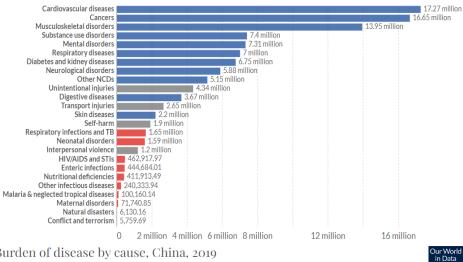


Genomic Data Resources and Data Mining for Everyone

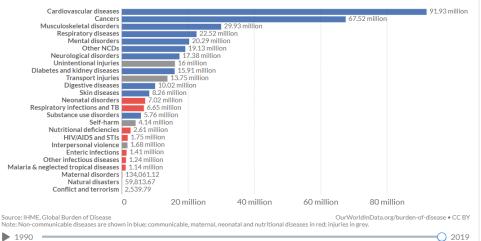
Krishna Rani Kalari Ph.D. Associate Professor, Biomedical Informatics College of Medicine, Mayo Clinic, Rochester, MN

Outline of my presentation


- Background
- Simple query tools for basic gene/variant search
 - UCSC, GWAS tools, and Knowledge Portals
- Genotype-Tissue Expression queries
- Cancer portals
 - TCGA, GDC, ICGC, cBioPortal, COSMIC, HTAN
- Single-cell RNA
- Proteomics
- Trans-Omics for Precision Medicine (TOPMed)

Burden of disease by cause, United States, 2019

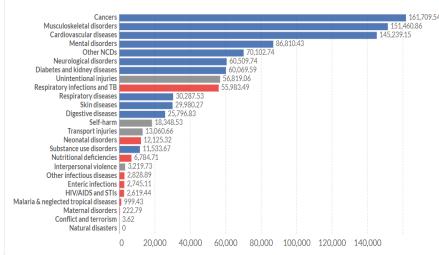
Total disease burden, measured in Disability-Adjusted Life Years (DALYs) by sub-category of disease or injury. DALYs measure the total burden of disease - both from years of life lost due to premature death and years lived with a disability. One DALY equals one lost year of healthy life.


⇐ Change country

Burden of disease by cause, China, 2019

Total disease burden, measured in Disability-Adjusted Life Years (DALYs) by sub-category of disease or injury. DALYs measure the total burden of disease - both from years of life lost due to premature death and years lived with a disability. One DALY equals one lost year of healthy life.

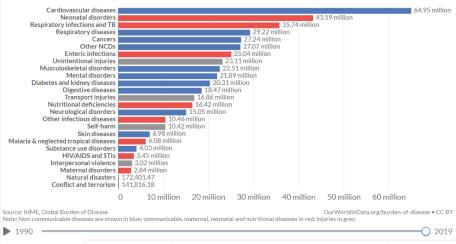
⇄ Change country



Our World in Data

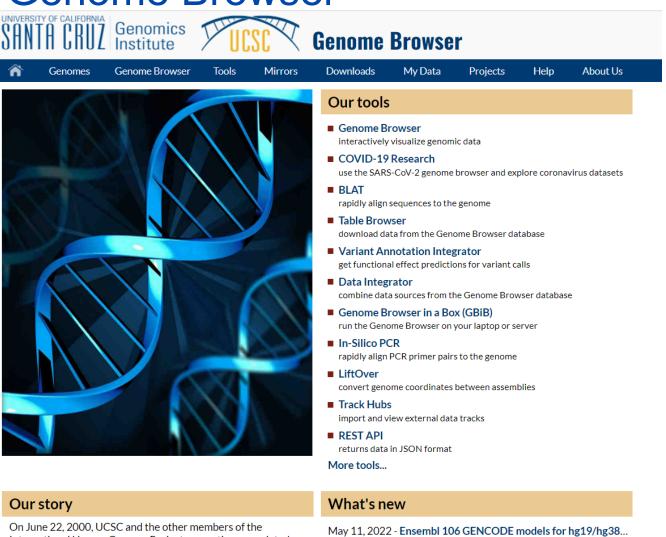
Burden of disease by cause, Singapore, 2019

Total disease burden, measured in Disability-Adjusted Life Years (DALYs) by sub-category of disease or injury. DALYs measure the total burden of disease - both from years of life lost due to premature death and years lived with a disability. One DALY equals one lost year of healthy life.


≓ Change country

Burden of disease by cause, India, 2019

Total disease burden, measured in Disability-Adjusted Life Years (DALYs) by sub-category of disease or injury. DALYs measure the total burden of disease - both from years of life lost due to premature death and years lived with a disability. One DALY equals one lost year of healthy life.


Dur World in Data

Make genomic data accessible

- Interrogate the tsunami of data
- Make genotype and phenotype data that is accessible for a relevant disease
- Software platform or a user interface that provides access of genomics data to nonexperts

UCSC Genome Browser

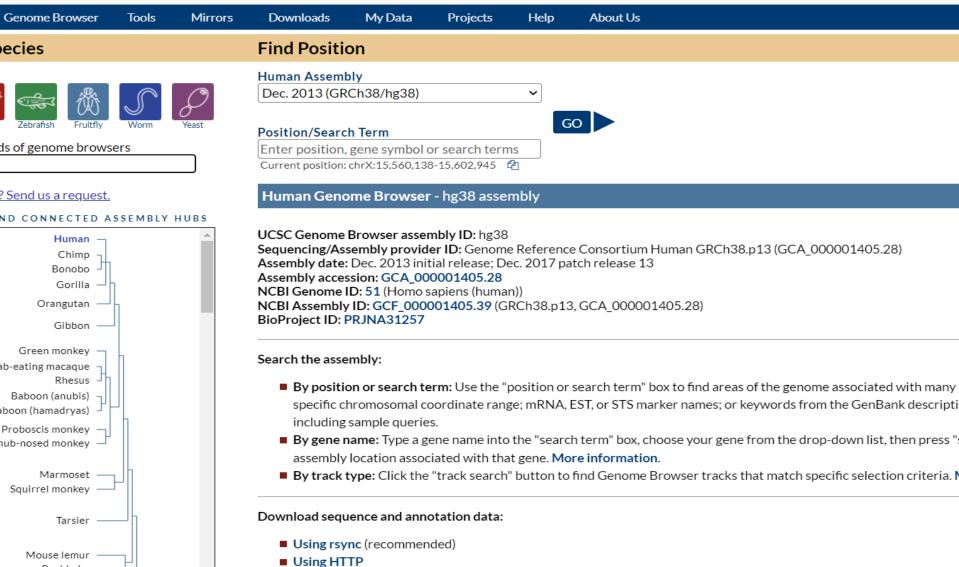
May 5, 2022 - Merged Cell Expression on hg38

May 3, 2022 - New GnomAD Mutation Constraint track

Our story

 $\widehat{}$

On June 22, 2000, UCSC and the other members of the International Human Genome Project consortium completed the first working draft of the human genome assembly, forever ensuring free public access to the genome and the information it contains. A few weeks later, on July 7, 2000, the newly

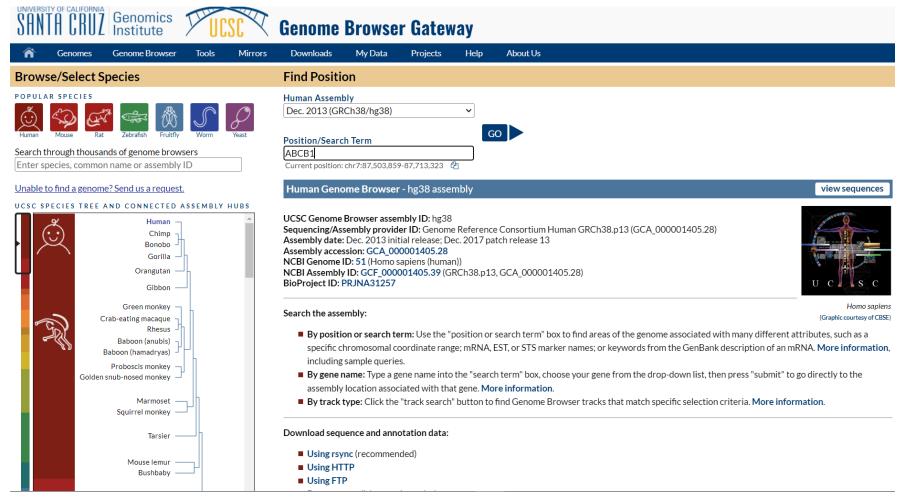

UCSC Genome Browser

Genomics

Bushbaby

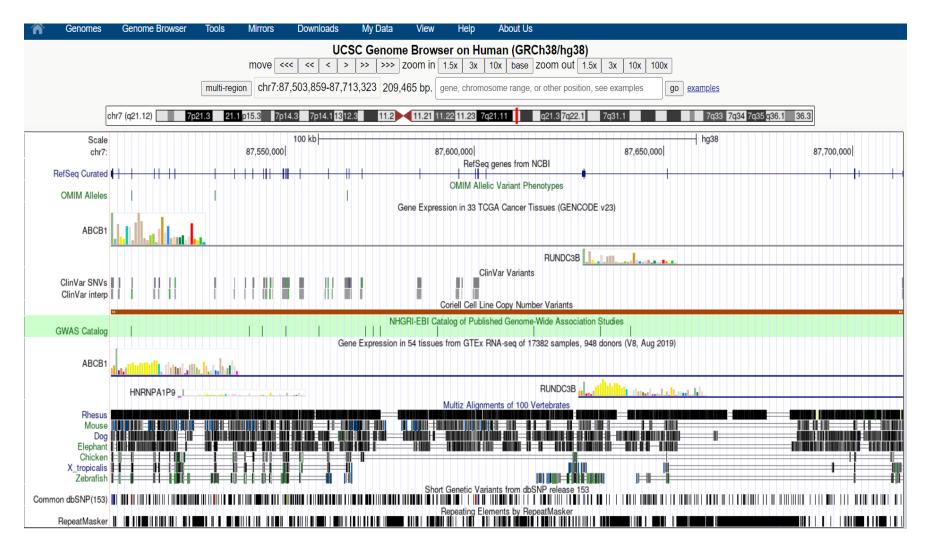
Institute

\checkmark Genome Browser Gateway


Using FTP

Gene Cards

📀 GeneCa	ardsSuite Ger	neCards Gene	aRNA Mala Cards	Path Cards Va	rElect Gene Analytic	s GeneALaCart	Genes LikeM	e	
2	Gene C	Cards®		Free for aca	idemic non-profit institution	ns.Other users need a <u>C</u>	ommercial license	WEIZMANN INSTITUTE OF SCIENCE	
	THE HUMAN GE	NE DATABASE		К	eywords - Se	arch Term			Q <u>Advanced</u>
Home	User Guide A	Analysis Tools 🗸	Release Notes	About ▼ Data	Access			My Genes	Log In / Sign Up
				Subfamily B	Member 1			_	Follow Gene ★ 🖂
	Loding (GC07M	Disorders	:: 50 😧) 😋 💾	Drugs	Expression	Function	Genomics		Phenotype Search
Jump to section	Paralogs	Pathways	Products	Proteins	Publications	Sources	Summaries		
Research Products	Antibodies Cell Lines	Assays Clones	Proteins Primers	Inhib. RNA Genotyping	CRISPR	Exp. Assays	miRNA	Drugs	Animal Models
RD	Proteins Prima ELISAs Antiboo Activity Assays	dy Arrays		Proteins Antibodies Assays Genes shRNA Primers CRIS entiviral Particles	A C VALTUE C	CRISPR Knockout KO Pools iPSC SN Free Bioinformatio	V Clone	CInVivo Biosystems Zel	elegans Transgenics orafish Genome Editing manized animal models
	or ABCB1 Gen	e							3
Aliases for A GeneCards	\BCB1 Gene s Symbol: <i>ABCB1</i>	2 😮		Colchicin Sensiti	vity ^{2 3}			>SYNTHEG	o carler la
ATP Bindir	ng Cassette Subf	amily B Member	1 ^{2 3 5}	P-Glycoprotein	34				1. 201
9	Resistance Proteir	1 1 ^{2 3 4}		P-Gp ^{2 5}			Discover	the	
CD243 ^{2 3 5}				CLCS ^{3 5}			Best App	oroach	
GP170 ^{2 3 5}				ATP-Binding Cas	sette Sub-Family B Me	mber 1 ⁴		for Your	Target //
ABC20 ^{2 3 5}	5			Doxorubicin Res	istance ³			Discover	y
P-170 ²³⁵				CD243 Antigen 4	ţ				
MDR1 ^{3 4 5}				EC 3.6.3.44 48				Compare Sci	reening Formats
PGY1 ^{3 4 5}				EC 7.6.2.2 ⁴					
		amily B (MDR/TAF	P), Member 1 ^{2 3}	EC 7.6.2.1 ⁴					
	ndent Translocase			EC 3.6.3 ⁴⁸					
Phospholip	oid Transporter AB	3CB1 3 4		P-GP ³					



UCSC Genome Browser

UCSC Genome Browser

UCSC Genome Browser Drop-down controls to display various tracks

GWAS Catalog

🛞 GWAS Catalog	Search	Q Diagram	Submit Download	Documentation	About Blog	емві-еві 🍈 N	National Human Genome Research Institute	
GWAS / Diagram				This diagram shows	all SNP-trait associa	ations with p-value ≤ 5	.0 × 10 ⁻⁸ , published ir	۱ the GWAS Cataloc
Filter the diagram Filter by trait Clear Apply Show SNPs for ● Digestive 640 system disease ● Liver enzyme measurement ● Liver enzyme measurement ● Lipid or (4772)								Download diagram

GWAS Catalog - ABCB1 associations

👏 GWAS Catalog

Diagram Submit Download Documentation About Blog EMBL-EBI

GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies

ABCB1

Examples: breast carcinoma, rs7329174, Yao, 2q37.1, HBS1L, 6:16000000-25000000

GWAS / Search / ABCB1

Refine search results	^
P Publications	2
Variants	18
G Genes	1

Description: ATP binding cassette subfamily B member 1 Location: 7:87503017-87713323 Cytogenetic region: 7q21.12 Biotype: protein coding

Q

GWAS Catalog - 26 ABCB1 associations

	🛞 GWAS Ca	italog	Search	Q Diagram	Submit	Download	Documentation	About	Blog	ЕМВІ-ЕВІ 🍏	NIH National Human Genome Research Institute
Available data:	Associations 26	Studies 2	Traits 20								Download Catalog data 🛓

Associations 26

										Search	<u>ج</u> ک	<u>~</u> -
Variant and risk allele	P-value	P-value annotation	RAF 🝦	OR 🝦	Beta	CI 🔶	Mapped gene	Reported trait	Trait(s) 🍦	Background trait(s) 🥹	Study	accessi
rs7800191 -?	1 x 10 ⁻⁸	(cerebellar vermal lobules I V)	NR	-	-	-	ABCB1	Brain region volumes	brain volume measurement	-	GCST	09518
rs13233308- T	6 x 10 ⁻¹³	(ADAM 22)	0.4815	-	0.37657 unit increase	[0.27 - 0.48]	ABCB1	Neurological blood protein biomarker levels	blood protein measurement	-	GCST)08478
rs2235048- A	2 x 10 ⁻⁶	(IFNalpha_ABC_of_CD56brightCD16n)	0.421	-	-	-	ABCB1	interferon-related traits	cytokine measurement	-	GCST)12156
rs28381924 -A	5 x 10 ⁻⁸	(GEE model)	NR	-	1.0778 unit decrease	[0.69- 1.46]	ABCB1	Rate of cognitive decline in Alzheimer's disease	cognitive decline measurement	Alzheimer disease	GCST)10567
rs13233308-?	2 x 10 ⁻⁹		-	-	-		ABCB1	Schizophrenia	schizophrenia	-	GCST	10640

Nature 2021 publication

ARTICLES https://doi.org/10.1038/s41588-021-00921-z

A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease

Douglas P. Wightman [®]¹, Iris E. Jansen¹, Jeanne E. Savage [®]¹, Alexey A. Shadrin [®]^{2,3}, Shahram Bahrami^{2,3,4}, Dominic Holland⁵, Arvid Rongve [®]^{6,7}, Sigrid Børte [©]^{3,8,9}, Bendik S. Winsvold [®]^{9,10,11}, Ole Kristian Drange^{12,13}, Amy E. Martinsen^{3,9,10}, Anne Heidi Skogholt^{9,14}, Cristen Willer [®]¹⁵, Geir Bråthen [®]^{16,17,18}, Ingunn Bosnes^{12,19}, Jonas Bille Nielsen^{9,15,20}, Lars G. Fritsche [®]²¹, Laurent F. Thomas [®]^{9,14}, Linda M. Pedersen [®]¹⁰, Maiken E. Gabrielsen⁹, Marianne Bakke Johnsen^{3,8,9}, Tore Wergeland Meisingset^{16,17}, Wei Zhou [®]^{22,23}, Petroula Proitsi [®]²⁴, Angela Hodges [®]²⁴, Richard Dobson [®]^{25,26,27,28,29}, Latha Velayudhan [®]²⁴, Karl Heilbron³⁰, Adam Auton³⁰, 23andMe Research Team^{*}, Julia M. Sealock [©]^{31,32}, Lea K. Davis [®]^{31,32}, Nancy L. Pedersen³³, Chandra A. Reynolds [®]³⁴, Ida K. Karlsson^{33,35}, Sigurdur Magnusson [®]³⁶, Hreinn Stefansson [®]³⁶, Steinunn Thordardottir³⁷, Palmi V. Jonsson^{37,38}, Jon Snaedal³⁷, Anna Zettergren [®]³⁹, Ingmar Skoog^{39,40}, Silke Kern^{39,40}, Margda Waern^{39,41}, Henrik Zetterberg^{42,43,44,45}, Kaj Blennow^{44,45}, Eystein Stordal [®]^{12,19}, Kristian Hveem^{9,46}, John-Anker Zwart [®]^{3,9,10}, Lavinia Athanasiu^{2,4}, Per Selnes⁴⁷, Ingvild Saltvedt [®]^{16,18}, Sigrid B. Sando^{16,17}, Ingun Ulstein⁴⁸, Srdjan Djurovic [®]^{49,50}, Tormod Fladby [®]^{3,47}, Dag Aarsland^{24,51}, Geir Selbæk [®]^{3,48,52}, Stephan Ripke [®]^{23,53,54}, Kari Stefansson [®]³⁶, Ole A. Andreassen [©]^{2,34,56} and Danielle Posthuma [©]^{1,55,56 ⊠}

Late-onset Alzheimer's disease is a prevalent age-related polygenic disease that accounts for 50-70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer's disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer's disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer's disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer's disease to identify further genetic variants that contribute to Alzheimer's pathology.

ementia has an age- and sex-standardized prevalence of \sim 7.1% in Europeans¹, with Alzheimer's disease (AD) being the most common form of dementia (50–70% of cases)².

identify the missing causal variants and may highlight additional disease mechanisms. In combination with increasing the number of samples, it is beneficial to use different approaches to identify rare

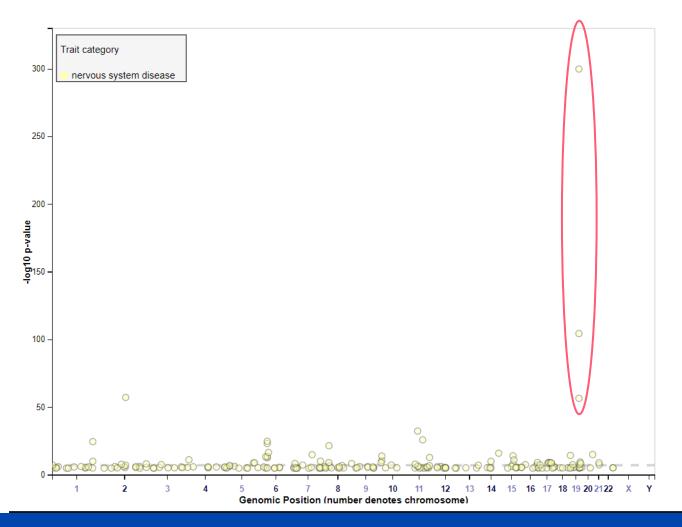

Nature 2021 publication

Fig. 1 | **A Manhattan plot of the meta-analysis results highlighting 38 loci, including seven previously unidentified regions.** Only variants with P < 0.0005 are displayed. The *APOE* region cannot be fully observed because the *y* axis is limited to the top variant in the second most significant locus, $-\log_{10}(1 \times 10^{-60})$, to display the less significant variants. The red line represents genome-wide significance (5×10^{-8}) . The *P* values were identified through a meta-analysis (two-sided test) of summary statistics generated by linear/logistic regressions (two-sided test) and were not adjusted for multiple testing. The previously unidentified loci are highlighted in green and indicated by the assigned gene name. The *TNIP1/HAVCR2* regions and the *NTN5/LILRB2*

GWAS – Catalog Alzheimer's disease associations

Knowledge Portal Network

Common Metabolic Diseases Knowledge Portal Learn more

Cardiovascular Disease Knowledge Portal Learn more

Cerebrovascular Disease Knowledge Portal Learn more

ALS Knowledge Portal Learn more

Sleep Disorder Knowledge Portal Learn more

Lung Disease Knowledge Portal Learn more

Type 1 Diabetes Knowledge Portal Learn more

Lipid Droplet Knowledge Portal Learn more

Type 2 Diabetes

Knowledge Portal

Learn more

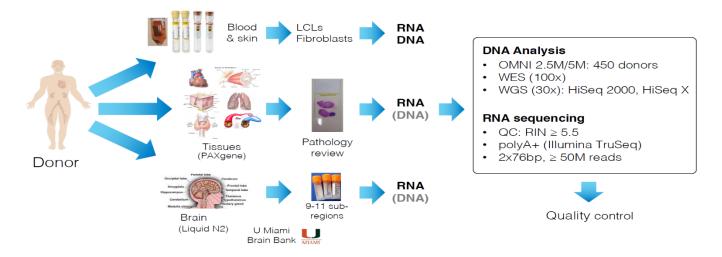
Non-Additive Genetic Effects Knowledge Portal Learn more

Musculoskeletal

Knowledge Portal

Learn more

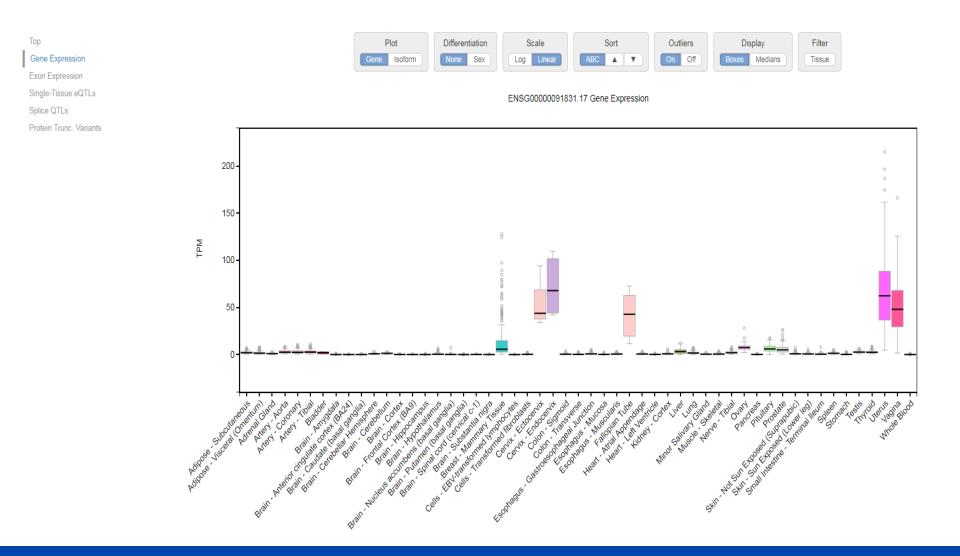
Collaborate on methods Learn more


Collaborate to create a new Knowledge Portal Learn more

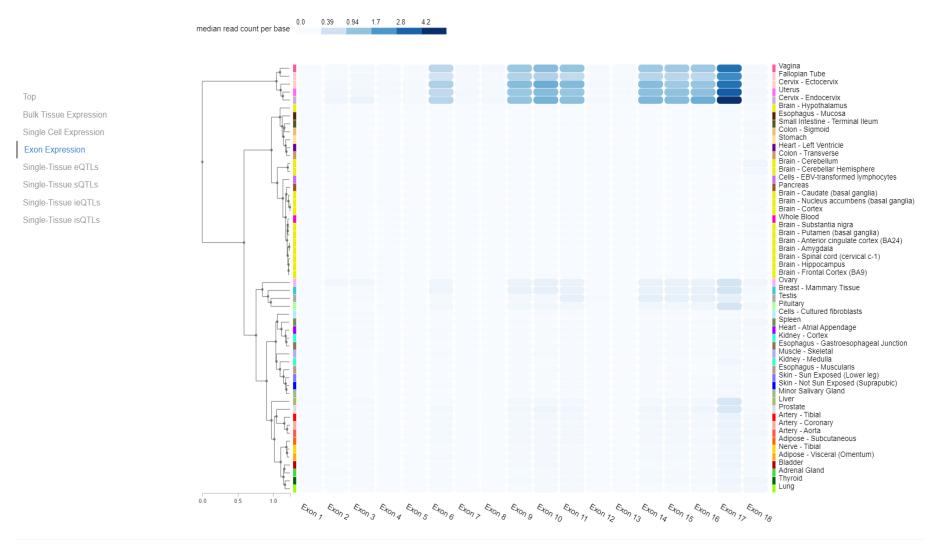
Genotype Tissue-Expression Project (GTEX)

- Genome-wide association studies (GWAS)
- Cases vs controls
- ~95% of SNPs located in non-coding regions
- 53 tissue sites

Sample and data processing overview



Overview of GTEx resources: open-access data


- Expression
 - Gene-level expression (TPM, counts)
 - Transcript-level expression (TPM, counts, isoform proportions)
 - Exon read counts
- QTLs
 - Single-tissue eQTLs (*cis-* and *trans-*)
 - Multi-tissue eQTLs
 - Future: splicing QTLs
- Histology images
- De-identified public access sample and subject metadata

All open-access data is available at gtexportal.org

ESR1 query

Exon expression

21

ESR1 - eQTLs

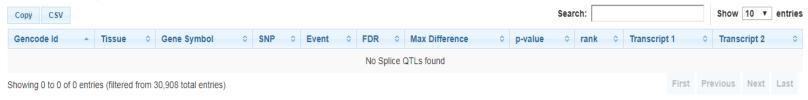
Тор

Gene Expression

Exon Expression

Single-Tissue eQTLs Splice QTLs Protein Trunc. Variants

- Significant Single-Tissue eQTLs for ESR1 (ENSG00000091831.17) in all tissues


Data Source: GTEx Analysis Release V7 (dbGaP Accession phs000424.v7.p2) ESR1 Gene eQTL Visualizer

Copy CSV								Search: Show 10 v entries
Gencode Id 🗘	Gene Symbol 🗘	Variant Id 🗘	SNP	\$	P-Value 🗘	NES 🖯 🗘	Tissue 🗘	Actions \diamond
ENSG0000091831.17	ESR1	6_151998105_G_A_b37	rs1293942	dbSNP 🗹	2.2e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151998085_T_G_b37	rs1293943	dbSNP 🗹	2.2e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_152346190_TC_T_b37	rs113533024	dbSNP 🗹	2.4e-7	0.28	Testis	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_152000028_A_G_b37	rs712220	dbSNP 🗹	3.0e-7	-0.20	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151999603_A_G_b37	rs1293938	dbSNP 🗹	3.0e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151999507_C_G_b37	rs1293939	dbSNP 🗹	3.1e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151998723_G_A_b37	rs980280	dbSNP 🗹	3.1e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151990859_G_A_b37	rs1293956	dbSNP 🗹	3.7e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151990954_T_C_b37	rs1293955	dbSNP 🗹	3.8e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
ENSG0000091831.17	ESR1	6_151990961_A_G_b37	rs1293954	dbSNP 🗹	4.3e-7	-0.21	Thyroid	eQTL box plot, IGV eQTL Browser, Multi-tissue eQTL Plot
Showing 1 to 10 of 204 entrie	S							First Previous 1 2 3 4 5 21 Next Last

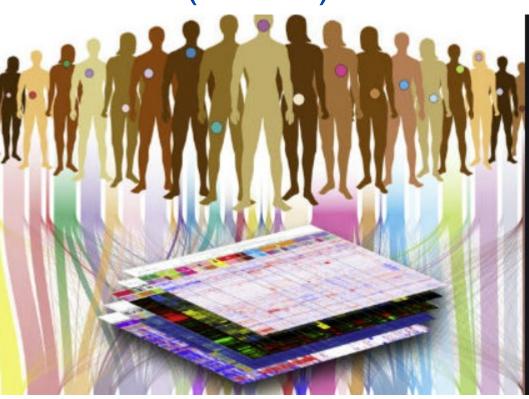
No splice QTLs and protein truncating variants found for ESR1

- Splice QTLs (sQTLSeekeR) for ESR1 (ENSG00000091831.17)

Data Source: GTEx Analysis Pilot V3 (dbGaP Accession phs000424.v3.p1)

- Protein Truncating Variants for ESR1 (ENSG00000091831.17)

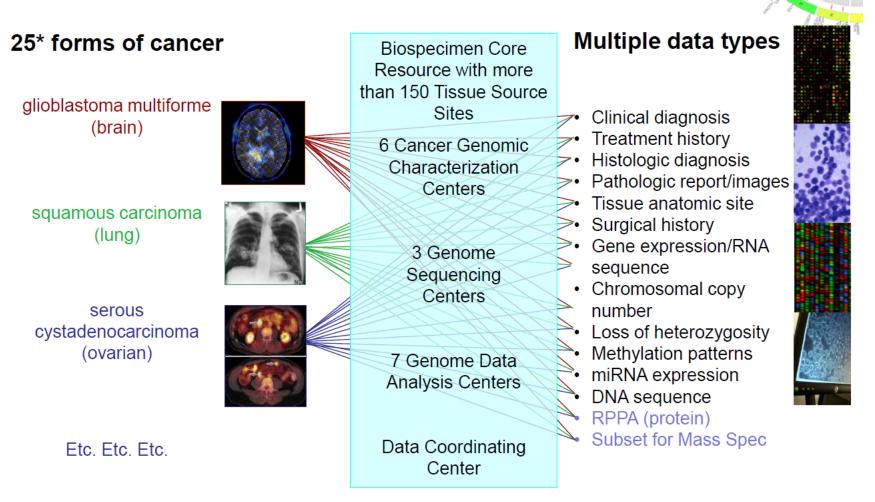
Data Source: GTEx Analysis Pilot V3 (dbGaP Accession phs000424.v3.p1)


Copy CSV					Search:			Show	10 🔻	entries
SNP	Protein Truncating Variant Type	\$	Variant Type	\$ Ref Allele	\$	Alternate Allele		≎ Ac	tions	\$
		No PTV data	a found for gene ESR1							
Showing 0 to 0 of 0 entries							First	Previous	Next	Last

The Cancer Genome Atlas (TCGA)

The Cancer Genome Atlas (TCGA)

A comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.


Cancer.gov

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/)

- Multi-omics data sets for > 33 cancer types
- For more than 30000 individual tumor samples
- RNA-Seq, DNA-Seq, miRNA-Seq, single-nucleotide variant (SNV), copy number variation (CNV), DNA methylation, and reverse phase protein array (RPPA) data
- The biospecimens from TCGA are analyzed by mass spectrometry technique, and the cancer cohort proteomics data are available at Clinical Proteomic Tumor Analysis Consortium (CPTAC) (https://cptac-data-portal.georgetown.edu/cptacPublic/)

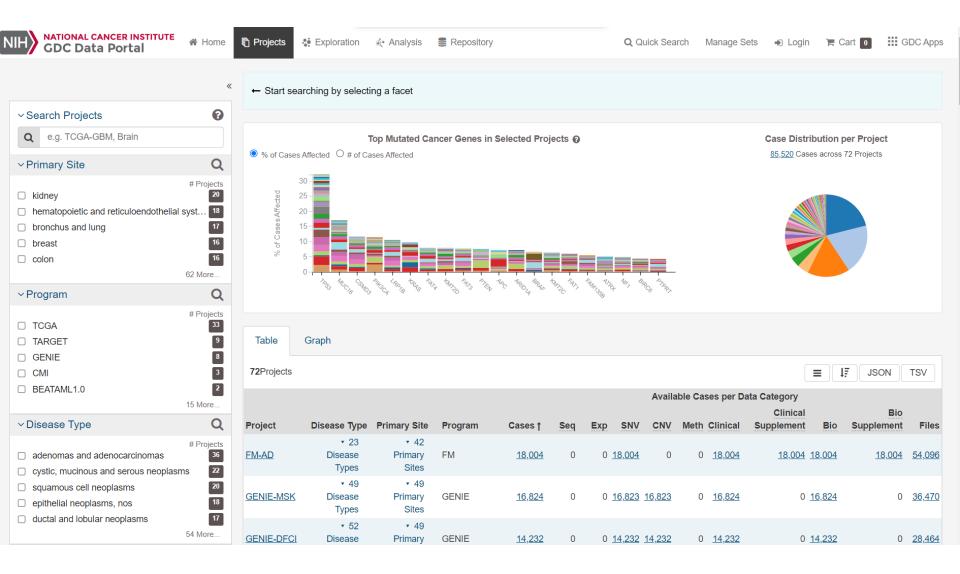
TCGA multiple data types

Reusing the slides from Kenna Shaw's presentation

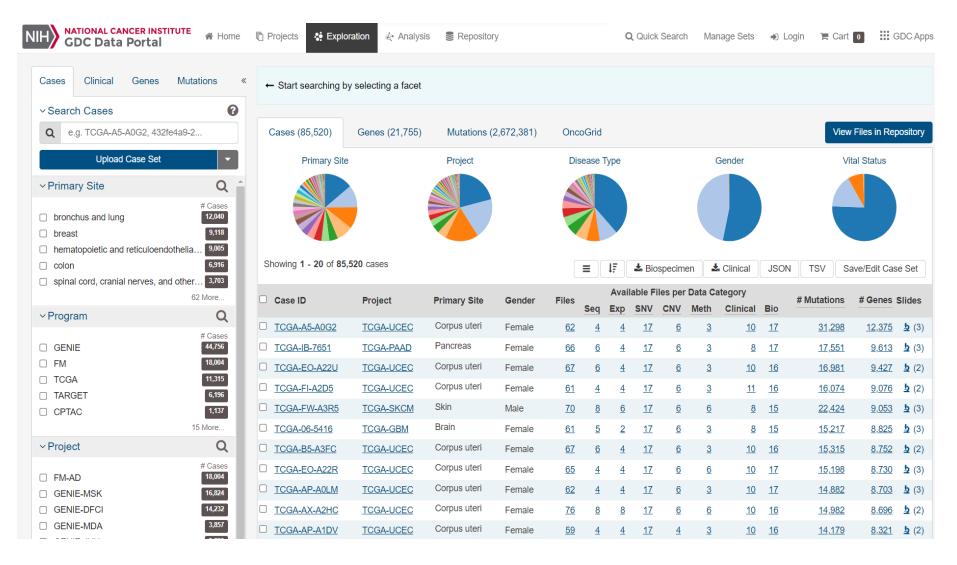
Rare tumors projects

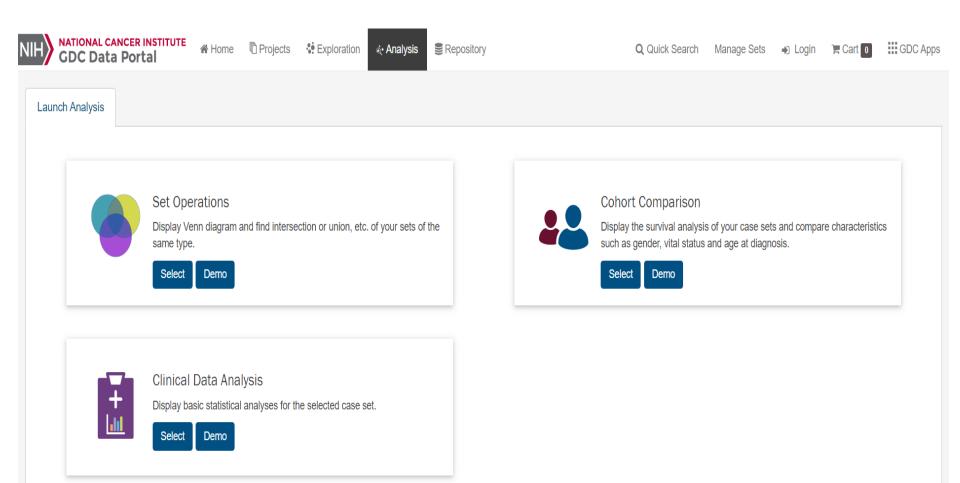
- Adrenocortical Carcinoma
- Adult ALL (B-cell and T-Cell)
- Anaplastic Thyroid
- Cholangiocarcinoma
- Chromophobe kidney
- High Risk MDS (del 5q- cases)
- Mesothelioma
- Paraganglioma/Pheochromocytoma
- Testicular Germ Cell
- Thymoma
- Uterine Carcinosarcoma
- Sarcomas
- Others??

Genomic Data Commons - GDC


Genomic Data Commons

- A NCI repository for The Cancer Genome Atlas and Genomics data.
- It consists of data from 72 projects
- 67 primary sites
- >85K cases
- >2.6 million mutations
- 827,518 files


Genomic data commons


Projects

Exploration

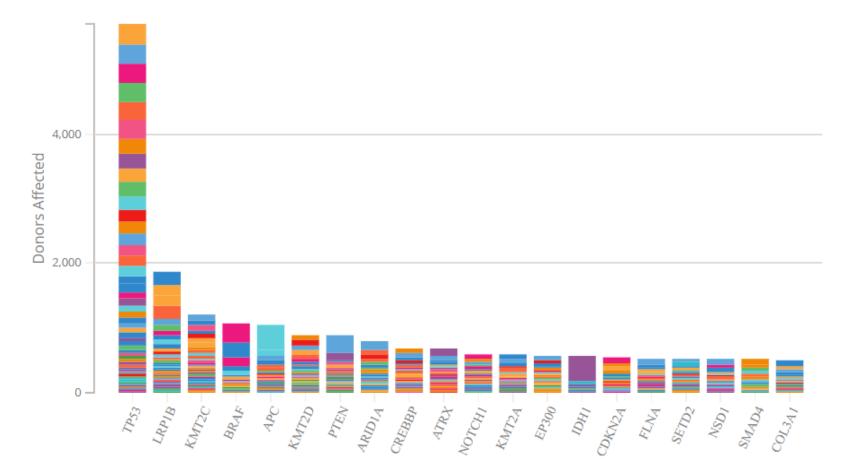
Analysis

Repository

NIH NATIONAL CANCER INSTITUTE GDC Data Portal	A Home	🖻 Projects 🛛 👯 E	xploration ૡ૽• Analysis	Repository	Q Quick	Search Manage Sets	🔊 Login 🏻 🏲	Cart 0 III GDC Apps
Files Cases	«							Browse Annotations
Add a	File Filter	← Start searchir	ng by selecting a facet					🌣 Advanced Search
∽ Search Files	8							
Q e.g. 142682.bam, 4f6e2e7a-b		Files (827,518)	Cases (85,520)		🐂 Add All Files to Cart	🕹 Manifest 🛛 View 85,	520 Cases in Expl	oration View Images
∽ Data Category		Primary	Site	Project	Data Category	Data Type		Data Format
 simple nucleotide variation sequencing reads copy number variation transcriptome profiling biospecimen 	# Files 363,367 109,706 104,537 68,378 56,029 6 More				Show More			
∽ Data Type	Q	Showing 1 - 20 of	f 827,518 files 🖺 2.42	PB				JSON TSV
Annotated Somatic Mutation	# Files 171,333 109,706	► Access	File Name 6e86d166-3fd4-47ca-b52	24-f088f2601264_noid_Red.idat	Cases Project <u>1 CGCI-HTMCP-C</u>	Data Category	Data Format	File Size Annotations13.68 MB0
Aligned Reads Raw Simple Somatic Mutation	99,604 54,115		ff4bae0a-b24e-461d-a80 am	02-28b27ad870bf_wgs_gdc_realn.t	² <u>1</u> <u>CGCI-HTMCP-C</u>	C Sequencing Reads	BAM	357.34 GB 0
 Transcript Fusion Masked Annotated Somatic Mutation 	44,755		<u>c34df513-0a27-4e5e-85</u> am	77-465fb7a2aa18_wgs_gdc_realn.	<u>b</u> <u>1</u> <u>CGCI-HTMCP-C</u>	<u>C</u> Sequencing Reads	BAM	426.4 GB 0
∽ Experimental Strategy	22 More	📜 🔓 open	968d31e7-72a1-4ffd-be1 y.sesame.level3betas.txt	d-60de993265d4.methylation_arra	1 CGCI-HTMCP-C	C DNA Methylation	ТХТ	23.28 MB 0
□ WXS	# Files 291,809	📜 🔒 open	a6c09a6c-1f62-4ab8-8e4 ed_star_gene_counts.tsv	45-1c43b91645f9.rna_seq.augmen ⊻	t <u>1 CGCI-HTMCP-C</u>	C Transcriptome Profiling	TSV	4.25 MB 0
RNA-Seq Targeted Sequencing	139,430 136,961		<u>2e3a6c49-8689-4331-a1</u> g <u>dc_realn.bam</u>	f6-c51e4170ffb4.rna_seq.chimeric	<u>1</u> <u>CGCI-HTMCP-C</u>	C Sequencing Reads	BAM	291.6 MB 0
Genotyping Array	68,422 48 597	📜 🔓 open	09f5e70d-6f7e-4899-b15 s.quantification.txt	<u>8-c891cf025563.mirnaseq.isoform</u>	1 CGCI-HTMCP-C	<u>C</u> Transcriptome Profiling	TSV	584.34 KB 0

International Cancer Genomics Consortium (ICGC; https:// icgc.org/)

- Large-scale generation of genome studies from 86 cancer projects in 22 primary cancer sites from 22,330 donors (RELEASE 28)
- This project mainly contains mutation-related genomic alteration data (both germline and somatic) across cancer types from various ethnicities
- The Pan-cancer analysis of whole genomes (PCAWG; https://dcc.icgc.org/pcawg) allows the exploration and analysis of more than 2800 whole genomes from ICGC


International Cancer Genome Consortium

- Cancer Projects
- Cancer Primary Sites
- Patients with molecular data
- Total Donors
- Somatic mutations identified

86 22 22,330 24,289 81.7million

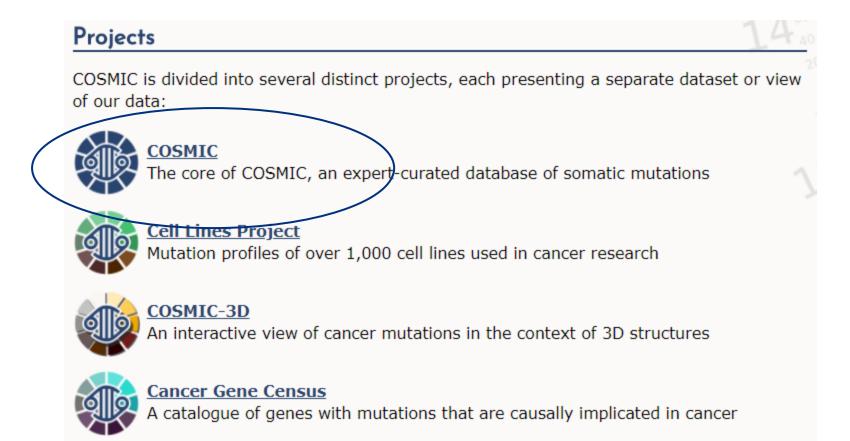
https://dcc.icgc.org/projects

Top 20 mutated cancer genes with high functional impact somatic mutations

https://dcc.icgc.org/projects

Cancer Cell Line Encyclopedia (CCLE; (https://portals.broadinstitute.org/ccle)

- Hosted by Broad institute is a compilation of gene expression, copy number, and sequencing data from 947 human cell lines and for 36 tumor types.
- It also houses the pharmacological profiles of 24 anticancer drugs across the cancer cell lines.
- https://depmap.org/portal/interactive/



COSMIC

"COSMIC, the Catalogue Of Somatic Mutations In Cancer, is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer."

40

Expert curated database

COSMIC

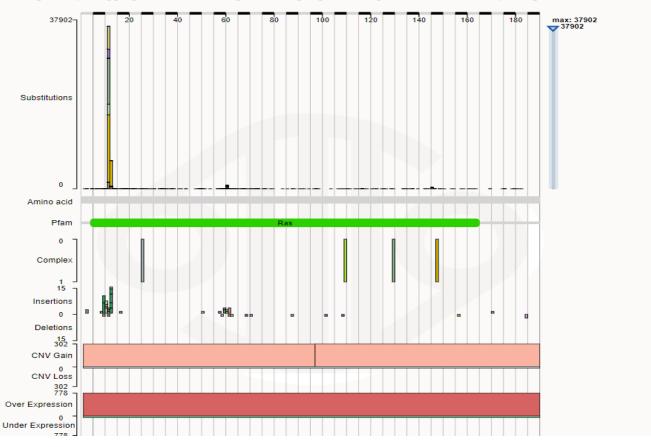
Projects V Data V Tools V News V Help V About V Genome Version V Search	arch COSMIC	Login
<u>COSMIC-3D</u> now Up	Jpdated and Mapped to COSMIC v95	
7	NW	
COSMIC v95, released 24-NOV-21	COSMIC News	smic_sange
COSMIC, the Catalogue Of Somatic Mutations In Cancer, is the world's largest and most	What are the emerging trends in cancer research? Our five key-takeaways fro	m AACR-
itart using COSMIC by searching for a gene, cancer type, mutation, etc. below. 15	Read about the five emerging trends we took away from our time at AACR-2022	More
eg Braf, COLO-829, Carcinoma, V600E, BRCA-UK, Campbell	Closing the care gap for rare cancers: Three examples in COSMIC	
Projects 14	Closing the care gap through COSMIC's curation of rare cancers. More	
COSMIC is divided into several distinct projects, each presenting a separate dataset or view of bur data:		
The core of COSMIC, an expert-curated database of somatic mutations	In the driving seat: An interview with Cancer Mutation Census's Senior Bioinfo	ormatician,
Cell Lines Project Mutation profiles of over 1,000 cell lines used in cancer research	COSMIC's Cancer Mutation Census (CMC) is a new tool that identifies and charac likely somatic mutations driving cancer. Read more about the development and o CMC with Senior Bioinformatician, Bhavana Harsha. <u>More</u>	
An interactive view of cancer mutations in the context of 3D structures		N and
Cancer Gene Census	Tools	1. 19 C
		42

Cotalogue Of Somatic Mutations In Cancer																
Projects 🔻	Data	▼	Tools	▼	News	▼	Help	▼	About	▼		Genome Version	▼	Search COSMIC	SEARCH	
Gene KRAS					Gen	2 1	view									

Gene view

× Overview ➤ External links ☑ Drug resistance ➤ Tissue distribution Genome browser Mutation distribution × Variants × References <u>Reset page</u> Search

Filters


Show advanced filters

Search COSMIC.

☑ Gene view

Range Show input fields 190 48 143 96 190 Coordinate system Amino-acid O cDNA Apply filters Reset filters

The gene view histogram is a graphical view of mutations across KRAS. These mutations are displayed at the aminc of the gene by dragging across the histogram to highlight the region of interest, or by using the sliders in the filters

Gene	Overview	
••••••	This section gives an overview of KR.	AS_ENST00000311936, along with links to any related data and resources.
KRAS_ENST00000311		
☑ Gene view	Census gene	Curated gene Mouse gene
× Overview =	COSMIC gene	KRAS_ENST00000311936 (COSG4)
🗵 External links 📃	Genomic coordinates	<u>12:2520478925250931</u> (negative strand)
🗵 Drug resistance 📃		
I Tissue distribution	Synonyms	KRAS, KRAS1, KRAS2, CCDS8702.1, P01116, ENSG00000133703.11, NM_004985.4, NP_004976
🛛 Genome browser 🛛 🖃	COSMIC-3D	There are 201 structures for KRAS_ENST00000311936 . View them in <u>COSMIC-3D</u> .
🗵 Mutation distribution 🛛 😑		
🗵 Variants 🔤		
🗵 References 📃		E A CARACTERIA
Reset page		
Search		
Q Search COSMIC		endowe.
Ed.	Number of samples	275946 unique samples
Filters		49449 unique samples with mutations
Show advanced filters	Alternative transcripts	<u>KRAS, KRAS_ENST00000556131, KRAS_ENST00000557334</u>
Range Show input fields	-	You can see various sequences for this gene:
1 189	Sequences	<u>cDNA</u> (ENST00000311936.7)
		Protein (KRAS_ENST00000311936)
1 48 95 142 189 Coordinate system		Transcript and protein aligned (ENST00000311936.7+KRAS_ENST00000311936)
Amino-acid	Gene fusions	KRAS_ENST00000311936 is involved in 1 fusion, with the following gene:
○ cDNA		UBE2L3_ENST00000342192 (1 mutation in 1 sample)
Apply filters Reset filters	Drug sensitivity data	n/a
	<u> </u>	

Drug Resistance and tissue distribution

Drug resistance

Gene

KRAS_ENST00000311...

- × Gene view × Overview × External links
- 🗵 Drug resistance × Tissue distribution
- Kenome browser
- × Mutation distribution
- × Variants
- × References Reset page
- Search

This section shows the drugs associated with KRAS_ENST00000311936 resistance mutations. In the tabs below you can see any other genes that have resistance mutations to the same drug(s), and the distribution of mutations that occur in those genes.

Alternative transcripts are also displayed here for genes where reported resistant mutations are not located on the canonical transcript but are on the alternative, and also where reported resistant mutations are located at the same genomic position on both the canonical and alternative transcripts or on overlapping genes and/or fusions and share a COSM id.

No targeted therapeutic data has been curated for your selection.

Tissue distribution

The table shows the distribution of mutations across the primary tissue types that are curated by COSMIC. Histograms show the percentage of mutated samples for point mutations, CNV data and gene expression data. Moving your mouse over the histograms will show additional data. The number of samples tested on this page include samples from the targeted and whole genomes/exome resequencing where all the protein coding genes have been screened for mutations.

You can see additional information about the data presented here in the help pages.

Q Search COSMIC	Show All 🗸 entries						Se	arch:	
Filters	Tissue	Point Mutation	s	Copy Number Vari	ation	Gene Expression	Methylation		
Show advanced filters	^	% Mutated 🍦	Tested 🍦	Variant %	Tested 🍦	% Regulated 🖕	Tested 🍦	% Diff. Methylated	Tested 🍦
Range <u>Show input fields</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Adrenal gland	•	<u>1330</u>	D	267		-		-
	<u>Autonomic ganglia</u>	1	<u>1591</u>		-		-		-
1 48 95 142 189 Coordinate system	<u>Biliary tract</u>		<u>5583</u>		-		-		-
 Amino-acid 	Bone	•	<u>1202</u>		-		-		-
O cDNA	Breast	•	<u>11611</u>	•	<u>1492</u>		-		-
Apply filters Reset filters	<u>Central nervous</u> <u>system</u>		<u>5051</u>	٥	<u>1035</u>		-		-
	<u>Cervix</u>	-	<u>2865</u>		<u>299</u>		-		-
	<u>Endometrium</u>	—	<u>4817</u>	0	<u>586</u>		-		-

Cell Lines Project

Projects

COSMIC is divided into several distinct projects, each presenting a separate dataset or view of our data:

COSMIC The core of COSMIC, an expert-curated database of somatic mutations

Cell Lines Project

Mutation profiles of over 1,000 cell lines used in cancer research

COSMIC-3D

An interactive view of cancer mutations in the context of 3D structures

Cancer Gene Census

A catalogue of genes with mutations that are causally implicated in cancer

Cell lines project

 Mutation profiles of over 1,000 cell lines used in cancer research (e.g.MCF7)

COSN Catalogue Of Somatic Mut	tations In Cancer	Cell lines 🐲		
Projects ▼ Data ▼ Tools ▼	▼ News ▼ Help ▼ About ▼	Genome Version ▼ Search COSI	AIC	Login
		COSMIC-3D now Update	d and Mapped to COSMIC	v95
Sample				GRCh38 · CELL LINES v95
COSS905946	Overview			
🗵 Overview 📃	This tab shows an overview of the da	ata that we have for this sample	You can read more about thes	e data on our <u>help pages</u> .
∠ Circos ∠ Genome browser	Sample information			
× Variants	Sample name	MCF7		
✓ Mutation spectrum =	COSMIC sample ID	COSS905946		
Sequence context Image: Sequence context Ima	Tumour location	Breast (Carcinoma) View this tissue/histology in the <u>Canc</u>	er Browser	
Non-mutant genes	Screening method	Whole exome screening		
References	Source	Sample type	Cultured Sample	
Reset page		Cell line source	primary	
		Sample source	cell-line	
	Curated features			
	Sample details	n/a		
	Tumour details	n/a		
	Individual details	Age	69	
		Ethnicity	Caucasian	
		Gender	Unknown	
		Normal tissue tested	No	

Projects

COSMIC is divided into several distinct projects, each presenting a separate dataset or view of our data:

<u>COSMIC</u>

The core of COSMIC, an expert-curated database of somatic mutations

Cell Lines Project

Mutation profiles of over 1,000 cell lines used in cancer research

COSMIC-3D

An interactive view of cancer mutations in the context of 3D structures

Cancer Gene Census

A catalogue of genes with mutations that are causally implicated in cancer

COSMIC-3D

• A platform for understanding cancer mutations in the context of 3D protein structure.

COSMIC-3D for COSMIC Release v95 (2022-03-01)

Projects

COSMIC is divided into several distinct projects, each presenting a separate dataset or view of our data:

COSMIC

The core of COSMIC, an expert-curated database of somatic mutations

Cell Lines Project

Mutation profiles of over 1,000 cell lines used in cancer research

COSMIC-3D

An interactive view of cancer mutations in the context of 3D structures

Cancer Gene Census

A catalogue of genes with mutations that are causally implicated in cancer

Gene Tiers in Cancer Gene Census

- Census tiers 578 genes
- Tier 1 A gene must possess a documented activity relevant to cancer, along with evidence of mutations in cancer which change the activity of the gene product in a way that promotes oncogenic transformation.
- **Tier 2** Consists of genes with strong indications of a role in cancer but with less extensive available evidence.

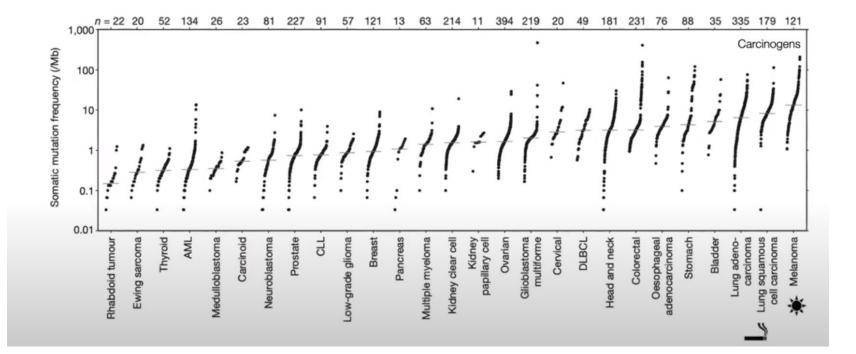
Breakdown of Genes/mutations

Census

Abbreviations
Reset page

Overview Cancer Gene Census Breakdown

Breakdown


The gene list has been annotated with information concerning chromosomal location, tumour types in which mutations are found, classes of mutation that contribute to oncogenesis and other genetic properties. We have sorted the data in a number of ways to list subsets of cancer genes with similar features. However, we would recommend that those wishing to scrutinise the list in detail should download it in its entirety from the table in the 'Cancer Gene Census' section.

Sorted By	Number
Amplifications	24
Chromosome	578
Frameshift Mutations	158
Gene Symbol	578
Germline Mutations	102
Large Deletions	42
Missense Mutations	255
Nonsense Mutations	157
Other Mutations	38
Somatic Mutations	538
Splicing Mutations	73
Translocations	314

cBioPortal

TCGA - Somatic mutations in different cancer types

Lawrence MS et al., Nature 2013

©2017 MFMER | 3702274-54

54

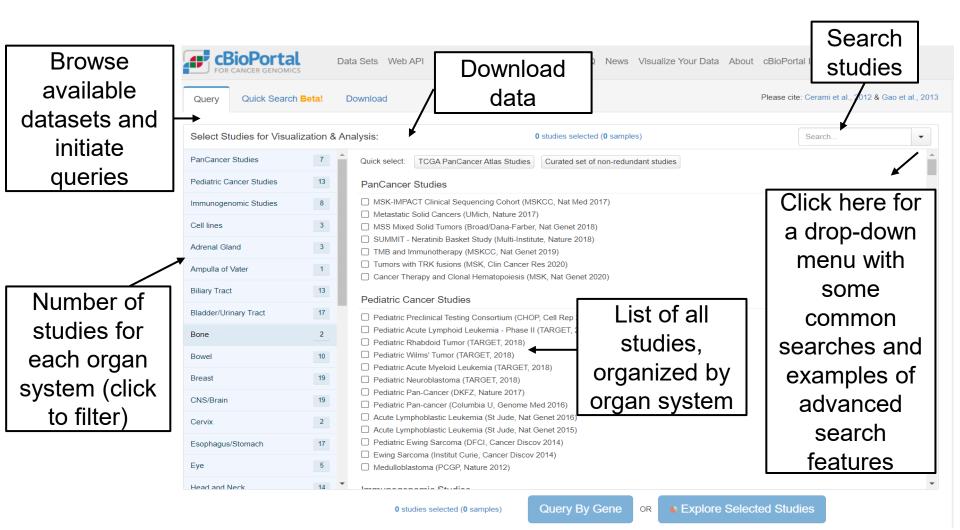
Public cancer genomics data for mining

- Cbioportal
- Visualization of multi-omics data
- Conduct simple analysis
- Summary of mutations and other data types
- Walkthrough simple queries
 - Glioma example
 - Breast cancer example
 - Pan-can analysis
 - Other examples

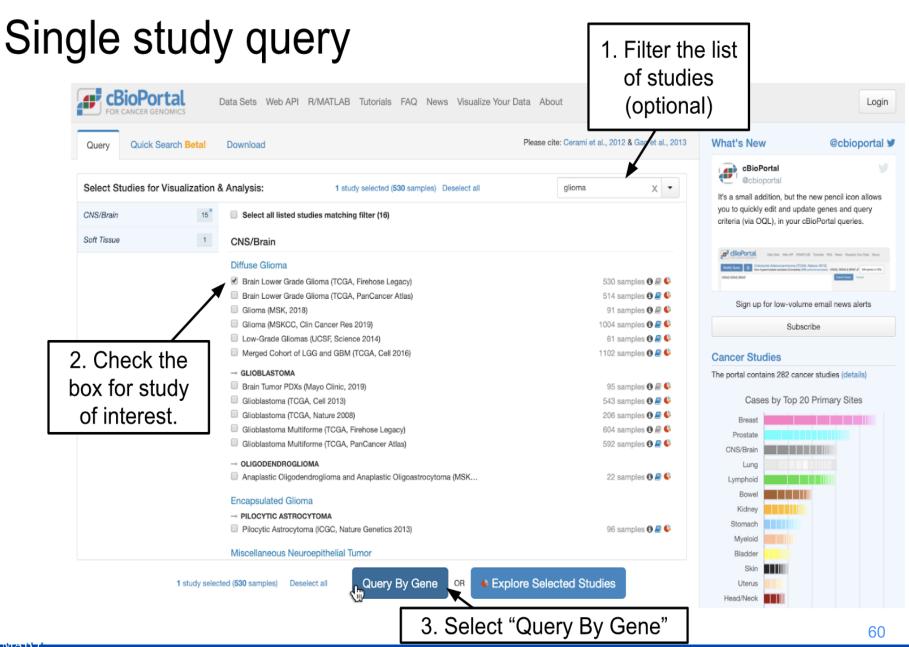
Overview

- Show how to run a single-study query from the main page
- Walk through each of the data/analysis tabs in a single-study query
 - OncoPrint
 - Cancer Types Summary
 - Mutual Exclusivity
 - Plots
 - Mutations

- Co-expression
- Comparison (includes Survival, formerly a separate tab)
- CN Segments
- Pathways (replaces the Network tab)
- Download
- Show how to modify and re-run a query


Overview of Tabs in a Single Study Query

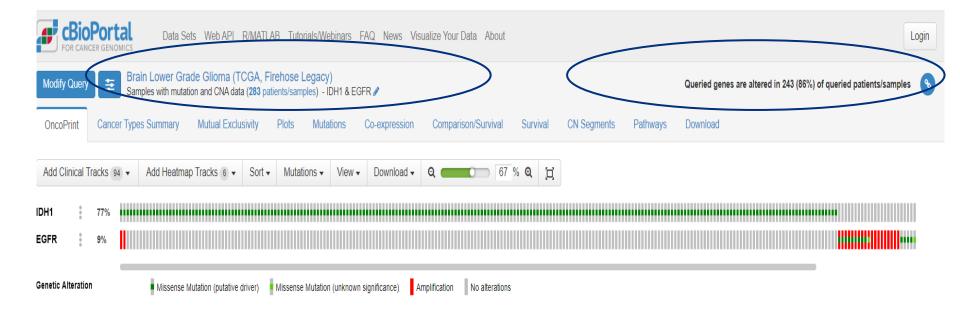
Note that depending on the query run and the data available for a particular study, not all of these will be present (e.g. a study without mRNA expression data will not have a Co-expression tab)


- OncoPrint: Overview of genetic alterations per sample in each query gene
- Cancer Types Summary: Frequency of alteration in each query gene in the detailed cancer types included in this study
- Mutual Exclusivity: Statistical analysis to determine if query genes are mutually exclusively altered
- Plots: explore the relationships among genetic alterations, gene expression, protein levels, DNA methylation and available clinical features
- Mutations: Details about mutations called in each query gene
- **Co-expression:** Explore which genes have mRNA/protein levels correlated with query genes
- **Comparison:** Explore overlaps, outcomes, clinical attributes and genomic data comparisons among groups of samples as defined by the query
- **CN Segments:** Explore copy number changes with the Integrated Genomics Viewer (IGV)
- Pathways: Explore queried genes in TCGA-defined pathways
- Download: Download data or copy sample lists

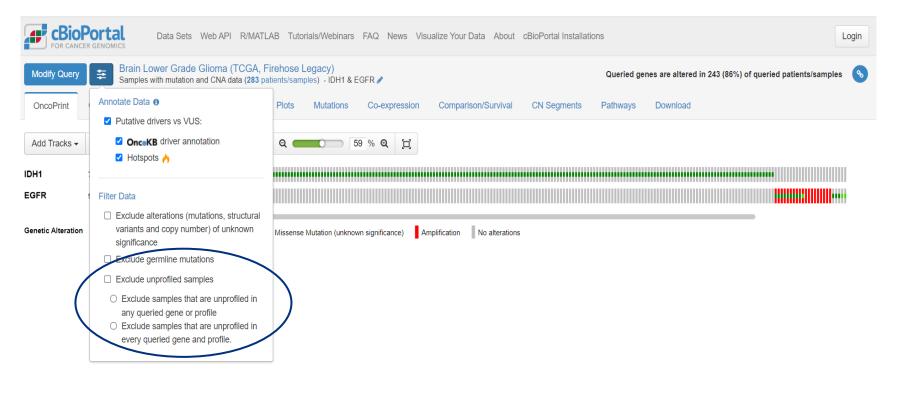
Glioma example

Query overview

MAYO CLINIC

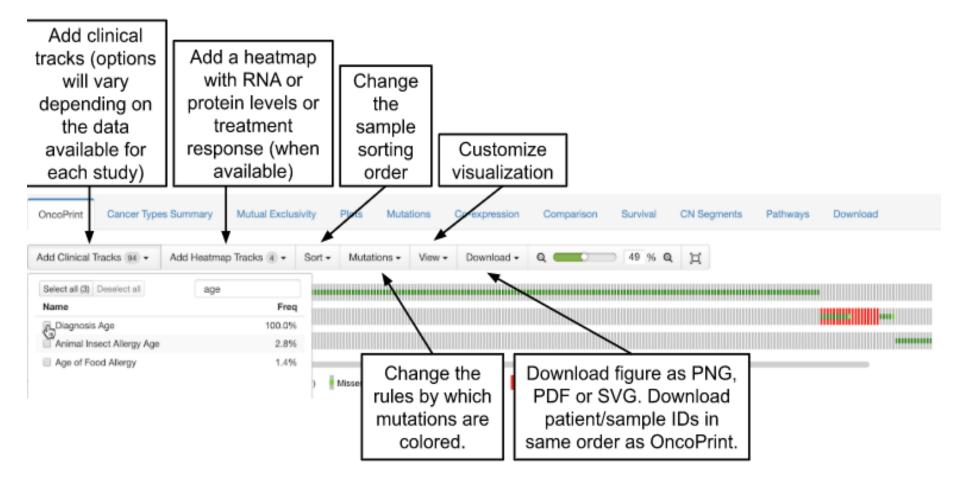


Data Sets Web API R/MATLAB Tutorials/Webinars FAQ News Visualize Your Data About


Query Quick Search Beta! Download Selected Studies: Modify Brain Lower Grade Glioma (TCGA, Firehose Legacy) (530 total samples) Select Genomic Profiles: Mutations 🔞 Putative copy-number alterations from GISTIC 0 mRNA Expression. Select one of the profiles below: O mRNA expression z-scores relative to diploid samples (microarray) 2 O mRNA expression z-scores relative to diploid samples (RNA Seq V2 RSEM) @ O mRNA expression z-scores relative to all samples (log RNA Seq V2 RSEM) @ \bigcirc mRNA expression z-scores relative to all samples (microarray) ${f 0}$ tein expression Z-scores (RPPA) 🔞 Select Patient/Case Set: Samples with mutation and CNA data (283) × Ŧ To build your own case set, try out our enhanced Study View Enter Genes: User-defined List × Ŧ Hint: Learn Onco Query Language (O(L) IDH1 to write more powerful queries 🗹 EGFR All gene symbols are valid. Submit Query

Glioma Query

Annotations and Filtering


OncoPrint

Summary of alterations per sample. Each sample is a column. Each gene is a row. Different kinds of genetic alterations are highlighted with different colors.

64

OncoPrint: Features

OncoPrint: What can we learn?

OncoPrint	Can	cer Typ	es Summary Mutual Exclusivity Plots Mutations Co-expression Comparison Survival CN Segments Pathways Download
Add Clinical Tra	acks	94 +	Add Heatmap Tracks a + Sort + Mutations + View + Download + Q 47 % Q
Diagnosis Age	÷		
IDH1	÷	77%	
EGFR	÷	9%	
IDH2	÷	5%	
Genetic Alteration			Missense Mutation (putative driver) Missense Mutation (unknown significance) Amplification Deep Deletion No alterations
Diagnosis Age			14 75

Mutually exclusive – alterations in one gene tend to not have alterations in other genes Patients with alterations in EGFR tend to be older than patients with IDH1/2 alterations.

Mutual Exclusivity with Glioblastoma example

All pairwise combinations of query genes analyzed for mutual exclusivity or co-occurrence in the queried samples.

On the OncoPrint tab we could see visually that alterations in these three query genes tended to be mutually exclusive. Here we can address that same question with a statistical analysis.

Columns -

The query contains 3 gene pairs with mutually exclusive alterations (2 significant), and no gene

Mutual exclusivity Co-occurrence Significant only

OncoPrint

									Onor on any
Gene A	Gene B	Neither	A Not B	B Not A	Both	Log Odds Ratio	p-Value 🛦	Tendency	column
EGFR	IDH1	40	24	217	2	<-3	<0.001	Mutual exclusivity Significant	header to
IDH1	IDH2	52	218	12	1	<-3	<0.001	Mutual exclusivity Significant	
EGFR	IDH2	244	26	13	0	<-3	0.278	Mutual exclusivity	sort. Hover
					9	Showing 1-3 of 3	Ť		over the
									column

ichmen

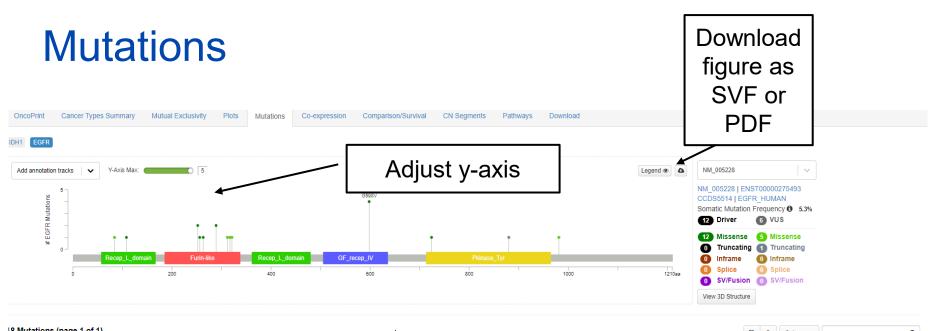
A positive value here suggests that I alterations in these genes co-occur in the same samples, while a negative value suggests that alterations in these genes are mutually exclusive and occur in different samples.


log₂(

p-Value comes from Fisher Exact Test. Note that this is an unadjusted p-value and may need to be corrected for multiple hypothesis testing.

Click on any names for more details about how values are calculated.

odds of alteration in B given alteration in A odds of alteration in B given lack of alteration in A

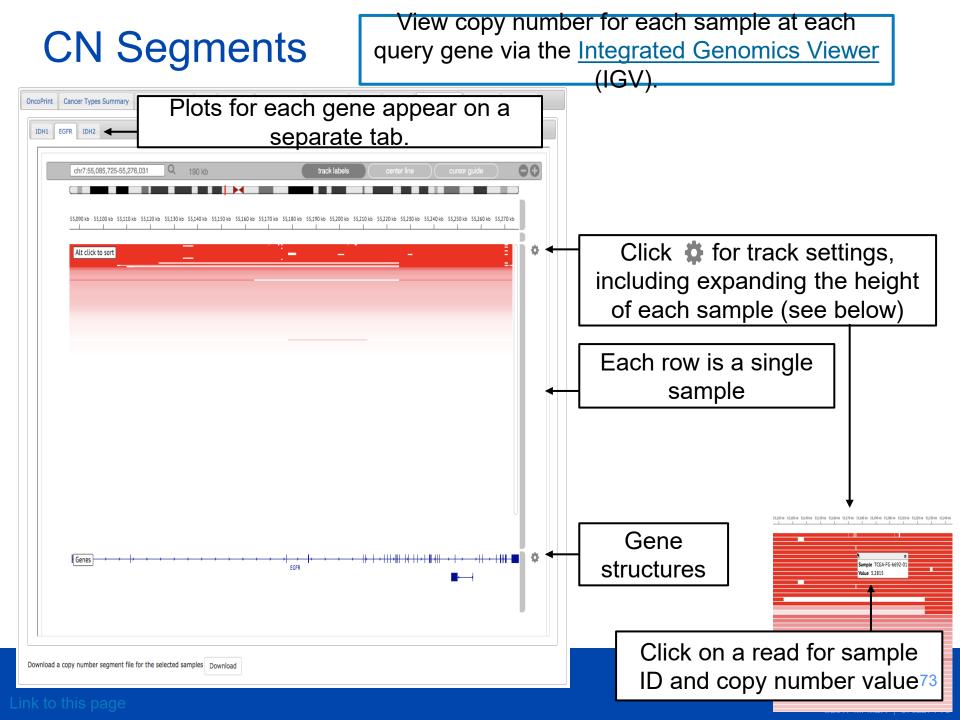

Depending on available data types for a given study, this tab allows for plots comparing copy number, gene expression, protein levels and DNA methylation of query genes, along with any available clinical attributes.

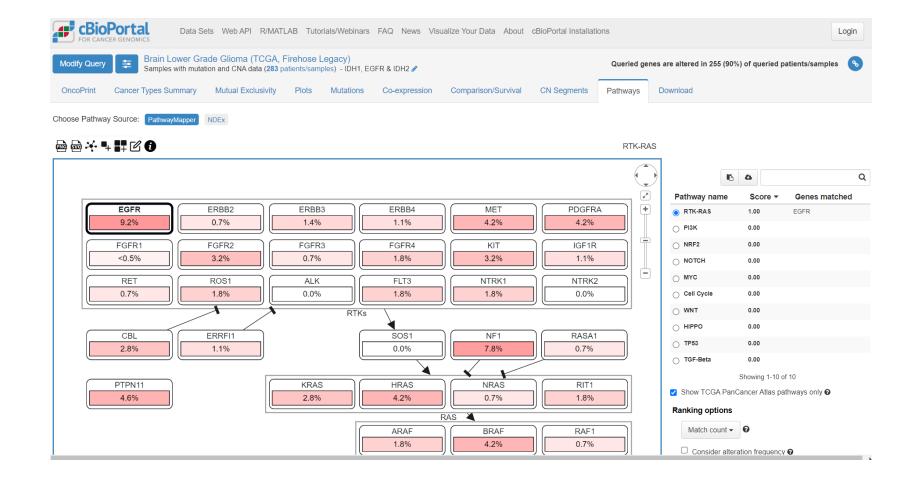
Plots

Mutations

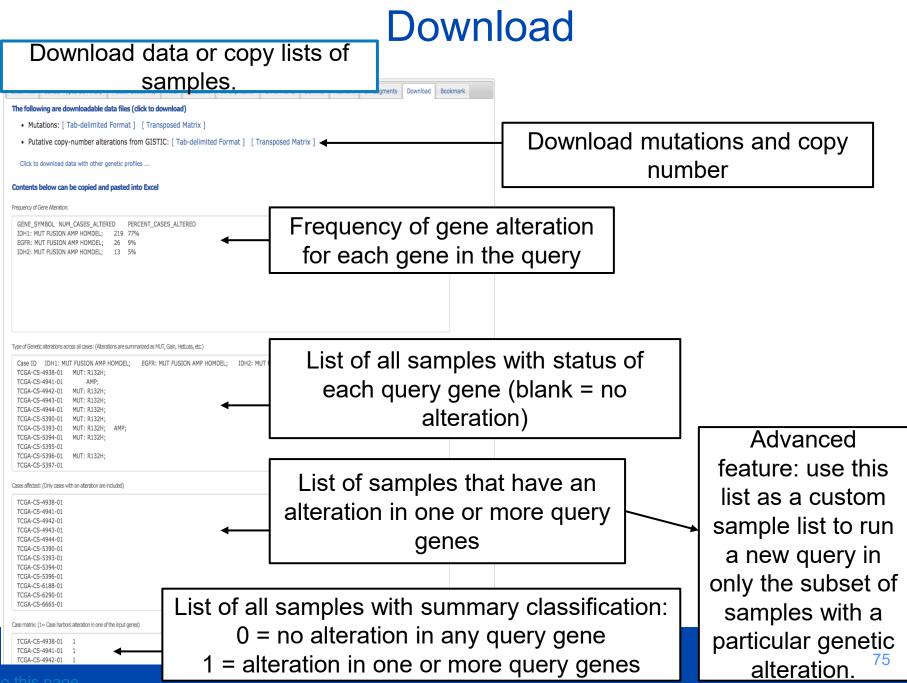
IDH1 EGFR IDH2	nd 👁	65 5	com	Lo nm	oots for lliplot sh on altera appears	nows atior	659 1. The	98V is e Fur	s the in-lik	most e doma
	200 400	GF_recep_IV	Pkinase_1	ўт Г	1000 1	210aa	View 3D Struc	cture		
Sample ID	Cancer Type	Protein Change	Annotatio	on V	Mutation Type	Copy #	Column COSMIC	s - Mutation Assessor	Allele Freq (T)	Q # Mut in Sample
TCGA-FG-6692-01	Anaplastic Oligoastrocytoma	A289V	0 1	ð	Missense	Amp	50	Medium	0.95	59
TCGA-DU-A5TT-01	Anaplastic Oligoastrocytoma	A289V	۵ 🐇	0	Missense	Gain	50	Medium	0.44	42
TCGA-HT-8110-01	Anaplastic Astrocytoma	R108K	6 1	•	Missense	Amp	17	Medium	0.94	24
TCGA-DU-7013-01	Anaplastic Astrocytoma	G598V	o 🛃	0	Missense	Amp	36	High	0.96	29
1CGA-DU-7013-01				0	Missense	Amp	36	High	0.55	18
TCGA-DU-7013-01	Oligoastrocytoma	G598V	0 2	0						
The second s	Oligoastrocytoma Oligoastrocytoma	G598V G598V	● ¹/₂	0	Missense	Amp	36	High	0.96	55
TCGA-DU-8162-01					Missense Missense	Amp Amp	36 36	High High	0.96 0.41	55 46
TCGA-DU-8162-01 TCGA-FG-A4MU-01	Oligoastrocytoma	G598V	0 1 0 1 0 1	•						
TCGA-DU-8162-01 TCGA-FG-A4MU-01 TCGA-HT-A5RC-01	Oligoastrocytoma Anaplastic Astrocytoma	G598V G598V	 ● ↑ 	•	Missense	Amp		High	0.41	46

8 Mutations (page 1 of 1)		•	۵ (Columns 🗸	Q				
Sample ID	Cancer Type	Protein Change	Annotation ▼	Mutation Type	Copy #	COSMIC		Allele Freq (T)	# Mut in Sample
TCGA-FG-6692-01	Anaplastic Oligoastrocytoma	A289V	i 🙆 🔮 🔥 🔗	Missense	Amp		50	0.95	59
TCGA-DU-A5TT-01	Anaplastic Oligoastrocytoma	A289V	🎯 🔕 🎍 🛛 👌	Missense	Gain		50	0.44	42
TOPPA LIT CALCOL		B (AA)/			Amp			0.94	24
	una ava duarrea a				Gain			0.23	36
IVIUTATIO	ns are drawn a	s ioiiipops a	along the (domain j	Amp			0.96	29
ΤC		• •	0		Amp			0.55	18
structur	e of the gene.	The heigh	nt of the		Amp			0.96	55
10	0	0			Amp			0.41	46
	how many time	s that mutat	ion was de	etected.	Amp			0.06	49
					Amp Gain			0.79	34
l his pla	ot will update ba	ased on any	' filters app	blied to	Amp			0.23	57
-	•	•			Diploid			0.26	33
I the tabl	e below. Hover of	over anv Iolli	pop for ad	ditional I	Amp			0.02	49
Т		J	1 1		Gain		1	0.06	40
details.									


Mutations


3D

71


This mutation is a recurrent hotspot based on a statistical analysis of **Cancer Types Summary** Mutual Exclusivity Mutations OncoPrint Plots mutation frequency. EGFR IDH2 IDH1 Y-Axis SVG & PDF & Legend @ You may also see this symbol which R132C/G/H/S means the mutation is a recurrent 219 hotspot based on a statistical analysis # Mutations of 3D protein conformation. lso_dh 100 200 300 414aa This mutation is in OncoKB as a Level 3 variant. Hover over this Q Columns . symbol to see additional Mutation Allele # Mut in information, including that this is a Annotation V Mutation Type Copy # COSMIC Freg (T) Assessor Sample known oncodenic mutation Diploid Missense 4964 0.41 26 High TCGA-HT-7479-01 R132C Diploid Anaplastic Astrocytoma Missense 4964 0.24 17 High Diploid TCGA-FG-8185-01 Anaplastic Astrocytoma R132C Missense 4964 0.39 29 High TCGA-HT-7693-01 ShallowDe Oligodendroglioma R132C 4964 0.48 24 Missense High TCO 30 This mutation is an she TCO 28 This mutation is in annotated in CIViC. Hover TCC 18 My Cancer Genome. 25 TCC over this symbol for TCG 25 additional information. 0 1 Diploid TCG Missense 4964 0.31 10 High 0 🔥 Diploid TCGA-DB-5276-01 Oligoastrocytoma R132C 0.20 13 Missense 4964

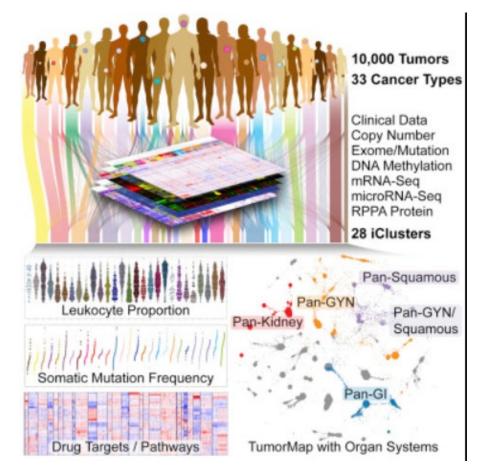
Select from available data types Each gene	DncoPrint Cancer Data Set (mRNA ex This table lists the g	r Types Summ xpression (RNA	ary Mutua A Seq V2 RSE	Exp	Mutations Co-	Expression	C ex agai v	pressi nst all vith Pe	on of othe earso tions	your o r gene n and	orotein level query genes s. Only genes Spearman r <-0.3 are	
appears on	Show All		ŧ				mRNA co-expres	sion: EGFR vs. TRRA				
a separate	Correlated Gene	Cytoband <	Pearson's Correlation	Spearman's Correlation					_			
· · .	TRRAP	7q21.2- q22.1	0.37	0.60		SVG	PDF Show Mutati	ons 🗹 Log Scale X		EGFR mutated	Check boxes t	o oolor
l tab	ZNF107 RBL1	7q11.2 20q11.2	0.36	0.60	12.5 -				Pearson: 0.37 Spearman: 0.60	TRRAP mutated Neither mutated		
Click on a gene name to see correlation plot	BAZ1B ZNF713 ILDR2 PRKDC UEVLD XRCC2 TNP01 FKBP14 TMEM131 RAD18 SKP2 KIAA1524 CENPO NUP205 TRIM24 ZNF558 PHF14 MCM4 CDC23 NCAPG2 CHCHD1	7q11.23 7p11.2 1q24.1 8q11 1p15.1 7q36.1 5q13.2 2q11.2 3p25.3 3q13.13 2q23.3 7q33 7q33 7q32.q34 19p13.2 7p21.3 8q11.2 5q31 7q36.3 1qq2.2	0.40 0.42 0.33 0.31 0.30 0.41 0.33 0.30 0.31 0.31 0.31 0.33 0.35 0.33 0.35 0.33 0.36 0.32 0.38 0.35 0.38 0.35 0.38 0.35 0.32	0.58 0.57 0.57 0.57 0.56 0.55 0.55 0.54 0.52 0.51 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49	-0.21 (10 92) (10-0.21) -0.21	• •					code sample mutation sta change x- or y log scal	tus or ⁄-axis to
	ZNF829 SLC25A28 PRR11	19q13.12 10q24.2 17q22	0.31 -0.30 0.36	0.46 -0.46 0.45	9.0 -	6	8 10	12 14	16			
	UHRF1	19p13.3	0.34	0.45		EG	GFR, mRNA expressio	n (RNA Seq V2 RSEM	l) (log2) 🔞			
	1 to 30 of 127		Do	wnload Full Results								

©2017 MFMER | 3702274-75

Breast cancer example

CNV

mRNA overexpressed


OncoPrint	Can	cer Typ	es Summary	Mutu	al Exclusivity	Plots	Mutations	Co-Expression	Enrichments	Network	CN Segments	Download	Bookmark	
Case Set:	All Cor	nplete 1	Tumors (993	patients	; / 993 samples)								
Altered in 4	455 (4	6%) of	993 sequen	ced case	s/patients (993	total)								
BRCA1	•	13%	-	-										A
BRCA2	0 0 0	11%												
CDH1	•	17%	11	L L	1			1 E						
KDM3B	0 0 0	10%	L I		1		1 1 1							
CENPH	•	8%												•
			•											۱.
Genetic Alt	eration				Iutation (unknowr		_	ense Mutation (putati				ance)		
				Truncatin	g Mutation (putati	ve driver)	Truncating	g Mutation (unknown _	significance)	Fusion	Amplification	eep Deletion		
				mRNA U	pregulation	nRNA Dov	vnregulation	No alterations						

Show Any Correlation	on 🔻 😝 🛆	Enter gene or o	ytoband. Q								_		
Correlated Gene	Cytoband	Pearson's Correlation	Spearman's Correlation ▼	mR	NA Express		Show Normali		_			GO PDF	• SeqV2 syn4976369: BRC
(NL1	15q15.1	0.69	0.79						_				
GAS2L3	12q23.1	0.63	0.75		2k			0					
CLSPN	1p34.3	0.60	0.73										Pearson: 0.69
5MC2	9q31.1	0.66	0.72		1.8k								Spearman: 0.79
PRR11	17q22	0.19	0.72										
ARHGAP11B	15q13.2	0.63	0.71		1.6k								
RBL1	20q11.23	0.50	0.71			0						Ĭ	 BRCA2 mutated
CKAP2L	2q14.1	0.66	0.71	. . 1	1.4k								
(IF20B	10q23.31	0.61	0.71	59.1	1.2k								 KNL1 mutated
ENPI	Xq22.1	0.61	0.70		1.21		•						Both mutated
CKAP2	13q14.3	0.64	0.69	oban	1k				•				
CT2	3q26.31	0.64	0.69	Cyt				•	•				 Neither mutate
(PO1	2p15	0.65	0.69	KNL1 (Cytoband: 15q15.1)	800		•	0	•				
ATAD5	17q11.2	0.60	0.68	₹				ູ້	00	\$			
ASPM	1q31.3	0.62	0.68		600-		6 8	00	• •	•	•		
NUP155	5p13.2	0.57	0.67		•			008	• •	-	°.••		
WDHD1	14q22.2-q22.3	0.59	0.67		400-	8		e.)0				0
MKI67	10q26.2	0.61	0.67		200-200			00		•			
CEP152	15q21.1	0.54	0.66		2007								
SG02	2q33.1	0.61	0.66		0-								
ТОРВР1	3a22.1	0.60	0.66		Ō	200	400	6Ó	0	800	1k	1.2k	

PAN-can example

PAN-Can datasets and analyses

https://www.sciencedirect.com/science/article/pii/S0092867418303027

PAN-Can datasets and analyses

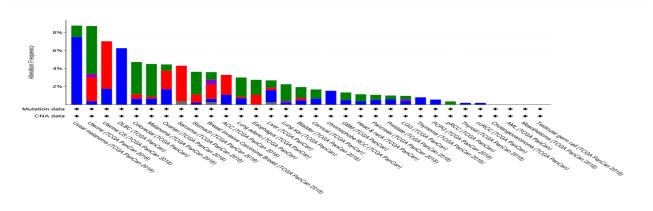
Query Quick Search	h Beta! D	Download Pleas	e cite: Cerami et al., 2012 & Gao et a	al., 20
Select Studies for Visua	alization & An	alysis: 0 studios selected (0 samples)	Search	•
PanCancer Studies	6	Quick select: TCGA PanCancer Atlas Studies Curated set of non-redundant studies		
ediatric Cancer Studies	13	PanCancer Studies		
ell lines	3	MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017)	10945 samples 🕄 / 🌜	
		Metastatic Solid Cancers (UMich, Nature 2017)	500 samples 🛈 릗 📞	
renal Gland	3	MSS Mixed Solid Tumors (Broad/Dana-Farber, Nat Genet 2018)	249 samples 🛈 <i> </i> 🕏	
		SUMMIT - Neratinib Basket Study (Multi-Institute, Nature 2018)	141 samples 🛈 <i>크</i> 🔖	
mpulla of Vater	1	TMB and Immunotherapy (MSKCC, Nat Genet 2019)	1661 samples 🛈 <i> </i> 😓	
liary Tract	9	Tumors with TRK fusions (MSK, 2019)	106 samples 🛈 <i> </i> 😓	
adder/Urinary Tract	15	Pediatric Cancer Studies		
		Pediatric Preclinical Testing Consortium (Maris, 2019)	261 samples 🛈 <i> </i> 🖶	
one	2	Pediatric Acute Lymphoid Leukemia - Phase II (TARGET, 2018)	1978 samples 🛈 <i> </i> 😓	
owel	10	Pediatric Rhabdoid Tumor (TARGET, 2018)	72 samples 🛈 릗 📞	
		Pediatric Wilms' Tumor (TARGET, 2018)	657 samples 🛈 <i> </i> 🖨	
reast	16	Pediatric Acute Myeloid Leukemia (TARGET, 2018)	1025 samples 🛈 <i> </i> 🖨	
	~	Pediatric Neuroblastoma (TARGET, 2018)	1089 samples 🛈 <i> </i> 😓	

Query By Gene

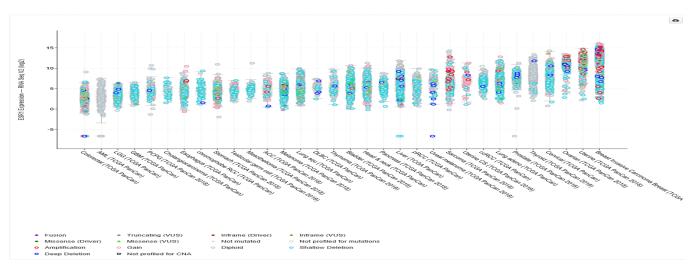
OR

Explore Selected Studies

82


PAN-Can datasets and analyses – ESR1

BioPortal FOR CANCER GENOMICS	ta Sets Web API R/MATLAB Tutorials/Webinars FAQ News Visualize Your Data Abo	but
Query Quick Search Beta!	Download	Please cite: Cerami et al., 2012 & Gao et al., 2013
Selected Studies: Modify	Acute Myeloid Leukemia (TCGA, PanCancer Atlas) Adrenocortical Carcinoma (TCGA, PanCancer Atlas) Brain Lower Grade Glioma (TCGA, PanCancer Atlas) and 28 more (10967 total samples)	Bladder Urothelial Carcinoma (TCGA, PanCancer Atlas)
Select Molecular Profiles:	✓Mutation ✓Copy number alterations	
Select Patient/Case Set: To build your own case set, try out our enhanced Study View.	All (10967) × 🔻	
Enter Genes: Hint: Learn Onco Query Language (OQL) to write more powerful queries C?	User-defined List × ESR1 All gene symbols are valid.	
Submit Query		



PAN-Can datasets and alterations – ESR1

Mutation
 Fusion
 Amplification
 Deep Deletion
 Multiple Alterations

* Driver annotation settings are located in the Mutation Color menu of the Oncoprint.

Clustering example

Query Quick Search Beta!	Download
Selected Studies: Modify	Metastatic Prostate Adenocarcinoma (SU2C/PCF Dream Team, PNAS 2019) (444 total samples)
Select Genomic Profiles:	□ Mutations Ø
	Putative copy-number alterations
	mRNA Expression. Select one of the profiles below:
	mRNA expression Z-scores relative to diploid samples (FPKM capture) 0
	 mRNA expression Z-scores relative to diploid samples (FPKM polyA)
	 mRNA expression z-scores relative to all samples (log FPKM capture)
	○ mRNA expression z-scores relative to all samples (log FPKM polyA) Enter a z-score threshold ± 2.0
	Enter a 2-score titleshold ± 2.0
Select Patient/Case Set: To build your own case set,	All Tumors (444) × 🔻
try out our enhanced Study View.	
Enter Genes:	Prostate Cancer: AR Signaling (10 genes) × 🔻
Hint: Learn Onco Query Language (OQL) to write more powerful queries ☑	SOX9 RAN TNK2 EP300 PXN NCOA2 AR NRIP1 NCOR1 NCOR2
	G

Clustering example

BioPortal FOR CANCER GENOMICS	Data Sets Web API R/MATLAB Tutorials/Webinars FAQ News Visualize Your Data About
Modify Query	tastatic Prostate Adenocarcinoma (SU2C/PCF Dream Team, PNAS 2019) Tumors (429 patients / 444 samples) - SOX9, RAN & 8 other genes at the dense of the samples of the sample
OncoPrint Cancer Type	es Summary Mutual Exclusivity Plots Mutations Co-expression Comparison/Survival Survival CN Segments Pathways Download
Add Clinical Tracks 34 -	Add Heatmap Tracks 4 • Sort • Mutations • View • Download • Q • 100 % Q •
# Samples per P	
Profiled in mRN	
SOX9 5%	
RAN 6%	
TNK2 0%	
EP300 4%	
PXN 6%	
NCOA2 5%	
AR 8%	
NRIP1 6%	
NCOR1 5%	
NCOR2 3%	
Genetic Alteration	mRNA High mRNA Low No alterations - Not profiled
# Samples per Patient	02
Profiled in mRNA expression z-scores relative to all samples	Yes - No
(log FPKM polyA)	

Clustering example

Long-noncoding RNA example

EBIOPORTAL Data Sets Web API R/MATLAB Tutorials/Webinars FAQ News Visualize Your Data About	Login
Modify Query Combined Study (10967 samples) Querying 10953 patients / 10967 samples in 32 studies - HOTAIR & PVT1 OncoPrint Cancer Types Summary Mutual Exclusivity Mutual Exclusivity Mutual Exclusivity Mutual Comparison CN Segments Pathways Expression Download	
Add Clinical Tracks 98 + Sort + Mutations + View + Download + Q 11 % Q	
Study of origin # #################################	
Profiled for co Profiled for mu	
HOTAIR 0.5%*	
PVT1 8%*	
Genetic Alteration Truncating Mutation (unknown significance) Fusion Amplification Deep Deletion No alterations - Not profiled	
Study of origin Acute Myeloid Leukemia (TCGA, PanCancer Atlas) Adrenocortical Carcinoma (TCGA, PanCancer Atlas) Bladder Urothelial Carcinoma (TCGA, PanCancer Atlas)	
Brain Lower Grade Glioma (TCGA, PanCancer Atlas) Breast Invasive Carcinoma (TCGA, PanCancer Atlas) Cervical Squamous Cell Carcinoma (TCGA, PanCancer Atlas)	
Cholangiocarcinoma (TCGA, PanCancer Atlas) Colorectal Adenocarcinoma (TCGA, PanCancer Atlas) Diffuse Large B-Cell Lymphoma (TCGA, PanCancer Atlas)	
Esophageal Adenocarcinoma (TCGA, PanCancer Atlas)	
Kidney Chromophobe (TCGA, PanCancer Atlas) Kidney Renal Clear Cell Carcinoma (TCGA, PanCancer Atlas) Kidney Renal Papillary Cell Carcinoma (TCGA, PanCancer Atlas)	
Liver Hepatocellular Carcinoma (TCGA, PanCancer Atlas) Lung Adenocarcinoma (TCGA, PanCancer Atlas) Lung Squamous Cell Carcinoma (TCGA, PanCancer Atlas)	
Mesothelioma (TCGA, PanCancer Atlas) Vorian Serous Cystadenocarcinoma (TCGA, PanCancer Atlas) Pancreatic Adenocarcinoma (TCGA, PanCancer Atlas)	
Pheochromocytoma and Paraganglioma (TCGA, PanCancer Atlas) Prostate Adenocarcinoma (TCGA, PanCancer Atlas) Sarcoma (TCGA, PanCancer Atlas)	
Skin Cutaneous Melanoma (TCGA, PanCancer Atlas) Stomach Adenocarcinoma (TCGA, PanCancer Atlas) Testicular Germ Cell Tumors (TCGA, PanCancer Atlas)	
Thymoma (TCGA, PanCancer Atlas) Thyroid Carcinoma (TCGA, PanCancer Atlas) Uterine Carcinosarcoma (TCGA, PanCancer Atlas)	
Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas) Uveal Melanoma (TCGA, PanCancer Atlas)	


Samples per Patient

Profiled for copy number alterations

Yes No

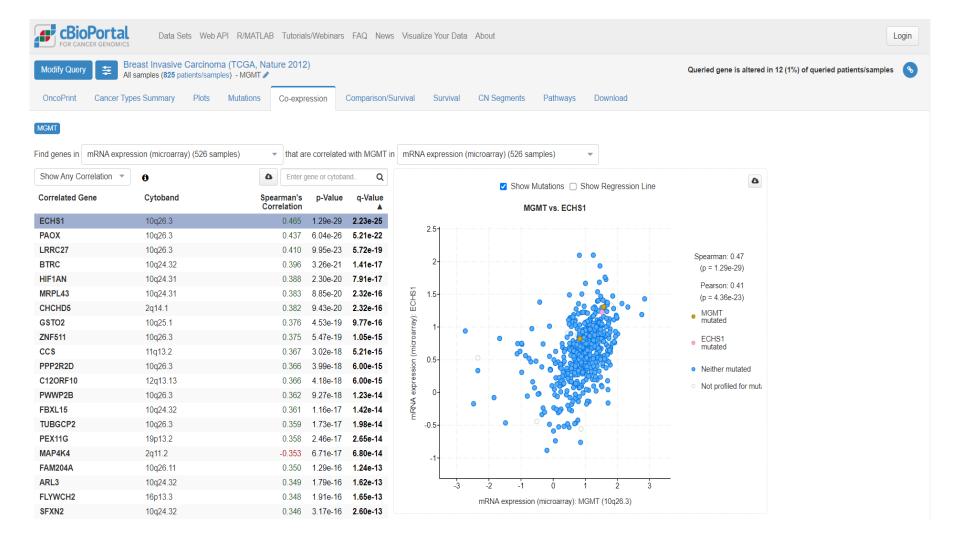
Long-noncoding RNA example

miRNA example

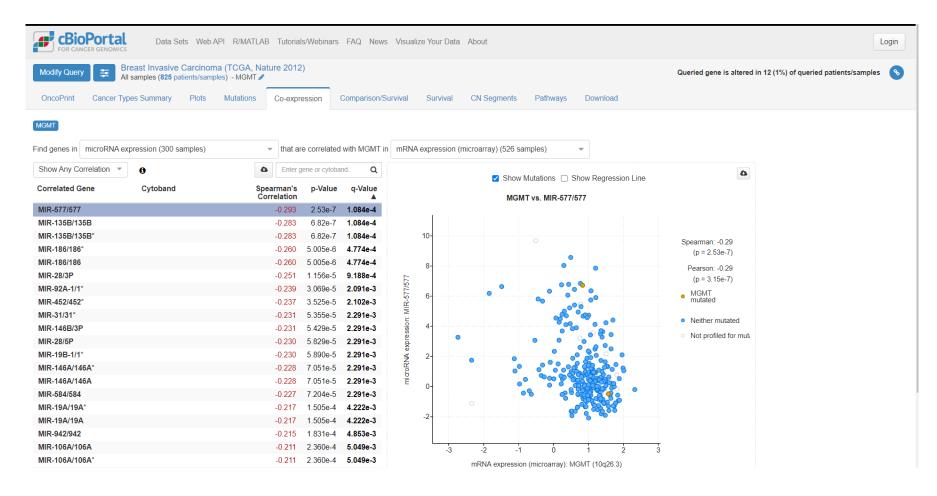
CBioPortal Data Sets Web API R/MATLAB Tutorials/Webinars FAQ News Visualize Your Data About CBioPortal Webinar 3: Expression Data Analysis

Datasets

The table below lists the number of available samples per cancer study and data type.


Q							Colum
Name		Reference	All	Sequenced	CNA	RNA-Seq	Tumor miRNA
Ovarian Serous Cystadenocarcinoma (TCGA, Nature 2011)	٤.	TCGA, Nature 2011	489	316	489	0	489
Breast Invasive Carcinoma (TCGA, Nature 2012)	*	TCGA, Nature 2012	825	507	778	0	300
Glioblastoma (TCGA, Nature 2008)	£	TCGA, Nature 2008	206	91	206	0	206
Kidney Renal Clear Cell Carcinoma (TCGA, Nature 2013)	±.	TCGA, Nature 2013	446	426	436	417	148
Prostate Adenocarcinoma (MSKCC, Cancer Cell 2010)	*	Taylor et al. Cancer Cell 2010	240	182	240	0	113
Lung Squamous Cell Carcinoma (TCGA, Nature 2012)	*	TCGA, Nature 2012	178	178	178	178	110
Colon Cancer (CPTAC-2 Prospective, Cell 2019)	*	Vasaikar et al. Cell 2019	110	106	105	106	105
Colorectal Adenocarcinoma (TCGA, Nature 2012)	*	TCGA, Nature 2012	276	224	257	244	85
Pediatric Rhabdoid Tumor (TARGET, 2018)	*		72	72	0	43	43
Cholangiocarcinoma (National Cancer Centre of Singapore, Nat Genet 2013)	*	Chan-on et al. Nat Genet 2013	15	15	0	0	0
Cutaneous T Cell Lymphoma (Columbia U, Nat Genet 2015)	*	Da Silva Almeida et al. Nat Genet 2015	43	43	0	0	0
Esophageal Squamous Cell Carcinoma (UCLA, Nat Genet 2014)	*	Lin et al. Nat Genet 2014	139	139	0	0	0
Oral Squamous Cell Carcinoma (MD Anderson, Cancer Discov 2013)	*	Pickering et al. Cancer Discov 2013	40	40	0	0	0
Hepatocellular Carcinomas (INSERM, Nat Genet 2015)	*	Schulze et al. Nat Genet 2013	243	243	0	0	0
Uveal Melanoma (QIMR, Oncotarget 2016)	¥	Johansson et al. Oncotarget 2016	28	28	0	0	0
Neuroblastoma (AMC Amsterdam, Nature 2012)	±	Molenaar et al. Nature 2012	87	87	0	0	0
Nasopharyngeal Carcinoma (Singapore, Nat Genet 2014)	£	Lin et al. Nat Genet 2014	56	56	0	0	0
Thymic Epithelial Tumors (NCI, Nat Genet 2014)	±.	Petrini at el. Nat Genet 2014	32	32	0	0	0
Neuroblastoma (Broad, Nature 2015)	±	Peifer et al. Nature 2015	56	56	0	0	0
Myelodysplasia (UTokyo, Nature 2011)	±	Yoshida et al. Nature 2011	29	29	0	0	0
Non-Hodgkin Lymphoma (BCGSC, Nature 2011)	*	Morin et al. Nature 2011	14	14	0	0	0
Diffuse Large B-cell Lymphoma (BCGSC, Blood 2013)	±	Morin et al. Blood 2013	53	53	0	0	0
Insulinoma (Shanghai, Nat Commun 2013)	Ŧ	Cao et al. Nat Commun 2013	10	10	0	0	0
Pleural Mesothelioma (NYU, Cancer Res 2015)	*	Guo et al. Cancer Res 2015	22	22	0	0	0
Cystic Tumor of the Pancreas (Johns Hopkins, PNAS 2011)	*	Wu et al. PNAS 2011	32	32	0	0	0
Pilocytic Astrocytoma (ICGC, Nature Genetics 2013)	*	Jones et al. Nature Genetics 2013	96	96	0	0	0
Liver Hepatocellular Carcinoma (RIKEN, Nat Genet 2012)	±.	Fujimoto et al. Nat Genet 2012	27	27	0	0	0

K


Lra

RNA and miRNA example

RNA and miRNA example

miRNA correlation with mRNA example

MGMT MIR-577/577

•	w Mutations 🔲 Show Regression Line	Chou		d Q	ene or cytobar	Enter g	0	Show Any Correlation 🔻
	R-577/577 vs. FOXA1			q-Value ▲	p-Value	Spearman's Correlation	Cytoband	orrelated Gene
				1.90e-18	2.10e-22	-0.523	14q21.1	OXA1
			6-	1.90e-18	2.21e-22	0.523	4q26	IG T8
Spearman: -0.52				6.47e-18	1.13e-21	0.515	2p16.1	CL11A
(p = 2.10e-22)			4-	1.18e-17	2.74e-21	-0.511	10p14	ATA3
Pearson: -0.75				1.25e-17	3.62e-21	0.510	1p34.2	DC20
(p = 4.24e-56)			XA1	1.89e-17	6.58e-21	0.507	1p34.2	BX1
		• •	expression (microarray): FOXA1 -C	8.64e-17	3.51e-20	0.498	9q21.2	'SAT1
 FOXA1 mutated 	•	•	ray):	1.20e-16	5.56e-20	0.496	1p34.1	IF2C
 Neither mutated 	0	•	-0 to	1.66e-16	8.69e-20	-0.494	5q21.2	IUDT12
		•	j <u>i</u>	2.55e-16	1.48e-19	-0.491	14q11.2	LC7A8
 Not profiled for n 	• • •		sion	3.28e-16	2.09e-19	0.489	1p34.3	DCA8
		•	S -2-	4.41e-16	3.07e-19	0.487	15q26.1	IAPLN3
		•	t ex	5.29e-16	3.99e-19	-0.486	7p21.1	GR3
			¥ ₩2 -4-	8.39e-16	6.82e-19	0.483	2p25.1	PIN1
	• • •		E	9.64e-16	8.39e-19	-0.482	2q37.3	AB17
				1.17e-15	1.14e-18	0.480	2p23.3	ENPA
	•		-6-	1.17e-15	1.16e-18	-0.480	1q32.1	YB5R1
				2.27e-15	2.37e-18	0.476	1p36.33	TAD3A
	2 4 6 8 10	-2 0 2		2.63e-15	2.90e-18	-0.475	17q21.31	UNDC1
	A expression: MIR-577/577			2.74e-15	3.33e-18	-0.475	4q31.21	BC1D9
				2.74e-15	3.34e-18	-0.475	16q23.2	YNLRB2
				2.83e-15	3.61e-18	0.474	12p13.31	ICAPD2
				4.04e-15	5.56e-18	0.472	1q23.1	H2D2A
				4.04e-15	5.82e-18	0.472	20q13.12	IATN4
				4.04e-15	5.86e-18	0.472	1p34.2	TPS1

AACR Project GENIE

- Clinical sequencing data from 19 cancer centers worldwide.
- It consists of primary and metastatic tumor unlike TCGA where they only have primary and untreated tumors
- For some samples, GENIE also consists of pre and post treatment.
- Targeted gene panels (# of genes targeted varied across the cancer centers)
- Majority of them have mutations and some have CNV

GENIE cbioportal

- <u>https://genie.cbioportal.org/</u>
- It consists of more 136 K samples (121K patients)

FOR CAN	DPOTTAL NCER GENOMICS	Data Sets V	Veb API	R/MA	TLAB Tutorials/We	ebinars FAQ	News Visua	alize Your Da	ta About				Logged in as ranikk@gmail.com -
NIE Coho NIE v11.0-pu	ort v11.0-public											Click ger	ne symbols below or enter here
Summary	Clinical Data	CN Segments						Se	lected: 121,221 patien	ts 136,096	samples	■ ±	Custom Selection Charts
	Cancer	Туре	0 ×	=		Cancer Type Deta	iled		Gen	omic Profile S	ample Counts		Number of Samples Per Patient
		#	Freq -				#	Freq *	Molecular Profile		#	Freq 🔻	
Non-Smal	ll Cell Lung Cancer	□ 19,319	14.2%	-	Lung Adenocarcir	noma	14,851	10.9%	Somatic mutations		136,096	100.0%	
Breast Ca	ancer	14,218	10.4%		Breast Invasive D	uctal Carcinoma	8,752	6.4%	Fusions		106,441	78.2%	
Colorectal	I Cancer	12,880	9.5%		Colon Adenocarc	inoma	7,608	5.6%	Copy-number alteration	ons	0 100,102	73.6%	110,433
Glioma		8,309	6.1%		Prostate Adenoca	ircinoma	4,616	3.4%					
Melanoma	а	5,496	4.0%		Pancreatic Adeno	carcinoma	4,575	3.4%					
Pancreatio	c Cancer	5,383	4.0%		High-Grade Sero	us Ovarian Ca	3,025	2.2%					Sex
Ovarian C	Cancer	5,079	3.7%		Bladder Urothelia	l Carcinoma	2,838	2.1%					
Prostate C	Cancer	4,726	3.5%		Colorectal Adeno	carcinoma	2,619	1.9%					
Leukemia		4,670	3.4%		Acute Myeloid Le	ukemia	2,505	1.8%					62,888
Endometri	ial Cancer	4,135	3.0%		Melanoma		2,438	1.8%					
Soft Tissu	e Sarcoma	4,036	3.0%	-	Invasive Breast C	arcinoma	2,418	1.8% -					
Search	Select	t all		_	Search				Search				
N	Mutation Count vs Fract	tion Genome Altered	i i		Mutated	l Genes (136096 pro	filed samples)		Structural Van	riant Genes (10	6441 profiled sampl	es)	Ethnicity Category
1			# sam		▼ Gene	# Mut	#	Freq 🔻	▼ Gene	# SV	#	Freq 🔻	
800	•			1,932	TP53	56,910	52,035	38.5%	TACC3	237	230	10.6%	
700-	•	•		22	KRAS	20,270	19,918	14.6%	EML4	369	363	8.7%	86,042
600-					MUC16	377	334	11.9%	KIAA1549	190	188	5.9%	
500-					PIK3CA	17,509	15,206	11.4%	FLI1	192	189	4.9%	
400			 Pears 0.002 		COL7A1	2,161	1,768	9.9%	KIF5B	143	131	4.1%	<u>ل</u> ــــــــــــــــــــــــــــــــــــ
300-	5 a		 0.002 p=0.6 		LRP1B	2,305	1,347	9.7%	CCDC6	101	99	4.0%	Sample Type
200	·	•••	Spea	man:	APC	17,769	12,583	9.7%	CREB3L1	17	□ 16	2.3%	
100-			0.191	2	KMT2D	14,540	10,582	9.7%	CD74	115	0 109	2.0%	
1001			p=0.0	U III	TERT	11,118	9,876	9.4%	NFIB	49	49	2.0%	75.312

HTAN – Human Tumor Atlas Network

HTAN Consortium

LUNG

Avrum Spira & Steven Dubinett Boston University & University of Colifornia Los Angeles Dana Peter & Christine Icabuzio-Donahue Memorial Slaam-Kettering Cancer Center Molecular and Cellular Characterization of Screen Detected Lesions (MCL) Consortium Pre-Cancer Allas Pilot

PANCREAS

Dana Perer & Christine Iacobuzio-Donahue Memorial Sloan-Kettering Cancer Center MCL Consortium Pre-Cancer Atlas Pilot Li Ding, Ryan Fields, William Gillanders, & Samuel Achilefu Washington University in St. Louis

PEDIATRIC

FNLCR & Broad Institute Tumor Atlas Pilot Glioma, neuroblastoma, and sarcoma (organs commonly affected by these cancers include the brain, adrenal glands, and muscle)

Kai Tan and Stephen Hunger Children's Hospital of Philodelphia Glioma, neuroblastoma, and very high risk acute lymphoblastic leukemia (organs commonly affected by these cancers include the brain, adrenal glands, and blood)

BREAST

Shelley Hwang, Carlo Maley, & Robert West Duke University, Arizono State University, & Stanford University Joe Gray, Gordon Mills, Jeremy Goecks, & Christopher Corless Oregon Health & Science University Bruce Johnson & Aviv Regev Dana-Farber Concer Institute & Broad Institute Li Ding, Ryan Fields, William Gillanders, & Samuel Achileifu Washington University in SL Louis Prederick National Laboratory for Cancer

Frederick National Laboratory for Can Research (FNLCR) & Broad Institute Tumor Atlas Pilot

MCL Consortium Pre-Cancer Atlas Pilot

COLON

Michael Snyder & James Ford Stanford University Robert Coffey, Ken Lau, & Martha Shrubsole Vanderbilt University Bruce Johnson & Aviv Regev Dana-Farber Cancer Institute & Braad Institute

SKIN

Peter Sorger, Sandro Santagata, & Jon Aster Harvard University & Brigham and Women's Hospital Bruce Johnson & Aviv Regev Dano-Farber Cancer Institute & Broad Institute

HTAN DATA COORDINATING CENTER (DCC)

Ethan Cerami, Justin Guinney, Nikolaus Shultz, & Vésteinn Thorsson Dana-Farber Cancer Institute, Sage Bionetworks, Memorial Sloan Kettering Cancer Center, & Institute for Systems Biology

LEARN MORE ABOUT HTAN Find information about HTAN community resources, including 3D human tumor atlases; humantumoratlas.org | cancer.gov/htan @ @NCIHTAN | cancer.gov/brp

The Human Tumor Atlas Network (HTAN) is a National Cancer Institute (NCI)-funded Cancer MoonshotSM initiative to construct 3-dimensional atlases of the dynamic cellular, morphological, and molecular features of human cancers as they evolve from precancerous lesions to advanced disease.

10

Atlases

Organs

Cases

2752

Biospecimens

Single-cell Sequencing

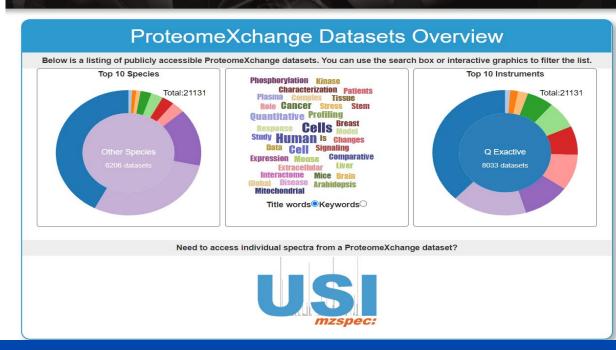
- Lots happening in this area.
- Exciting area of research

	? Help & resources -	+ Create a study	♣ 3 Sign in
Featuring Add studies Beducing barriers and accelerating single-cell research			New feature
■ Search studies X Search genes Search by filters @ Search by text @ organ species cell type more facets 448 total studies found <			collections Download
Single nuclei RNA sequencing of livers from male mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)			

Nault R, Fader KA, Bhattacharya S, Zacharewski TR. Single-Nuclei RNA Sequencing Assessment of the Hepatic Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Cell Mol Gastroenterol Hepatol 2021;11(1):147-159. PMID: 32791302 DOI: 10.1016/j.jcmgh.2020.07.0125ingle nuclei RNA sequencing (snRNAseq) was performed on frozen liver samples from male C57BL/6 mice gavaged with sesame oil control or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Approximately 19,907 hepatic genes were detected across 16,015 sequenced nuclei from sesame oil control and 30 µg/kg TCDD treated samples. On day 28 (PND 56) livers were immediately collected, frozen in liquid nitrogen, and stored at -80°C. Nuclei were isolated from frozen livers, stained wit...(*continued*)

Cross-tissue immune cell analysis reveals tissue-specific features in humans

329762 Cells


Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. We surveyed the immune compartment of 16 tissues from 12 adult donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of ~360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of finely phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. Our multitissue approach lays the foundation for identifying highly resolved imm ...(continued)

Proteomics datasets

 <u>http://proteomecentral.proteomexchange.org/cgi</u> /<u>GetDataset</u>

ProteomeCentral

change

Trans Omics Precision MEDicine (TOPMed)

- Large omics data resource to support discovery science and precision medicine.
- Build a genomic database for more 20 or more diseases or conditions
- 170K Whole genome sequencing data, 32K RNA-Seq, 58K methylome, 16K metabolome and 3K proteome (75% of data released by dbGAP)

Updated 10/12/2021

Contents

- Overview
- Study Characteristics
 - Study Designs
 - Participant Diversity
- Whole Genome Sequencing
- Resources for the Scientific Community

Overview

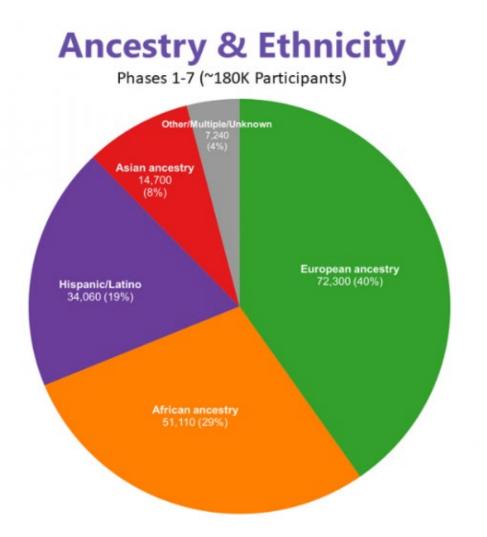
The Trans-Omics for Precision Medicine (TOPMed) program, sponsored by the National Institutes of Health (NIH) National Heart, Lung and Blood Institute (NHLBI), is part of a broader Precision Medicine Initiative, which aims to provide disease treatments tailored to an individual's unique genes and environment. TOPMed contributes to this Initiative through the integration of whole-genome sequencing (WGS) and other omics (e.g., metabolic profiles, epigenomics, protein and RNA expression patterns) data with molecular, behavioral, imaging, environmental, and clinical data.

Study Characteristics

A primary goal of the TOPMed program is to improve scientific understanding of the fundamental biological processes that underlie heart, lung, blood, and sleep (HLBS) disorders. TOPMed is providing deep WGS and other omics data to pre-existing 'parent' studies having large samples of human

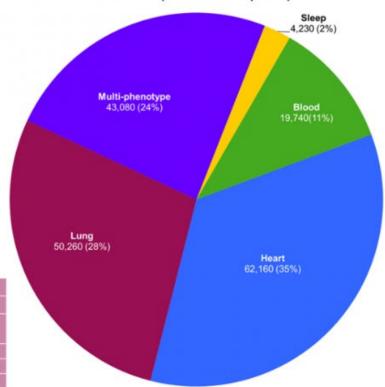
To view member-only content on this site, be sure to log in. Learn more about TOPMed membership.

Username


Password *

Log in

- Create new user account
- Forget your password?



TOPMed

Phenotype Focus

Phases 1-7 (~180K Participants)

Blood:
Hemophilia
Sickle Cell Disease
Platelets
Lipids
Blood Cancers

Heart:
Hypertension
Myocardial Infarction
Coronary Artery Disease
Stroke
Small Vessel Disease
Venous Thromboembolism
Congenital Heart Disease
Atrial Fibrillation
Coronary Artery Calcification
Adiposity
Congestive Heart Failure

Lung:
Asthma
Chronic Obstructive Pulmonary
Disease
Idiopathic Pulmonary Fibrosis
Sarcoidosis
Interstitial Lung Disease

My Research

Kalari Lab

Graduate Students

Blog

Softwares

Projects

Resources

Visualization

Digest Club

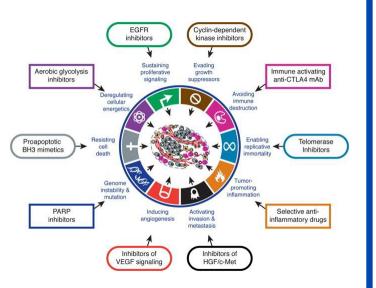
Collaborators

Google Scholar *Krishna Rani Kalari*

Photos Email

Krishna Rani Kalari Ph.D.

Associate Professor, Biomedical Informatics, College of Medicine, Mayo Clinic, Rochester, MN


Dr. Kalari's research focuses on:

1. Pharmacogenomics

- 2. Biostatistics and Computational genomics
- 3. Biological systems modeling

COMPUTATIONAL BIOLOGY METHODS

HALLMARKS OF CANCER

PANOPLY

Precision Cancer Genomic Report: Single Sample Inventory Read more.

CIRC-SEQ

A comprehensive bioinformatics workflow for detecting circular RNAs Read more.

MAP-RSEQ Acomprehensive system for RNA-Sequencing data analysis Read more.

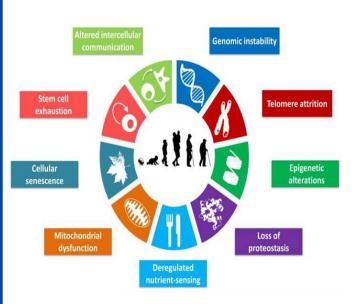
eSNV-Detect Reliable Identification of Variants Using RNA-seq Data Read more.

HGT-ID A program for detecting viral insertion sequences in the genome of human cancers Read more.

IM-TORNADO A tool for comparison of 16S reads from paired-end libraries. Read more.

Onco-MATCH A web-based tool for molecular profile matching of individual cancer patient

CALAR


Clustering Among Luminal Androgen Receptor and basal subtypes. Read more.

ReMIX

Integration of mRNA and microRNA data

CIC

Clone Initiating Calculator.

HALLMARKS OF AGING

Thank you all and email me if you have any questions at <u>Kalari.Krishna@mayo.edu</u>