” to make a protein

l I

DNA %%g DNA: a long sequence of nucleotides (a,c,g,t)

GENE EXPRESSION

“Transcription”

MRNA MRNA: a physical “copy” of gene

‘ CAN BE REGULATED

M
Protein % % protein: molecule with important

functions in cell



Gene regulation

* Gene regulation is the process of turning
genes on and off.

* Gene regulation ensures that the
appropriate genes are expressed in the right
cells at the proper times.

Source:

National Human Genome

Research Institute




Gene Regulation:
fast and slow transcription
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Transcription can be regulated by Proteins
called Transcription Factors (TFs)
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BINDING
SITE

Humans have ~2000 TFs




Different cells may have different TFs

TF2 represses gene. TF1 activates gene.
Low gene expression High gene expression
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Ne Varnous structures in 1

Late embryo— segmented

Day 1
Satehing three larval stages

\up-nwd by molts

Early embryo—
no segments
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Source:
http://www.bioinfo.org.cn/book
/biochemistry/chapt27/bio9.htm ’ rX 4




Different cells occasionally have different DNA

TF1 binds DNA and activates gene.

TF1 cannot binds DNA, does not activate gene.
High gene expression

Low gene expression
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Gene Regulation
is disrupted in
Cancer el el - /Cancercens
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Source: https://www.ck12.org/c/biology/gene-regulation-and-
cancer/lesson/Gene-Regulation-and-Cancer-Advanced-BIO-ADV/
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Most disease-related
mutations are outside of
genes

(impact gene regulation)

cases controls

Variant with
¢ higher frequency *

in cases than
N
L2 X

i i

Source: https://www.ebi.ac.uk/training/online/courses/gwas-
catalogue-exploring-snp-trait-associations/what-is-gwas-
catalog/what-are-genome-wide-association-studies-gwas/
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Gene Regulatory Networks:
TF-gene relationships

TF1 activates gene.
High gene expression
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Gene Regulatory Networks:
TF-gene relationships

“Gene Regulatory Network” (GRN)




le

1

Genetic regulatory network controlling the development of the body plan of the sea urchin embryo. Davidson et al., Sciencg, 295(5560):1669-1678
[
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GRNs can be reconstructed
computationally

TFs

N
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PLOS BIOLOGY

Quantitative Analysis of the Drosophila Segmentation

Regulatory Network Using Pattern Generating Potentials

Majid Kazemian @, Charles Blatti @, Adam Richards, Michael McCutchan, Noriko Wakabayashi-Ito, Ann S. Hammonds,

Susan E. Celniker, Sudhir Kumar, Scot A. Wolfe, Michael H. Brodsky [E), Saurabh Sinha [E]
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Goal: discover the gene regulatory network

Sub-goal: discover the genes regulated by a
transcription factor



Genome-wide assays

100 kpb———————————————{ hg18
85,400,004 85,450,004 85,500,004 85,550,004 85,600,004 85,650,004

RefSeq Genes
TBX18
ENCODE Transcription Factor ChlP-seq

One experiment per cell type AND PER TF
... tells us which TF might regulate a gene of interest

Expensive !



Goal: discover the gene regulatory network

Sub-goal: discover the genes regulated by a
transcription factor

... by DNA sequence analysis



The regulatory network is encoded in the DNA

It should be possible to predict
where transcription factors bind,
by reading the DNA sequence



Motifs and DNA sequence analysis



Finding TF targets
N

Step 1. Determine the binding specificity of a TF
Step 2. Find motif matches in DNA

Step 3. Designate nearby genes as TF targets



Step 1. Determine the binding specificity of a TF
N

ACCCGTT
ACCGGTT
ACAGGAT
ACCGGTT
ACATGAT ‘MOTIF”

4 @& O >

sl



Random DNA pool

A NV
l DNA pool for next

~ N\
J, ,( cycle selection
O

Target protein .
® o
Py z & PCR amplification
r~ R A
R AN

Flowthrough Elution of bound DNAs

http://altair.sci.hokudai.ac.jp/g6/Projects/Selex-e.html

TAACCCGTTC
GTACCGGTTG
ACACAGGATT
AACCGGTTA
GGACATGAT



How?
N

Protein binding microarrays

TAACCCGTTC
GTACCGGTTG

ACACAGGATT
AACCGGTTA
GGACATGAT

Detect bound TF with
fluorophore tagged
antibody

Scan microarray

http://bfg.oxfordjournals.org/content/9/5-6/362/F2.large.jpg



Motif Databases

JASPAR: http:/ /jaspar.genereg.net/

SEARCH | name 5] 1 anD (3] Species (2] | D2 e | § SEARCH | 2|

JASPAR matrix models: ANALYZE selected matrix models:
"‘M% 1o fname spocioe s — L i CLUSTER || ? | selected models using sTamp
Drosophila : Create RANDOM matrix models based on selected models
[ MA0010.1  br_Z1 melanogaster ZINC- BetaBetaAlpha-
T ' - coordinating  zinc finger T TTT fa) T Number of matrices: zo0  Format | raw :

1234 56 78 2 10111213 14

Click to view details RANDOMIZE ||

Drosophila

, Create models with PERMUTED columns from selected:
) MAGO11.1 br Z2 melanogaster Zinc- BetaBetaAlpha-

coordinating - zinc finger T—-—QI ITI Type: within each matrix ﬂFon‘nat Raw v
1z 3 4 8 EIE

&
Click to view details

-

PERMUTE
2 . . =
Drosophila e BetaBetaAlpha SCAN this (fasta-formatted) sequence with selected matrix
— . = 1
o MA0012.1 br_23 mglmgerter coordinating zinc finger - CT models
I i T e
1 2 3 4 5 B 7 & 9 10 11
Click to view details
2
Drosophila )
1 MA0013.1  br_Z4 melanogaster Znc- BetaBetaAlpha-
= coordinating  zinc finger iR
T =T 1T
1 2 3 4 5 &

7 o8 94 n 11
Click to view details

Drosophila

C] MA0015.1  CP2lI melanogaster Zn¢-  BetaBetaAlpha-
= coordinating  zinc finger

-




Motif Databases
I

TRANSFAC

Public version and License version

Cis-BP http://cisbp.ccbr.utoronto.ca/

Experimentally determined as well as computationally inferred motifs

Hocomoco: http:/ /hocomoco.autosome.ru/

Human and mouse motifs

UniProbe: hitp://thebrain.bwh.harvard.edu/uniprobe /

variety of organisms, mostly mouse and human

Fly Factor Survey: http://pgfe.umassmed.edu/TFDBS /

Drosophila specific



http://cisbp.ccbr.utoronto.ca/
http://thebrain.bwh.harvard.edu/uniprobe/
http://pgfe.umassmed.edu/TFDBS/

Step 2. Finding motif matches in DNA
B [ —

Basic idea:

Match: ACCGGTT
Apprx. Match: AC/CGTT

Motif:

To score a single site s for match to a motif W, we use




What is Pr (s | W)
N s
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Now, say s =ACCGGTT (consensus)
Pr(sIW)=1x1x0.6x06x1x0.6x1=0.216.

Then, say s = ACACGTT (two mismatches from consensus)
Pr(sIW)=1x1x04x0.2x1x0.6x1=0.048.



y
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Scoring motif matches with “LLR”

Pr (s | W) is the key idea.
However, some statistical massaging is done on this.

Given a motif W, background nucleotide
frequencies W, and a site s,

LLR score of s =

Pr(s|W)

log

Pr(s|17,)

Good scores > 0. Bad scores < 0.




https://meme-suite.org/meme/tools/fimo

The FIMO program
I S,
Grant, Bailey, Noble; Bioinformatics 2011.

this Manual or this Tutorial for more

. ind Individual Motif Occurences information.

W, and a sequence S.

Scan a set of sequences for motifs.

FIMO scans a set of sequences for individual T k of W b k d
matches to each of the motifs you provide rrl 'r
\ FIMO (slamp\e output for motifs and sequences). See q e S o I , q C g ro U n
Fi

Input the motifs
Enter motifs you wish to scan with.

Choose File No file chosen . .
Input the sequences chns every Slll.e S In S, Gnd

Enter sequences or select the database you want to scan for matches to motifs.

Enable tissue/cell-specific scanning pp— Co m p U"'e S ifs L L R SC O r e .

Ensembl Ab Initio Predicted Proteins

Algerian mouse

¥

Input job details
(Optional) Enter your email address.

Uses sound statistics to deduce
an appropriate (p-value)
threshold on the LLR score. All
sites above threshold are
predicted as binding sites.

(Optional) Enter a job description. [7]

P Advanced options




Finding TF targets
B

Step 1. Determine the binding specificity of a TF
Step 2. Find motif matches in DNA

Step 3. Designate nearby genes as TF targets



Step 3: Designating genes as targets

FdEak ol 5405k

=] Predicted genes

= plugin:Sequence Motifs
bed_FlyReg_FBgnaeadl6s high scur%nglnrtif

Predicted binding sitps for motif of TF called “bcd”

Designate this gene as a target of the TF

Sub-goal: discover the genes regulated by a
transcription factor ... by DNA sequence analysis




Computational motif discovery



Why?
N

We assumed that we have experimental
characterization of a transcription factor’s binding
specificity (motif)

What if we don’t?

There’s a couple of options ...



Option 1
N

Suppose a transcription factor (TF) regulates five
different genes

Each of the five genes should have binding sites for
TF in their promoter region

1 - [ 1 Gene 1
— | | | Gene 2

| = [ 1 Gene 3

- / / 1 [ 1 Gene 4
mT / / ] Gene 5

Binding sites for TF



Option 1
N

Now suppose we are given the promoter regions of
the five genes G1, G2, ... G5

Can we find the binding sites of TF, without knowing
about them a priori ¢

This is the computational motif finding problem

To find a motif that represents binding sites of an
unknown TF



Option 2
N s

Suppose we have ChlIP-Seq data on binding locations
of a transcription factor.

Collect sequences at the peaks

<

Computationally find the motif from these sequences

This is another version of the motif finding problem



Motif finding algorithms
B

Version 1: Given promoter regions of co-regulated
genes, find the motif

Version 2: Given bound sequences (ChlIP peaks) of a
transcription factor, find the motif

ldea: Find a motif with many (surprisingly many)
matches in the given sequences



Motif finding algorithms

N
Gibbs sampling (MCMC) : Lawrence et al. 1993

MEME (Expectation-Maximization) : Bailey & Elkan 94.
(Very popular, visited in today’s lab.)

CONSENSUS (Greedy search) : Stormo lab.

Priority (Gibbs sampling, but allows for additional prior
information to be incorporated): Hartemink lab.

Many many others ...



Examining one such algorithm



The “CONSENSUS” algorithm
B

m Final goal: Find a set of

“substrings” (sites), one in each input

N
m sequence

Q Set of substrings define a motif.

Goal: This motif should have
high “information content”.

(o
N

High information content means that the
sites are identical or similar to each other



The “CONSENSUS” algorithm
N

Start with a substring in one
Input sequence

Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.




The “CONSENSUS” algorithm
N

Start with a substring in one
Input sequence

Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.

The current motif.



The “CONSENSUS” algorithm
N

—— Start with a substring in one
Input sequence
—— Build the set of substrings
incrementally, adding one
substring at a time
) L L * The current set of substrings.

The current motif.

Consider every substring in the next sequence, try adding it to current
motif and scoring resulting motif's information content



The “CONSENSUS” algorithm
N

—— Start with a substring in one
Input sequence

—— Build the set of substrings
incrementally, adding one

O substring at a time

The current set of substrings.

The current motif.

Pick the best one ....



The “CONSENSUS” algorithm
B

Start with a substring in one

i input sequence
— Build the set of substrings
incrementally, adding one
substring at a time

The current set of substrings.

The current motif.

Pick the best one .... ... and repeat



Summary so far
N
To find genes regulated by a TF

Determine its motif experimentally

Scan genome for matches (e.g., with FIMO & the LLR score)

Motif can also be determined computationally
From promoters of co-expressed genes

From TF-bound sequences determined by ChIP assays
MEME, CONSENSUS, etc.



Further reading
N

Introduction to theory of motif finding

Moses & Sinha:
http: //www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioi
nf Tools _apps 2009.pdf

Das & Dai:
http: / /www.ncbi.nlm.nih.gov/pmc/articles/PMC20994
90 /pdf/1471-2105-8-S7-S21.pdf


http://www.moseslab.csb.utoronto.ca/Moses_Sinha_Bioinf_Tools_apps_2009.pdf

Motif finding tools

MEME: http://meme-suite.org/
RSAT: http://rsat.sb-roscoff.fr/



http://lgsun.grc.nia.nih.gov/CisFinder/

B s

Integrating sequence analysis and
expression data



1. Predict regulatory targets of a TF

Motif module: a set of genes predicted to be regulated
by a TF (motif)



2. ldentify dysregulated genes in phenotype of interest

52 |

Two “subtypes” of patients

Set of genes differentially
expressed between the two
subtypes of patients



http://dx.doi.org/10.1074/mcp.M700487-MCP200

3. Combine motif analysis and gene expression data
B

All genes (N)

Genes regulated by TF
)

Genes differentially
expressed between
subtypes

(n)

Is the intersection (size “k”) significantly large, given N, m, n?

Use Hypergeometric test to obtain ‘“p-value”



3. Combine motif analysis and gene expression data
B

All genes (N)

Genes regulated by TF
(m)

Genes differentially
expressed between
subtypes

(n)

Infer: TF may be determining cancer subtypes.
An “association” between motif and condition



Useful tools
N

GREAT: http://bejerano.stanford.edu/great/public/html/

Input a set of genomic segments (e.g., ChIP peaks)

Obtain what annotations enriched in nearby genes

only for human, mouse and zebrafish

DAVID: https://david.ncifcrf.gov/

Input a set of genes

Obtain what annotations enriched in those genes

Many different species


http://bejerano.stanford.edu/great/public/html/
https://david.ncifcrf.gov/

* Where do TFs bind?

* Which genomic segments actively
regulate gene expression?

56



* Decorations on the genome

« Experimental assays to profile the
decorated genome

* Insights from large scale epigenomics
studies

57



The regulatory genome

enhancer

RNA | S~—

transcription factors
chromatin modifiers
Mediator complex

gene body

Cohesin . RNAPII

|
' ey )= core promoter

Source: Genomic Enhancers in Brain Health and Disease. Nancy V.5|>3|.
Carullo and Jeremy J. Day. Genes 2019, 10(1), 43;




How to find enhancers?

» Like finding needle in a haystack

« Evolutionary conservation is sometimes used to identify enhancers

— but not all functional elements are conserved at the level that DNA sequence alignments
can detect. So how do we find regulatory elements?

« More important question is: which enhancers are active in a particular cell type?

59



Regulatory activity leaves its "mark”

on the genome: epigenomics




Eukaryotic genomes are complex 3D structures
comprised of modified and unmodified DNA, RNA and
many types of interacting proteins

hypersensitive (<7 2 D) 7K
persensitive | e 2
sites \

L
%

* Most DNA is wrapped around a “histone core”. Such wrapped-around DNA is
relatively “inaccessible” to other molecules such as TFs. But there are “accessible
regions” as well, can be detected as “Dnase | hypersensitive sites” (DHS)

* TFs bind to their preferred sites (especially in accessible regions), or not

* Histone proteins are ‘marked’ (like flags), or not

* CpG dinucleotides in DNA are methylated, or not o



Epigenomic clues into regulatory activity

* Look for accessible regions of DNA, that's where
active regulatory elements might lie

Condensed chromatin

. histones
Not accessible sDtlyaAn “and other
proteins

Expanded chromatin

accessible

 Also: specific histone modifications and DNA
methylation mark regulatory activity

* If you know a particular TF that is important for
regulation, look for its binding sites

62



All four histones in the tetramer have “tails” that can be

modified in various ways

acetylation

methylation

ubiquination

sumoylation

phosphorylation

\P

The most consequential modifications, with respect to
transcriptional activity, appear to involve methylation or
acetylation of Lysines (K) in histone H3

63



Experimental assays

64



How to find TF binding sites?

Chromatin ImmunoPrecipitation (ChlP)

Antibody to a DNA binding protein is used
to “fish out” DNA bound to the protein in
a living cell

— DNA and protein are crosslinked in the cell using
formaldehyde

— Crosslinked chromatin is sheared, usually by
sonication, to yield short fragments of
DNA+protein complexes

— Antibody to a TF or other binding protein used
to fish out fragments containing that DNA
binding protein

— DNA is then “released” and can be analyzed by
sequencing

Creates a pool of sequences highly
enriched in binding sites for a
particular protein

Requires availability of excellent
antibodies that can detect the protein
in its in vivo context

DNA-protein
+ cross-linking
v Cell lysis
+ Sonication or
o~ an enzyme digestion
<=z
PNo=  O~o0 g =
4
M—” Fragmented
w chromatin ]
+ Immunoprecipitation
A with specific antibody
}-a m Immune precipitate
w (ChIP material)
* DNA purification
N_x
/ y \ \ Analysis of bound DNA
E : cAcCe T T
e Sequencing
gPCR Microarray 65 /




ChIP computational issues

First step is to map reads:
BOWTIE, Novalign, BWA or other

ChlIP-seq reads surround but may
not contain the DNA binding site

Sequence is generated from the ends
of randomly sheared fragments,
which overlap at the protein binding
site

Gives rise to two adjacent sets of
read peaks

Programs like MACS and HOMER
automatically subtract your control
(genomic input) from sample

reads to define a final set of peaks

Tag parcantags (%)
0.2 03

T T
1] 200 A0

=300 =200 —1IE0 IIJ ‘IOI

Location with respact to tha canter of nand Crickpgaks (bp) .
4" Binding site

_>

Seq reads R —
ChIP fragments >
N

66



ChIP Analytical challenges

« Genomic neighborhoods

— Shear efficiency is not really “random”
« Some genomic regions are fragile and sensitive
« Some regions are protected from shear or degradation

— Other artifacts

« Centromeres, polymorphic regions, repeats in general: most
programs cannot manage sequence reads that are not mapped
uniquely

« ChlP-seq can be used to profile not only TF binding sites
but also histone modifications. Data and peak

characteristics are different depending on what is profiled.
— TFs are typically sharp peaks; chromatin marks are more diffuse

67



Analyzing ChIP data

« User-friendly tools

- MACS:

« Zhang et al, Genome Biology 2008, Feng et al. 2012, Nat Procols PMID:
22936215 (Xiaole Liu lab);

* MACSLI is best for sharp peaks (TFs); will break diffuse peaks into smaller
regions

« MACS?2 is designed to allow broad- or sharp-peak detection

— HOMER (http://homer.salk.edu/homer)
« Can be easily tweaked for more sensitive peak detection
» Comes packaged wiith a rich set of peak annotation tools
» Tools for DNAse-seq, Hi-C, differential ChlP analysis and many more

— Both tools permit generation of “wiggle files” or similar that can be
viewed in the UCSC browser

» Looking at your data is a very important step! Peak finders can miss peaks that
you can easily see by eye!

68


http://homer.salk.edu/homer

ChIP analysis workflow

FASTQC -> BOWTIE -> Peak finder (MACS or HOMER)
This same workflow and tools can be used for a variety of assays
e.g., ATAC-seq, DNase seq, etc.

Downstream analysis:
Mapping peaks to nearby genes (and perhaps, differentially
expressed genes)

|dentifying enriched motifs
For your factor
For co-binding factors

Overlapping with other genome features
e.g., open chromatin, known binding sites, etc.

69



How to find accessible DNA?

High-throughput methods
to identify DNasel HS sites.

DMA binding
prateins Gene txn
.é“l' T,
£ y
| 4
R~ 5
DNase HS 7
sites J,—
&
. -
1) Digest wath DMase and blunt end ]

DNase HS site

*2} Ligate biotinylated linkears
I — B —
I — ﬂ-

I I —
3) Sonicate to shear DNA

(. E———— B____
—— —— —( N S S E—

*4) Enrich on Streptavidin column

S B——
— — [ —

+5}| Add second linkers, amplify,

Label and Hybridize to Tiled Arrays
Raw DNase-chipdata_ | |11 1.

T

Ja8 137,000 2132 D00 148, 133,000 RRETE.
OR
Sequence Using Solexa Platform
|DNase-sequences -
A8, 137,000 A4S 13 0D T, 133,000

The first approach:

Crawford et al., Genome Research 16:123, 2006
(Francis Collins’ laboratory)

Genome-wide identification of Dnase | Hypersensititive
sites (DHS)

Later variants also based on DNase | treatment, but
different protocol and different philosophy. See
http://homer.ucsd.edu/homer/ngs/dnase/index.htmi

Many later methods: ChlP-exo, FAIRE, ATAC-seq etc.
(see Furey et al., 2012 for older review)

70


http://homer.ucsd.edu/homer/ngs/dnase/index.html

An economical approach to open chromatin: ATAC-seq

d

Closed
chromatin

Tn5
transposome

s
@

« Uses Tn5 transposase and a Transposon modified to contain lllumina
primers at each end

« Transposon “jumps” preferentially (and randomly) into accessible
chromatin

« Because of the design the transposon breaks DNA where it jumps in,
tagging the site with the primer

« Two insertions close together yield fragments of the size amenable for
lllumina sequencing

 PCR amplification between primers is all you need to make a library

« Since it skips library-making steps (ligation etc), can be done with
small amounts of input chromatin — e.g. 50,000 vs 1,000,000 cells

Amplify
> and

sequence
Open
chromatin

Buenrostro et al., 2013, 2015
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DNA Methylation

Methyl (-CH3) group added to Cytosine ('C’)
CpG (CG dinucleotide) is often methylated

Met
bind

nylateo
Ing to

Met

CpG may hinder transcription factor
DNA at that site

nylateo

CpG may recruit proteins that render

local chromatin less accessible

Roughly speaking, DNA methylation is repressive
for gene expression

72



CpG Methylation profiling

 Bisulfite sequencing

Allele 1 (methylated) Allele 2 (unmethylated)
m
---ACTCCACGG---TCCATCGCT--- --=-ACTCCACGG---TCCATCGCT---
———TGAGGTGCC———AGGTRG(I:HGA—— - ---TGAGGTGCC---AGGTAGCGA---

Bisulfite treament
Alkylation
Spontaneous denaturation

===AUTUUAUGG===-TUUATCGUT === ===AUTUUAUGG=---TUUATUGUT ===

---TGAGGTGUU---AGGTAGCGA--~- ---TGAGGTGUU---AGGTAGUGA---

\/

Non-methylation-specific PCR
Methylation-specific PCR

'

Differentiation of bisulfite-generated polymorphisms

Other methods:

* DNA cleavage by methylation-
sensitive restriction enzymes

Immunoprecipitation with methyl-
binding protein

73



Insights from large scale

epigenomics studies



Lessons from epigenomics assays

Massive deep-sequencing of multiple chromatin features in cell lines
(ENCODE), primary cell types and tissues (Epigenetics Roadmap)
— Histone H3 modifications: highlight on H3K4me1l, H3K4me3, H3K27Ac, H3K27me3.
— Other chromatin proteins: e.g. P300 (acetyltransferase)

H3K4me3 marks are enriched at active promoters

— H3K4me3 marks are largely the same in all cell lines, with a small
fraction of marks being cell-specific

P300, and H3K4mel without H3K4me3 is enriched at enhancers
— Most P300 peaks also contain H3K4mel

— P300, H3K4mel marks are highly cell-type specific

— Most P300 marks are enhancers, but not all enhancers have P300

— Most enhancers have an H3K4mel mark but, not all H3K4mel
marks are in enhancers

Other marks: H3K27Ac or H3K27me3

— Mutually exclusive marks for open (Ac) versus closed (Me3)
chromatin regions

— H3K27Ac is perhaps the most general mark of open chromatin:
promoters and enhancers

— H3K27Ac often found in combination with H3K4 mel/me3 75



Application 1: Chromatin “states™. an

unbiased, systematic characterization

ChromHMM tool
combines
iInformation from
38 different
histone marks,
Pol2 and CTCF
profiles to identify
different ‘states’

Other tools exist,
e.g., ChromasSig,
Segway

a b c
Chromatin state Abbreviation emissions Cov. Expr. Repr.

-

Annota;ion overlap

14 Weak repressed Polycomb

15 Quiescent/low Quieé 67.8% ;
- LD QO ONTNE NN BDD
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ChromHMM: automating chromatin-state discovery and
characterization. Jason Ernst & Manolis Kellis. Nature Methods 9, 215—
216 (2012) http://www.ncbi.nlm.nih.gov/pubmed/22373907 76



Application 2: DNA Methylation

orofiles In cancer and aginc

* DNA Methylation levels can be condition-
dependent

— Aberrant methylation patterns in cancer (e.g.,
nypermethylation of tumor suppressors and
nypomethylation of oncogenes)

— Progressive increase in global methylation
evels with age. Also aging-correlated
nypomethlation at some genes.
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Probing 3-dimensional chromatin structure with conformation capture

crosslink digest crosslinked ligation reverse crosslinking
chromatin chromatin
—> _), | 1 |
H H H

from Wit and de Laat, 2012 0



Hi-C “output”
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heatmap of interactions between
all 1 Mb bins along chrl for
GMO06990 cells. The intensity of
red color corresponds to the
number of Hi-C interactions.
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Hi-C: A comprehensive technique to capture the
conformation of genomes

Jon-Matthew B&lton,1 Rachel Patton McCord,1 Johan Gibc:us,1 Natalia Naumc:\.'a,1
Ye Zhan,‘| and Job Dekker!"”
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Requires analysis methods that are different from ChIP

 Provides the essential “big picture” view, since it is otherwise
Impossible to predict long-range enhancer-enhancer or
enhancer-promoter interactions

« Sequenced fragments contain a bit of DNA from two distant regions
— Data need to be trimmed and mapped to allow non-contiguous sequences

« Long-distant contacts are numerous, and each contact point is
relatively rare: peaks are small and require deep sequencing

« Hi C kits are now readily available and quite reliable, giving a whole-
genome view of interactions
— Lots of interactions and lots of noise! Computational issues are tricky
— All 3D methods require deep sequencing and paired-end reads
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Why Is 3D information useful?

« The issue is finding out “who is talking to whom?”
— Enhancers can be shared by multiple genes

— Alternative promoters for the same gene can have very different
regulatory partners

— Position relative to the TSS is not a reliable indicator in large
vertebrate genomes

— 3D methods are necessary to tie enhancers and promoters
(genes) together
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Summary (epigenomics)

Transcription factor binding sites genome-wide

Histone modification profiles (different marks or
combinations of marks can point to different
classes of regulatory elements)

DNA accessibility profiles
CpG methylation profiles

Epigenomic profiles are informative about gene
expression and regulatory mechanisms
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