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Mutations and Variations

* |In this class we will cover:

* SNPs & SNVs

* Mutant impact analysis (predicting when a mutation might be
damaging)

* Uses of machine learning in genetics
 Genome-wide association studies (GWAS)



What is @ SNP

* Single nucleoti
* Single nucleoti

T 188 GGT
128 GGT
138 GGT
I4: GGT
T 5% AGGT
T'OR GAGGT
T8 CGAGGT
I8: TACGAGGT

Individuals 12 and I5 IS position is both.



Notes on SNPs and SNVs

 ASNV is any old change (e.g. could be a somatic mutation in an
individual, or even an artifact)

* To be called a SNP, has to be polymorphic

* Lots of SNPs in databases, eg. the 1000 Genomes project recorded
~41 Million SNPs by sequencing ~1000 humans.



Thus, your fields may differ

* If you are a population geneticist doing GWAS, you are generally only
interested in SNPs

* If you are a cancer geneticist looking at sequence data from tumors,
you are primarily interested in SNVs

* In non-human biology there can be other complications (e.g.
polyploidy, HGT etc.).

* Definitions vary by field



Predicting when a coding SNV
(or SNP) is bad news

* Question:

* | found a SNP inside the coding sequence. Knowing how to translate the gene
sequence to a protein sequence, | discovered that this is a non-synonymous
change, i.e., the encoded amino acid changes. This is an nsSNP.

* Will that impact the protein’s function?
* (And | don’t quite know how the protein functions in the first place ...)
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Data for training/evaluation

* HumDiv

* Damaging mutations from UniProvKB. Look for annotations such as “complete

« n  u

loss of function”, “abolishes”, “no detectable activity”, etc.

* Non-damaging mutations: differences in homologous proteins in closely
related mammalian species



“Features”

Name

ntl

nt2

site

region

phat

scorel

score2
score_delta
num_obsery
delta_volume
transv

CpG

pfam_hit
id_p_max
id_q_min
cpgVarlVar2
cpg_transition
charge_change
hydroph_change
ali_ide

ali_len
acc_normed
sec_str
map_region
delta_prop

b_fact
het_cont_ave_num
het_cont_min_dist
inter_cont_ave_num
inter_cont_min_dist
delta_volume_new
delta_prop_new

Defintion

wild type allele nucleotide

mutation allele nucleotide

SITE annotation from UniProt/Swiss-Prot

REGION annotation from UniProt/Swiss-Prot

PHAT matrix element in the TRANSMEM region

PSIC score for the wild type allele

PSIC score for the mutant allele

difference of PSIC scores (Score1-Score?)

number of residues observed at the position of the multiple alignment
change in residue side chain volume

mutation origin by transversion or transition

mutation origin in the CpG hypermutable context

position of the mutation within/outside a protein domain as defined by Pfam
congruency of the mutant allele to the multiple alignment

sequence identity with the closest homologue deviating from wild type allele
presence of the CpG context combined with wild type and mutant amino acid types
whether variant happened as transition in CpG context

change in electrostatic charge

change in hydrophobicity

sequence identity with the closest homolog with known 3D structure
alignment length with the closest homolog with known 3D structure
normalized accessible surface area of amino acid residue

secondary structure

region of the Ramachandran map

change in accessible surface area propensity

crystallographic beta-factor

average number of contact with heteroatoms

minimal distance to a heteroatom

average number of interchain contacts in a protein complex

average minimal interchain distance

change in residue volume for buried residues

change in accessible sufiace area propensity fof buried réesidues

[Values with ranges in HumDiv
CGT
CGT

es, No

NO, PROPER, SIGNAL, TRANSMEM

[-8.0, 4.0], mean = -0.04

[-1.1], mean = 1.07

[-1.39, 2.64], mean = .166

[-3.23. 4.57]. mean = 905

[1, 432], mean 69.3

[-167, 167), mean = -1,93

Yes, No

Yes, No

Yes, No

[0, 95.5), mean = 24

[1.56, 95.5], mean 68.76

NO, AA1_AA2

No, Transition, Transversion

0,1,2

[0, 2.85], mean 0.80

[0, 1], mean 0.33

[0, 1213], mean 130.0

[0, 1.55], mean .35

HELIX, SHEET, OTHER
LPHA, BETA, OTHER

[-2.89, 2.89], mean -0.07

[-1.85, 5.17), mean 0.0

Yes, No

[-119, 138), mean -0.5
[-1.83, 2,89], mean 0.0026




The MSA part of the pipeline

1. User Input 2. Homology Search = 3. Initial MSA
nsSNP & protein accession |—p» (BLAST vs. UniRef100) — (MAFFT)
or sequence _ Retrieve HSPs by identity (10-94%) ~ Align HSPs retrieved |

5. MSA Clustering I/ 4. MSARefinement

Cluster sequences and select unique cluster (LEON)
comprising query sequence (cluspack) \ Cluster sequences (cluspack)

_ Recreate M3A for selected cluster (MAFFT) Predict coiled-coils (ncoils), trans-
-y ' membrane helices and low

complexity regions (resbias)
Define core blocks (RASCAL)

Detect sequence errors

6. Alignment Scores

Calculate PSIC profile & identity scores
from the refined clustered MSA

. Chain core blocks into conserved regions




Position Specific Independent Count (PSIC)

» Reflects the amino acid’s frequency at the specific
position in sequence, given an MSA.
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PSIC Score
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PSIC Score histogram from HumDiv




Classification

* Naive Bayes m
 What is a Nai



Naive Bayes Classifier

Bayesian inference:

Expresses how a subjective assessment of
Pr(xl | +)! Pr(xl | _)’ likelihood should rationally change to

Pr(x2 | _|_)’ Pr(x2 | _)’ account for evidence

Pr(x, | +),Pr(x, | -),

Pr(+|x,,x,,....,x, ) LWPr(x, | +)Pr(x, | +)...Pr(x |+)Pr(+)

»

Pr(-|x,,x,,....,x, ) WPr(x, | =)Pr(x, | =)...Pr(x | -)Pr(-)



Bayesian probability
* In statistics, frequentists and Bayesians often disagree.

* A frequentist is a person whose long-run ambition is to be wrong 5%
of the time.

* A Bayesian is one who, vaguely expecting a horse, and catching a
glimpse of a donkey, strongly believes he has seen a mule.



DID THE SUN JUST EXPLODE?
(ITS NIGHT, 50 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROWS TWO DICE. |F THEY
BOTH COME UP SiX, IT UES TO US.
OHERWISE, IT TELLS THE TRUH.

LETS TRY.

DETECTOR! HAS THE
SN GONE NOR?

=0

)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT
HAPPENING BY CHANCE 15 ;=0.027.

SNCE p<0.05, T CONCLUDE
THAT THE SUN HAS EXPLODED.

a




Evaluating a classifier: Cross-validation

PREDICT AND

EVALUATE ON TRAIN ON THESE
THESE l l

FOLD | L0 00009099 0000000



Evaluating a classifier: Cross-validation

PREDICT AND
EVALUATE ON

THESE l

SR, < 00000000000000000000




Evaluating a classifier: Cross-validation

PREDICT AND
EVALUATE ON

THESE l

FOLD 3 920000000098 U 00000



Evaluating a classifier: Cross-validation

PREDICT AND
EVALUATE ON

THESE l

FOSE 900000090000000




Evaluating a classifier: Cross-validation

Collect all evaluation results (from k “FOLD”s)

(0000 )000000000000009
90009 - 10000000000

9000000009 0 100000




Evaluating classification performance

Patients with bowel cancer
(as confirmed on endoscopy)

Condition Positive| Condition Negative

Test Positive predictive value
Eecal True Positive False Positive =TP /(TP + FP)

Out
Occult o o€ (TP) =20 (EP) = 180 - 20/ (20 + 180)
Positive
Blood =10%

Screen Megative predictive value

Test
Outcome
MNegative

Test
Outcome

False Negative True Negative =TN/(FN+ TN)
(FN) = 10 (TN} = 1820 = 1820/ (10 + 1820)

= 09.5%
=TP ‘ " +FN) |= TI! T M)

=20/(20 +10) = 1820/ (180 + 1820)
= 67% = 91%

Wikipedia



ROC of PolyPhen 2.0 on HumDiv

The Receiver Operating Characteristic (ROC) curve: True +ve vs False +ve
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False positive rate

PolyPhan-2, HumDiv versus UniRef100
PolyPhan-2, HumDiv versus Swiss-Prot
PolyPhan-2, HumVar versus UniRef100
PolyPhen-2, HumVar versus Swiss-Prot
PolyPhen PSIC, HumDiv versus UniRef100
FolyPhen PSIC, HumDiv versus Swiss-Prot
PolyPhen PSIC, HumVar versus UniReft 00
PolyPhen PSIC, HumVar versus Swiss-Prot




What about SNPs outside coding regions?

* Generally hard enough to predict within coding regions — regulatory sequences
notoriously hard to pin down (see ENCODE controversy)

* One interesting approach uses Support Vector Machine (SVM) classifiers to
describe damage to cell-specific regulatory motif vocabularies.

A method to predict the impact of regulatory
variants from DNA sequence

Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L Asoni,
Andrew S McCallion & Michael A Beer

Affiliations | Contributions | Corresponding authors

Nature Genetics (2015) | doi:10.1038/ng.3331
Received 12 February 2015 | Accepted 08 March 2015 | Published online 15 June 2015




Support Vector Machines

E =1
Misclassified ®

wlg




Populations and genetics

‘ Southern Dents

Heterotic group
SS NSS IDT Midland




Matrices of SNPs

* A typical genotype matrix looks like this

How do we do any kind of math on this?



Replace with numeric data

* Use the number of copies of the reference allele

- SO: becomes:

SNP ID Linel Line2 Line3 Line4
C1001
C1002

C1003
C1004
C1005




Can then use numeric vectors for PCA




Genetic linkage

. k Chromosome .

@«— Gene 1

iy Gene 1 ﬁ
“1- Gene 2 ' Gene 2

Linked Not Linked Not Linked

When a marker is correlated with a trait, it is likely to
be genetically linked to the locus in a family analysis



Genetic linkage analysis

* Pulst, 1999 Arch Nerurol 56:667



Genetic linkage analysis

* Cystic Fibrosis and the CFTR gene mutations.

e “Linkage analysis”
* Genotype members of a family (with some individuals carrying the disease)
* Find a genetic marker that correlates with disease
* Disease gene lies close to this marker.



Limits of genetic linkage analysis

* Requires data from entire families, preferably large ones, where the
trait is segregating — easy in plants, hard in humans

* Linkage analysis less successful with common diseases, e.g., heart
disease or cancers.

* Requires single, large effect loci



Genome-
(GWAS)

https://doi.or

https://doi.org



https://doi.org/10.1371/journal.pcbi.1002828
https://doi.org/10.1371/journal.pcbi.1002822

Common disease common variant

* Hypothesis that common diseases are influenced by genetic variation
that is “common” in the population

* Implications:
* Any individual variation (SNP) will have relatively small correlation with
disease
* Multiple common alleles together influence the disease phenotype

* Argument for population-based studies versus family based studies.
(Think about it!)



Figure 1. Spectrum of Disease Allele Effects.
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http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002822



http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002822

GWAS: Genotyping methodology

* Microarray technology to assay 0.5 - 1 million or
more SNPs, e.g. Affymetrix and lllumina

* One population may need more SNPs to be put on
the chip than another population

* Increasingly, people are using whole-genome
sequencing. But LD limits utility, arrays still have
advantages.



GWAS: Phenotyping methodology

* Case/control vs. quantitative
e Quantitative (e.g. blood pressure, LDL levels)
» Case/control (qualitative, disease vs. no disease)

* Possible to look at more than one phenotype? Electronic medical
records (EMR) for phenotyping?



GWAS — a simple idea
correlate genotype with phenotype

e Case/control:

Disease?

I1: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT -
I2: AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT

I3: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT —
I4: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT =
TSk AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT

16: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT >
IR/ AACGAGCTAGCGATCGATCGACTACGACTACGAGGT =

I8: AACGAGCTAGCGATCGATCGACTACGACTACGAGGT =



GWAS statistics: case vs control

* The Fisher Exact test

IEL ¢
I2:
TEE
I4:
1RO S
I6:
I7:
I8:
TN

I10:
L L -
T 1528
I13:
I14:

AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT

Case

Control




GWAS statistics: case vs control

 The Fisher Exact test

Has ‘A’ Has ‘T’

Case 3

Control 1 p-value < 0.05

Has ‘A’ Case

(4) .

All individuals (14)




Quantitative phenotypes

* Y. = Phenotype value of Individual i

* X, = Genotype value of Individual i

Linear regression
Y =a+ bX
If no association, b = 0

The more b differs from O, the
stronger the association

v
o
>
e
@)
[
(D]
<
oo

Y =

X = Genotype




GWAS Gotchas

* Before we start on the stats, some gotchas:
* Correlation is not causation
* Population structure (see later)
* Linkage disequilibrium (see later)
* Phenotyping

o Also, even if it all works, can be hard to interpret
0 Say a SNP correlates well with heart disease
o Could be a direct biochemical link
o Could be behavioral (makes you like bacon:--)



GWAS statistics: case vs control

* The Fisher Exact test

I1:
I2:
e
I4:
I5:
I6:
IV%
I8:

I

I10:
I11:
I12:
I =
I14:

AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC -ACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGACTACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT
AACGAGCTAGCGATCGATCGAC ACGACTACGAGGT

Case

Control




GWAS statistics: case vs control

* The Fisher Exact test
Has ‘A’ Case

(4) (4)
&)

All individuals (14)

Case

Control

p-value < 0.05



GWAS statistics: case vs control

* Instead of the Fisher Exact test, can use the Chi Squared test.

* Do this test with EACH SNP separately. Get a p-value for each SNP.

* The smallest p-values point to the SNPs most associated with the
CINCENS



Association tests: Allelic vs Genotypic

 What we saw was an “allelic association test”. Test if ‘A’ instead of ‘T’
at the position correlates with disease

* Genotypic association test: Each position is not one allele, it is two
alleles (e.g, A&A, T&T, A&T).

* Correlate genotype at that position with phenotype of individual



Genotypic association tests

* Various options
* Dominant model

AA or AT T

Case ?

Control ?




Genotypic association tests

* Various options
* Recessive model

AA ATorTT

Case : ?

Control . ?




Genotypic association tests

* Various options
e 2 x 3 table

Case

Control

Chi-squared test




Quantitative phenotypes

* Y. = Phenotype value of Individual |

* X, = Genotype value of Individual |

Y = a + bX

If no association, b = 0
The more b differs from O,

the stronger the
association

v
o
>
)
(@]
[
(]
<
oo

Y =

This is called “linear
regression”

1
X = Genotype




Quantitative ph

 Another statistic S matrices is

“ANOVA” (Analy

e Statistical mode an give refs on

request.



Manhattan plot
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Lambert et al., 2013: Nature Genetics 45, 1452



Multiple hypothesis correction

 What does the “p-value of an association test = 0.01” mean ?

* It means that the observed correlation between genotype and
phenotype has only 1% probability of happening just by
chance. Pretty good?

* But if you repeat the test for 1 million SNPs, 1% of those tests,
i.e., 10,000 SNPs will show this level of correlation, just by
chance (and by definition).

* http://xkcd.com/882/
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Bonferroni correction

* Multiply p-value by number of tests.

* So if the original test on a particular SNP gave a p-value of p, define
the new p-value as p” = p x N, where N is the number of SNPs tested
(1 million ?)

* With N = 10, a p-value of 10 is downgraded to p’ = 10° x 10°= 103.
This is quite good.



False Discovery Rate

e Bonferroni correction will “kill” most reported
associations (reduced statistical power)

* Too stringent for most applications (although good if
it works). Need to balance false positive rate with
false negative rate

* False Discovery Rate (FDR) is an alternative
procedure to correct for multiple hypothesis testing,
which is less stringent.



False Discovery Rate

Given a threshold a (e.g., 0.05):
Sort all p-values (N of them) in ascending order:

PSP, S ... S Py

Count for each group of N, p from 1 to i:

Require p’ < a

This ensures that the expected proportion of false positives in the reported
associations is < a



Beyond single locus associations?

* We tested each SNP separately

* Recall that our “common disease, common variant” hypothesis meant
each individual SNP carries only a small effect.

* Maybe two SNPs together will correlate better with phenotype.
* So, methods for 2-locus association study.
* Main problem: Number of pairs ~ N?



Beyond the probed SNPs?

* The SNP-chip has a large number of probes (e.g., 0.5
— 1 Million). But still, way fewer SNPs than WGS.

* But there are many more sites in the human genome
where variation may exist. Are we going to miss any
causal variant outside the panel of ~1 Million?

* Not necessarily.



Linkage disequilibirum

* Two sites close to each other may vary in a highly
correlated manner. This is linkage disequlibrium (LD).

* Not enough recombination events have happened to
make the inheritance of those two sites independent.

* If two sites are in a segment of high LD, then one site
may serve as a “proxy” for the other.



LD and its impact on GWAS

* If sites X & Y are in high LD, and X is on the SNP-chip, knowing the
allelic form at X is highly informative of the allelic form at Y.

* So, a panel of 0.5 — 1 Million SNPs may represent a larger number,
perhaps all of the common SNPs.

* But this also means: if X is found to have a high correlation with
disease, the causal variant may be Y, and not X



LD and its impact on GWAS

Indirect Association

|| ||[ | ﬂﬂ |I||||| Chromosome

: \ Region of High Linkage

L . l Disequilibrium

& &
Disease Risk Genotyped SNP
SNP




LD impact

population subset

C/c D/d

genomic position



Population structure




Discussions

* In many cases, able to find SNPs that have significant
association with disease. Risk factors, some mechanistic
insights.

 GWAS Catalog : http://www.genome.gov/26525384

* Yet, final predictive power (ability to predict disease from
genotype) is limited for complex diseases.

* “Finding the Missing Heritability of Complex Diseases”
http://www.genome.gov/27534229



Discussions

* Increasingly, whole-exome and even whole-genome sequencing used
for variant detection

* Taking on the non-coding variants. Use functional genomics data as
template

* Network-based analysis rather than single-site or site-pairs analysis
* Complement GWAS with family-based studies



BIOLOGY' 15 LARGELY SOLVED,
DNA 15 THE SOURCE CODE
FOR OUR BODIES, NOWJ THAT
GENE SEQUENCING IS ERSY,
WE JUST HAVE. T READ IT.

IT'SNOT JUST "SOURCE
CODE" THERES A TON
OF FEEDBACK AND
EFTER"TLPRJEEEEHE

BUT EVEN F IT WERE, DNA IS THE
RESULT OF THE MOST AGERESSIVE
OPTIMIZATION PROCESS IN THE
UNIVERSE, RUNNING N PARALLEL
AT EVERY LEVEL, IN EVERY LIVING
THING, FOR FOUR BILLION YEARS.

ITS <TilL JUST CODE.
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OK, TRY OPENING GOOGLE .COM
AND CLICKING "VIEW SOURCE.
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THATS JUST A FEW YEARS OF
OPTIMIZATION BY GOOGLE. DEVS.
DNA 1S THOUSANDS OF TiMES
LONGER AND WAY, LAY WORSE.

\ Lo, BIOLOGY
S MPRSSIBLE
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