Structural Variation

Tools like GATK, samtools can’t currently detect larger structural changes easily, but...

Figure 1 | Classes of structural variation. Traditionally, structural variation refers to genomic alterations that are larger than 1 kb in length, but advances in discovery techniques have led to the detection of smaller events. Currently, >50 bp is used as an operational demarcation between indels and copy number variants (CNVs). The schematic depicts deletions, novel sequence insertions, mobile-element insertions, tandem and interspersed segmental duplications, inversions and translocations in a test genome (lower line) when compared with the reference genome.
Structural Variation

GATK (v3.7 or higher), this is changing:

- **SNPs & INDELs**
- **COPY NUMBER VARIANTS**
- **STRUCTURAL VARIANTS**

GERMLINE VARIATION
- HAPLOTYPECALLER GVCF
 - Exome/Panel + Whole Genome

IN DEVELOPMENT
- Whole Genome

SOMATIC MUTATION
- MUTECT2 (BETA)
 - Exome/Panel + Whole Genome
- GATK CNV + ACNV
 - Exome/Panel

https://software.broadinstitute.org/gatk/best-practices/
Structural Variation

Detection using NGS data generally requires multi-layer analyses, may focus on specific SV types

Common tools:
- CNVnator – gross detection of CNVs
- BreakDancer, Cortex-Var – breakpoint detection
- Pindel – large deletions
- Manta

Recent tools (lumpy-sv) integrate approaches
Structural Variation Strategies

Read depth
- Region deviates from expected read depth

Read pair discordance
- Insert size is off, orientation of reads is wrong

Split reads
- Single read is split, parts align in two distinct unique locations

Assembly
- Reference-based local assemblies indicate inconsistencies
Structural Variation
Still an active area of research

Problems:
- Lots of false positives
- Hard to compare methodologies

More recent publications use long-read technology for structural variant detection ($$$)
(b) A complex SV of two translocations detected by *Picky* from a **32.5 Kb nanopore read**. The alignments were visualized by Ribbon (https://github.com/MariaNattestad/ribbon)
Association Studies

Genome-wide association studies (GWAS)

Trying to determine whether specific variant(s) in many individuals can be associated with a trait

Ex: comparison of groups of people with a disease (cases) and without (controls)
Finding the causal variant in **ideal situations***

Spot the variant that is common amongst all affected but absent in all unaffected

This variant is in a gene with known function and causes the protein to be disrupted

* e.g. some rare autosomal disease