Tools like GATK, samtools can't currently detect larger structural changes easily, but...

Ref.

Ref.

Ref.

Mobile-element insertion
Ref.

Mobile element

Mobile element

Ref.

Mobile element

Interspersed duplication
Ref.

Inversion
Ref.

Ref.

Ref.

Ref.

Figure 1 | Classes of structural variation. Traditionally, structural variation refers to genomic alterations that are larger than 1 kb in length, but advances in discovery techniques have led to the detection of smaller events. Currently, >50 bp is used as an operational demarcation between indels and copy number variants (CNVs). The schematic depicts deletions, novel sequence insertions, mobile-element insertions, tandem and interspersed segmental duplications, inversions and translocations in a test genome (lower line) when compared with the reference genome.

Alkan et al, Nature Genetics 12:363, 2011

GATK (v3.7 or higher), this is changing:

Detection using NGS data generally requires multi-layer analyses, may focus on specific SV types

Common tools:

- CNVnator gross detection of CNVs
- BreakDancer, Cortex-Var breakpoint detection
- Pindel large deletions
- Manta

Recent tools (lumpy-sv) integrate approaches

Structural Variation Strategies

Read depth

Region deviates from expected read depth

Read pair discordance

Insert size is off, orientation of reads is wrong

Split reads

Single read is split, parts align in two distinct unique locations

Assembly

Reference-based local assemblies indicate inconsistencies

Still an active area of research

Problems:

- Lots of false positives
- Hard to compare methodologies

More recent publications use long-read technology for structural variant detection (\$\$\$)

(b) A complex SV of two translocations detected by *Picky* from a **32.5 Kb nanopore read.** The alignments were visualized by Ribbon (https://github.com/MariaNattestad/ribbon)

Association Studies

Genome-wide association studies (GWAS)

Trying to determine whether specific variant(s) in many individuals can be associated with a trait

Ex: comparison of groups of people with a disease (cases) and without (controls)

Finding the causal variant in <u>ideal</u> situations*

Spot the variant that is common amongst all affected but absent in all unaffected

This variant is in a gene with known function and causes the protein to be disrupted

^{*} e.g. some rare autosomal disease