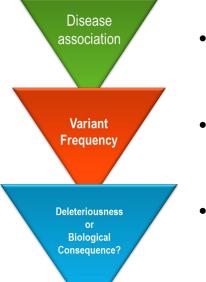


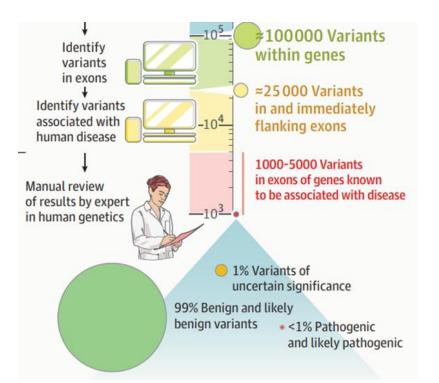
CENTER FOR INDIVIDUALIZED MEDICINE

Clinical Variant Interpretation June 9th, 2022

Erica Macke, PhD Postdoctoral Research Fellow Translational Omics Program Quantitative Health Sciences Department macke.erica@mayo.edu


Objectives:

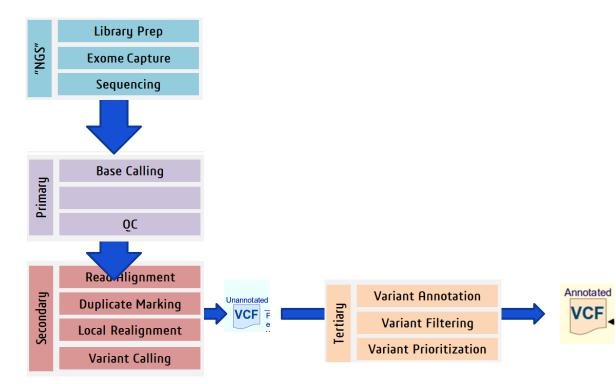
- Understand basics of variant prioritization and nomenclature
- Overview of the current framework for analysis and interpretation of sequence variants for monogenic disorders
- Overview of key available resources and their utility with variant interpretation.



Variant prioritization: why does it matter?

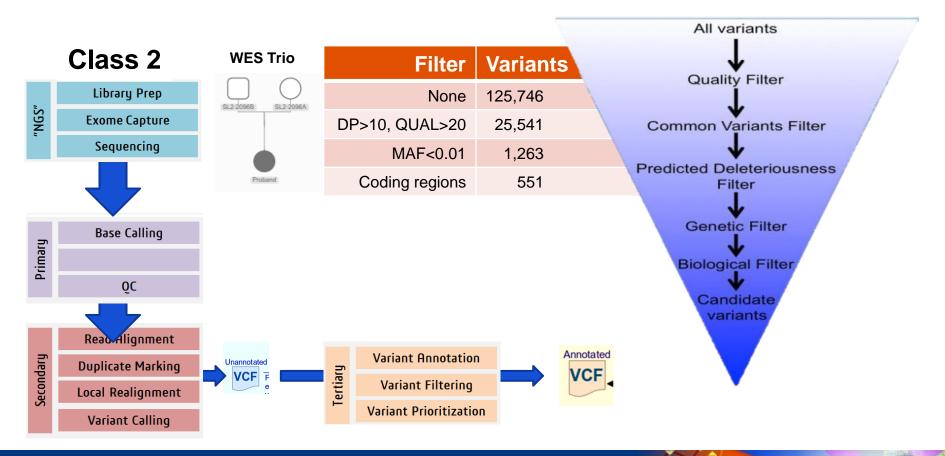
I have detected variants in my patient sample. What information can I use to interpret them?

- Gene disease association
- Allele frequency
- In silico predictions



						vi T,Descript G,Type=Floa					ntochondrial contig"> abilitu">	
			##FILTER	= <id=imp,i< td=""><td>Descriptio</td><td>n="Set if tru</td><td>e: IMP==1":</td><td>></td><td></td><td></td><td>submy /</td><td></td></id=imp,i<>	Descriptio	n="Set if tru	e: IMP==1":	>			submy /	
						cription="Se ption="Set il						
			##FILTER	= <id=low< td=""><td>Q,Descrip</td><td>tion="Set if </td><td>GQ<=20 or</td><td>DP<10"></td><td></td><td></td><td></td><td></td></id=low<>	Q,Descrip	tion="Set if	GQ<=20 or	DP<10">				
						ED,Descripti					range">	
						G,Type=Floa Numbera Tu					V, INSERTION, DELETION, SU	IBSTITUTION MNV CO
											omic context: STR-expansion,	
											observed STR sequence length	"> ·
											riod for STR variants"> ition for STR variants">	
			##pipeline			,	ypen load,	beschpa		er or repe		
			#CHRON	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	PC-TA537BFRZC6B33
				55039879 47805173		A G	ACTG	35 35	PASS PASS		GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:Sf 0/1:500,500:1000:33:Sf
			chr2 chr2	47733163	•	c	A G	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	Library Prep		chr13	32319070		Ť	A,TA	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	Librarg i rep		chr19	11113686		A	G	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:81
			chr2	21011802			Т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:81
	Exome Capture		chr7 shs17	5977709	•		c c	35 35	PASS PASS		GT:AD:DP:GQ:VAR_TYPE	
	crome capture		chr17 chr19	43094795 11102787		Ğ	A	35	PASS	1	GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	
			chr7	6003794		т	Ä	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	Sequencing		chr3	37028782		AG	CC	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:81
	Sequencing			47798826		A	AAC	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr7 chr13	5987451 32340378	•	CTT	C ATGCTG	35 35	PASS PASS		GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	
				21038086		C	A	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr13	11123663		č	Ä	35	PASS	1	GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:SN
			chr1	55039930		G	GGAGGA	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:39:81
			chr2	21010226			С	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr7	6009018	•	A	G	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
				43124094 43124097		с П	GCCT T	35 35	PASS PASS	•	GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:Sf 0/1:500,500:1000:33:Sf
	•			43045679		č	Ġ	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	Base Calling		chr13	32398769		A	AT	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:99:81
•	base Calling		chr7	5973402			с	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
				47806206		ĉ	G T	35 35	PASS PASS	1.00	GT:AD:DP:GQ:VAR_TYPE	
			chr19 chr2	11128084 47806452	•	G	GGGG	35	PASS		GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:39:Sf 0/1:500,500:1000:39:Sf
			chr2	47801152			т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr13	11120166		С	т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:81
	05		chr13	11111506	•	т	C.	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	0C		chr2 chr2	47805601 47805601		A AT	AT,ATT A	35 35	PASS PASS	•	GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:SN 0/1:500,500:1000:33:SN
	-		chr13	11128142	:		÷.	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
				43059469		С	CACA	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr2	47806751		стт	C,CT	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
				43125260		G C	A	35 35	PASS	•	GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:81
			chr17 chr17	43124135 43124745	•		CAT G	35 35	PASS PASS	•	GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	
	ReadAlignment			43044346		C	T	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr2	47806983		A	AGTTC	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:39:51
E		Upperpetate	chr13	11133511			т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:99:81
	Duplicate Marking	Unannotate		21038086	•	c	Å	35	PASS	•	GT:AD:DP:GQ:VAR_TYPE	
	p		chr13 chr2	11113534 21012365		G A	A C	35 35	PASS PASS		GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	
			chr7	5997399	:	Ĝ	Ă	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
	Local Realignment		chr13	11120188		т	G	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:8
	Locor neongrinent		chr13	11116988			т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	
			chr2	47805638	•	G	Å	35 35	PASS PASS	•	GT:AD:DP:GQ:VAR_TYPE	
	Variant Calling		chr1 chr2	55057514 47799092			A C	35	PASS		GT:AD:DP:GQ:VAR_TYPE GT:AD:DP:GQ:VAR_TYPE	
	volione coning		chr2	47799601		С	т	35	PASS		GT:AD:DP:GQ:VAR_TYPE	0/1:500,500:1000:33:8

ATA



#VCF/CFN	CF/POS VCF/ID	VCF/REF VCF/AL	T VCF/QU/ VCF/FI	T CAVA/G	CAVA/TRANSO	CRIF CAVA/CSN IMPAC	:AVA/I	O CAV	A/CI CADD_p_MetaSVN Mutation	° PROVEA VEST4_¢	BIOR::GN E	BIOR::GN BIO	DR::GI	BIOR::GN CAVA/TF CAVA/TF	BIOR::CL BIO	DR::CL BIOR::CL BIOR::	CL BIOR::C	L BIOR::CL	BIOR::CL BIOR::CI
1	6E+07 .	A ACTG	35 PASS	PCSK9	NM_174936.3	:.63_65dupGCT_p.Leu23dup	2 Ex1	IF						. +/25.4kb/ Insertion	7	2 0	0 0) 1	riteria pr no assert
2	5E+07 .	G A	35 PASS	MSH6	NM_000179.2	:.3556+146G>A	3 In6/7	INT		1				. +/23.9kbi Substituli	0	0 0	0 0) 0	eviewed reviewed
2	5E+07 .	C G	35 PASS	MSH6	NM_000179.2	:.1186C>G_p.Leu396Val	2 Ex4	NSY	21.7 T D	N 0.32		276930 0		. +/23.9kbi Substituli	16	2 0	0 0) 0	eviewed no assert
13	3E+07 .	T A,TA	35 PASS		NM_000059.3	:.68-4dupA	3 ln2/3	SS		· · ·	787	274652 0.	.0029	. +/84.2kbi Insertion	9	12 3	0 (eviewed reviewed
13	3E+07 . 1E+07 .	T A,TA A G	35 PASS 35 PASS	BRCA2 LDLR	NM_000053.2 NM_000527.4			NS					0023 2E-05	. +/84.2kbi Insertion 0 +/44.5kb/ Substituti	3	12 3	0 (eviewed reviewed riteria pr criteria p
3	2E+07 .	с т	35 PASS 35 PASS	APOB	NM_000384.			NS					.0014	/42.6kb/ Substituti			ь Л.		riteria pr-criteria p
7	6E+06 .	т с	35 PASS	PMS2	NM_000535.6			NS					0003	/38.2kb/ Substituti		nom			eviewed criteria p
17	4E+07 .	A C	35 PASS		NM_007294.	A A A A		NS					0003	/81.2kb/; Substitu j i					eviewed no assert
13	1E+07 .	G A	35 PASS	LDLR	NM_000527.4	Mutation		ES ES					3E-05	0 +/44.5kb/ Substitu <mark>t</mark> i		1 🔼 0 🔼	3 👝 16	5 1	riteria pr-criteria p
7	6E+06 .	T A	35 PASS		NM_000535.6	mulation		ES					E-06	0 -/38.2kb/ Substitu <mark>l</mark> i	0	0 0	2 8	3 👝 1	riteria pr-criteria p
3	4E+07 .	AG CC	35 PASS		NM_000243.			ES						 +/57.5kb/[*] Complex 	9			1/ 1	riteria pr-criteria p
3	4E+07 . 5E+07 .	AG CC A AAC	35 PASS 35 PASS	MLH1 MSH6	NM_000243. NM_000173.2			ES FS		Silico			LE-06	. +/57.5kb/' Complex 0 +/23.9kbi Insertion			1		riteria pr-criteria p
2	6E+06 .	cπ c	35 PASS 35 PASS	PMS2	NM_000535.6	Туре		FS		SIIICO			-U0	-/38.2kb/ Deletion	0	0 0	0 0	0	
13	3E+07 .	AGCAAG ATGCTO			NM_000053.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		FS						 +/84.2kbi Complex 	ŏ	ů ů	ů í	Ň	
ž	2E+07 .	C A	35 PASS	APOB	NM_000384.			SG						/42.6kb/ Substituti	ŏ	õ õ	õ å	ž ŏ	riteria pr criteria p
2	2E+07 .	C A	35 PASS	APOB	NM_000384.	And		SG	Droc	liction				/42.6kb/ Substitu <mark>i</mark>	•P	opulation	leve	0	riteria pr criteria p
2	2E+07 .	C A	35 PASS	APOB	NM_000384.			SG			13			/42.6kb/ Substitu <mark>l</mark> i					riteria pr-criteria p
19	1E+07 .	C A	35 PASS	LDLR	NM_000527.4			SG						. +/44.5kb/ Substituli	°.a	llele frequ	ibnci	1	riteria pr-criteria p
1	6E+07 .	G GGAGG			NM_174936.3			IF IF IF					.0001	0 +/25.4kb/ Insertion	٥a	neje njeqt	i ci li ci	0	riteria pr-criteria p
2	2E+07 . 2E+07 .	CTCA C CTCA C	35 PASS 35 PASS	APOB APOB	NM_000384. NM_000384.	Location		IF					0052	 -/42.6kb/ Deletion -/42.6kb/ Deletion 	3	6 4	0 0		riteria pr-criteria p riteria pr-criteria p
7	6E+06 .	A G	35 PASS 35 PASS		NM_000535.6	Eoodion		IM					LE-06	0 -/38.2kb/ Substituti	ő	o o	2 2		riteria pri criteria p
17	4E+07 .	а асст	35 PASS		NM_007294.			IM						/81.2kb/; Insertion	ŏ	õ õ	ō	i i	
17	4E+07 .	п т	35 PASS	BRCA1	NM_007294.			FS						/81.2kb/; Deletion	ō	0 0	0 0	0	
17	4E+07 .	C G	35 PASS		NM_007294.		_	SL						/81.2kb/; Substitu <mark>l</mark> i	0	0 0	0 0) 0	
13	3E+07 .	A AT	35 PASS		NM_000059.3	:.10256_10257insT	1 Ex27	FS		· ·				. +/84.2kbi Insertion	0	0 0	0 0) 0	
	6E+06 .	CTGA C	35 PASS		NM_000535.6	:.2583_2585delGAA_p.Gin86	2 Ex15	IF EE	·		· .		0F 0F	/38.2kb/ Deletion	0	0 0	0 () 0	-141
2	5E+07 . 5E+07 .	A G A G	35 PASS 35 PASS		NM_000179.2 NM_000179.2	:.3649A>G_p.Arg1217Gly :.3649A>G_p.Arg1217Gly	2 Ex8 2 Ex8	EE	33 D D 33 D D	D 0.937 D 0.937			3E-05 3E-05	0 +/23.9kb; Substitu t 0 +/23.9kb; Substitu t i	0	0 5	0 0		riteria pr-criteria p riteria pr-criteria p
19	1E+07 .	с т	35 PASS	LDLR	NM_000527.4	:.2388C>T_p.	2 Ex0 2 Ex16	EE	33 D D	0.001	11		4E-05	. +/44.5kb/ Substituti	ő	2 1	0 0		riteria pr-criteria p
2	5E+07 .	G GGGG	35 PASS		NM 000179.2	:.3802_3803insGGG_p.Met1;	2 Ex9	EE						+/23.9kbi Insertion	ŏ	ō	ŏ	, i	
2	5E+07 .	TTGG T	35 PASS	MSH6	NM_000179.2	:.3170_3172defTGG_p.Leu105"	2 Ex4	EE						. +/23.9kbi Deletion	ō	0 0	0 0	0	
13	1E+07 .	с т	35 PASS	IDIR	NM 000527.4	:.1920C>T_p.	3 Ex13	SY				277244 0.		. +/44.5kb/ Substitu <mark>t</mark> i	5	2 2	0 0		riteria pr-criteria p
19	1E+07 .	т с			0527.4	:.1061-8T>C	3 In7/8	SS		· ·	1525	276844 0	0.0055	. +/44.5kb/ Substituli	12	2 0	0 0		riteria pr-criteria p
2	5E+07 .	A AT,ATT			0179.2 0179.2	:.3557-5_3557-4dupTT	3 In6/7	SS		· ·		· ·		. +/23.9kbi Insertion	3	1 0	0 (eviewed criteria p
2	5E+07 . 1E+07 .	AT A C T			0527.4	:.3557-4delT :.2389+57C>T	3 ln6/7 3 ln16/11	SS INT		· ·	. 189	30954 0	0061	. +/23.9kbi Deletion 1 +/44.5kb/ Substituti	2	2 0	0 (riteria pr-criteria p riteria pr-criteria p
17	4E+07 .	C CACA		ene	294.3	:.5194-2337_5194-2335dupT(3 ln18/13	INT		· ·	100	30354 0	.0001	/81.2kb/; Insertion	1	0 0	0 0	, 0) 0	eviewed reviewed
2	5E+07 .	стт с,ст		00	0179.2	:.4002-10deIT	3 In9/10	INT						+/23.9kbi Deletion	ó	0 1	õ) õ	riteria pr-criteria p
17	4E+07 .	G A			294.3	:20+11C>T	3 In1/2	5PU			63	156718 0.	.0004	/81.2kb/; Substitu <mark>i</mark>	2	2 1	0 0		riteria pr no assert
17	4E+07 .	C CAT			294.3	:19-2219-21dupAT	3 In1/2	5PU						/81.2kb/; Insertion	1	1 0	0 0) 0	riteria pr-criteria p
17	4E+07 .	ளாட்டி	35 PASS		NM_007294.3	:20+52120+525del5	3 In1/2	5PU		· · ·	95		0.0031	0 -/81.2kb/; Deletion	0	1 0	0 0) 0	o asserti no assert
17	4E+07 .	с т ПА Т	35 PASS 35 PASS		NM_007294.3	t.+1332G>A	3 SUTR	3PU 3PU		· · · ·	1496	159758 0.	.0094	/81.2kb/; Substituti	1	0 0	0 0	, 0	eviewed reviewed
13	1E+07 . 2E+07 .		35 PASS 35 PASS		NM_000527.4 NM_000384.2	:.+2210_+2211de⊞A :.403G>T_p.Glu137X	3 3UTR 1 Ex5	SPU SG	 34. A	. 0.796	• •	• •		. +/44.5kb/ Deletion /42.6kb/ Substituti	0	0 0	0 0	2 0	riteria pr-criteria p riteria pr-criteria p
19	1E+07 .	GÂ	35 PASS		NM_000527.4	:.1359-1G>A	1 ln9/10	ESS				245718	0	0 +/44.5kb/ Substituti	ő	0 0	3 10		riteria pr-criteria p
2	2E+07 .	Ă Ĉ	35 PASS	APOB	NM_000384.2	:.4503T>G_p.Tyr1501X	1 Ex26	SG	27.5 . A	0.862			4E-06	0 -/42.6kb/ Substituti	0	0 0	0		riteria pr criteria p
7	6E+06 .	G A	35 PASS	PMS2	NM_000535.6	:.730C>T_p.Gln244X	1 Ex7	SG	43. A	. 0.865				/38.2kb/ Substitu <mark>l</mark> i	0	0 0	0	1 0	riteria pr criteria p
1	6E+06 .	G A	35 PASS	PMS2	NM_000535.6	:.730C>T_p.Gin244X	1 Ex7	SG	43. A	. 0.865				/38.2kb/ Substitu <mark>l</mark> i	0	0 0	0	1 0	riteria pr-criteria p
19	1E+07 .	T G	35 PASS	LDLR	NM_000527.4	:.1942T>G_p.Ser648Ala	2 Ex13	NSY		N 0.401			1E-05	. +/44.5kb/ Substituti	0	0 0	1 (0	riteria pr-criteria p
19	1E+07 . 1E+07 .		35 PASS 35 PASS		NM_000527.4 NM_000527.4	:.1835C>T_p.Ala612Val :.1835C>T_p.Ala612Val	2 Ex12 2 Ex12	NSY NSY		N 0.511 N 0.511			7E-06 7E-06	. +/44.5kb/ Substituti . +/44.5kb/ Substituti	0	0 0	0	1 0	o asserti no assert o asserti no assert
13	1E+07 . 5E+07 .	GA	35 PASS 35 PASS	MSH6	NM_000527.4 NM_000179.2	:.1635C21_p.Als612Vsi :.3577G>A_p.Glu1193Lys	2 Ex12 2 Ex7	NST NSY		D 0.987		211134	12-00	. +/44.5KD/ Substitue . +/23.9kb/ Substitue	0	0 0	2 0		o asserti no asseri riteria pr criteria p
1	6E+07 .	G Å	35 PASS		NM_174936.3	:.1180G>A_p.Gly384Ser	2 Ex7	EE	27.1 D D	D 0.824		236366 0	0.0001	0 +/25.4kb/ Substituti	ŏ	0 4	ō	1 0	riteria pr criteria p
2	5E+07 .	τċ	35 PASS		NM_000179.2	:.1109T>C_p.Leu370Ser	2 Ex4	NSY		D 0.669				. +/23.9kbi Substituli	0	0 2	3	1 1	riteria pr-criteria p
2	5E+07 .	с т	35 PASS	MSH6	NM_000179.2	:.1618C>T_p.Leu540Phe	2 Ex4	NSY	Annatated	N 0.785				. +/23.9kbi Substitu <mark>l</mark> i	0	0 1	0 0) 0	riteria pr-criteria p
1	6E+07 .	с т	35 PASS		NM_174936.3	:.1405C>T_p.Arg463Trp	2 Ex9	NSY		N 0.709			.0009	. +/25.4kb/ Substitu <mark>l</mark> i	1	3 3	0		riteria pr-criteria p
3	4E+07 .	G A	35 PASS		NM_000249.3	1217G>A_p.Ser406Asn	2 Ex12	NSY		N 0.31			.0003	. +/57.5kb/* Substituti	6	4 1	0 (eviewed no assert
3	4E+07 . 6E+06 .	G A T C	35 PASS 35 PASS	MLH1 PMS2	NM_000249.3 NM_000535.6	:.1217G>A_p.Ser406Asn :.52A>G_p.IIe18Val	2 Ex12 2 Ex2	NSY NSY		N 0.31 N 0.656			.0003).0091	. +/57.5kb/* Substituti /38.2kb/ Substituti	15	4 1	0 0		eviewed no assert eviewed criteria p
17	4E+06 .	G A	35 PASS 35 PASS		NM_007294.3	1.52A3G_p.iletoval 186C>T	2 EX2 3 SUTR	SPU		N 0.050	2457		1.0007	/30.2kb/ Substitut	1	0 3	0 0	, 0	riteria pr-criteria p
3	4E+07 .	čÄ	35 PASS	MLH1	NM_000249.3	:.307-23C>A	3 In3/4	INT					.0054	. +/57.5kb/* Substituti	ó	4 0	õ () 0	eviewed reviewed
13	3E+07 .	G A	35 PASS		NM_000059.3	:.8851G>A_p.Ala2951Thr	2 Ex22	NSY		N 0.518			0.003	. +/84.2kbi Substituli	26	4 0	0 0) Ő	eviewed no assert
3	4E+07 .	A G	35 PASS	MLH1	NM_000249.3	:.791-79A>G	3 in9/10	INT			150	30950 0.	.0048	0 +/57.5kb/ Substitu	0	0 0	0 0) 0	o asserti no assert
19	1E+07	G A	35 PASS	IDIR	NM_000527.4	• 1043G>A _n Ara350Gla	2 Fy7	NSY	22 D N	N 0.176	đ	245530 :	2E-05	0 +/4 <u>4 5kb/ Substitu</u> i	0	0 0	0	1 0	o asserti no assert

T

T

to the second se

HGVS nomenclature

Sequence Variant Nomenclature Recommendations - Background Materials - Recent Additions

• a **letter prefix** is mandatory to indicate the type of reference sequence used. Accepted prefixes are;

- "c." for a coding DNA reference sequence
- "g." for a linear genomic reference sequence
- "m." for a mitochondrial DNA reference sequence
- "n." for a non-coding DNA reference sequence
- "o." for a circular genomic reference sequence
- "p." for a protein reference sequence
- "r." for an RNA reference sequence (transcript)

gDNA: Chr12(GRCh37): g.53703386C>G cDNA: NM_015665.5(AAAS): c.809G>C Protein: p.(Arg270Pro) Version 20.05

Contact Us

• numbering of the residues (nucleotide or amino acid) in relation to the reference sequence used should follow the approved scheme (see Numbering)

Other important considerations when looking at nomenclature

- Which reference genome is being used
- Transcript ID (one genomic variant can be described differently in the coding sequence depending on transcript)

cDNA examples

5' UTR

c.-40 to -1

ATTGGCCTTAACCCCCGATTATCAGGAT Single nucleotide variant ATTGGCCTTAACCCCGATTATCAGGAT g.DNA ATTGGCCTTAACCCGATCCGATTATCAGGAT Insertion-deletion variant ATTGGCCTTAACCC --- CCGATTATCAGGAT Transcription ATG-Met Intron 1 Intron 2 Stop codon **Start Site** Start codon Exon 3 Exon 2 Exon 1 **c.DNA** c.93 to 145 c.1 to 36 c.37 to 92

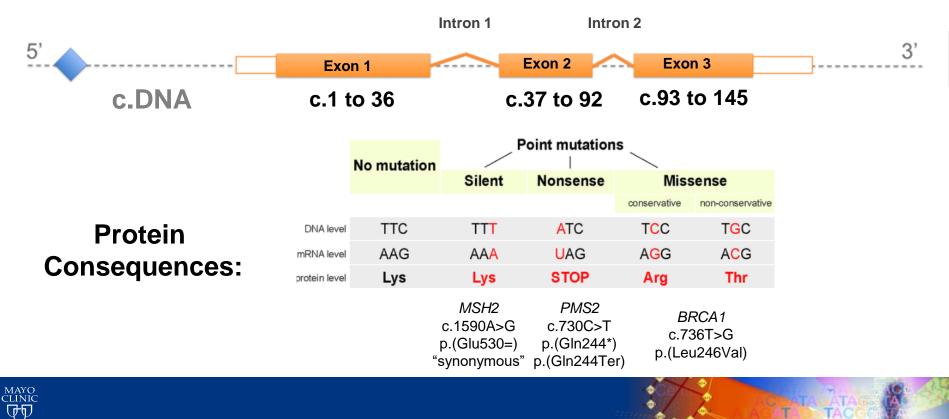
Splice Donor

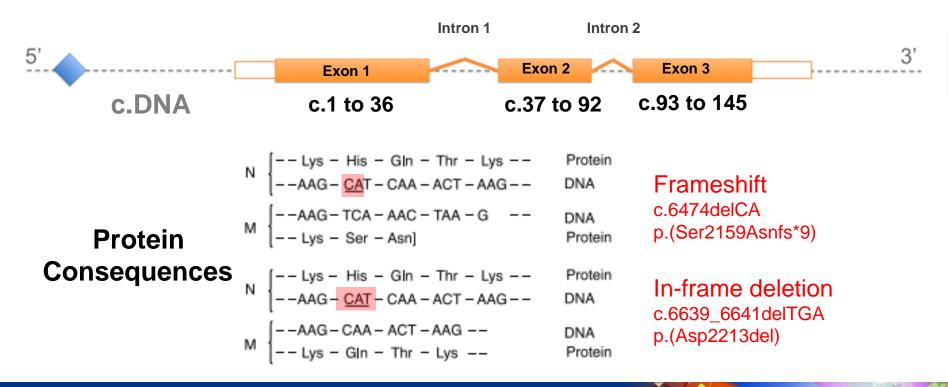
c.36+1 to 36+#

3'

3' UTR

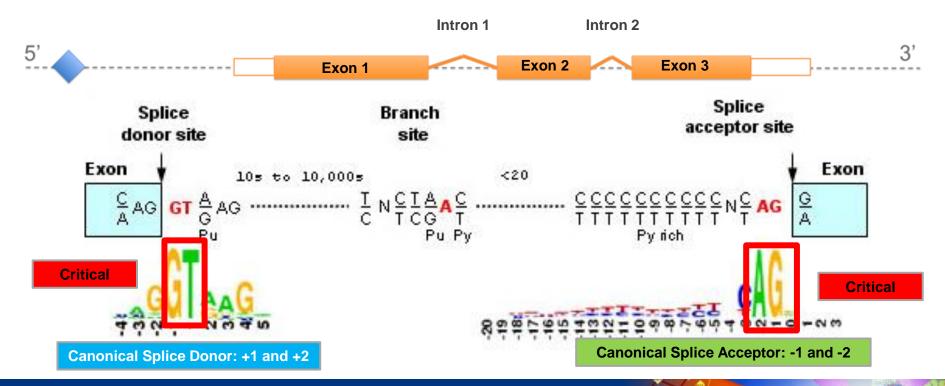
c.*1 to *1290


5'


Splice Acceptor

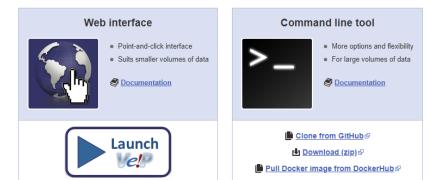
c.37-# to 36-1

Protein level examples



Protein level examples

Splicing disruptions



VEP determines:

- Variant effect (SNPs, insertions, deletions, CNVs or structural variants) on genes, transcripts, and protein sequence, as well as regulatory regions.
- Location of the variants (e.g. upstream of a transcript, in coding sequence, in non-coding RNA, in regulatory regions)
- Consequence of your variants on the protein sequence (e.g. stop gained, missense, stop lost, frameshift)
- Known variants that match yours, and associated minor allele frequencies from the 1000 Genomes Project
- SIFT and PolyPhen-2 scores for changes to protein sequence

McLaren et al. Genome Biology SOFTWARE Open Access The Ensembl Variant Effect Predictor William McLaren^{*}, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R. S. Ritchie, Anja Thormann, Paul Flicek and Flona Cunningham^{*} Web interface Command line tool

https://useast.ensembl.org/info/docs/tools/vep/index.html

Variant Effect Predictor @

C Refresh

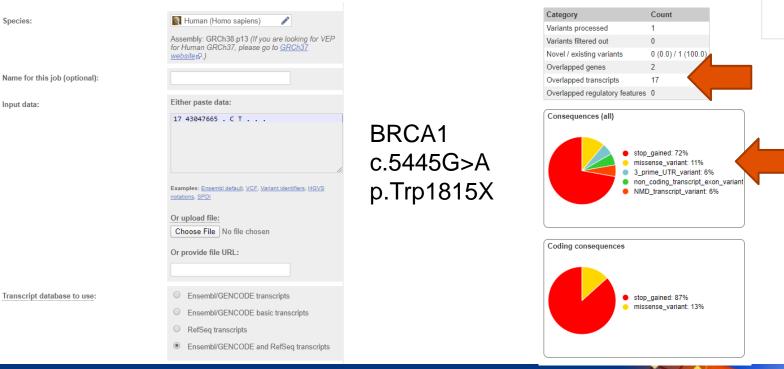
Show/hide columns (1 hidden)		
Analysis	Jobs	Submitted at
Variant Effect Predictor	VEP analysis of pasted data in Homo_sapiens [View results]	06/02/2020, 18:59 (GMT)
Variant Effect Predictor	VEP analysis of pasted data in Homo_sapiens Done [View results]	24/01/2020, 21:53 (GMT)
Variant Effect Predictor	VEP analysis of pasted data in Homo_sapiens Done [View results]	24/01/2020, 21:43 (GMT)

https://useast.ensembl.org/info/docs/tools/vep/index.html

Species:	🛐 Human (Homo sapiens) 🛛 🖍
	Assembly: GRCh38.p13 (If you are looking for VEP for Human GRCh37, please go to <u>GRCh37</u> <u>website@</u> .)
Name for this job (optional):	
Input data:	Either paste data:
	17 43047665 . C T
	Examples: Ensembl default, VCE, Variant identifiers, HGVS notations, SPDI
	Or upload file:
	Choose File No file chosen
	Or provide file URL:
Transcript database to use:	Ensembl/GENCODE transcripts
	 Ensembl/GENCODE basic transcripts
	 RefSeq transcripts

Ensembl/GENCODE and RefSeq transcripts

https://useast.ensembl.org/info/docs/tools/vep/index.html


Identifiers Additional identifiers for genes, transcripts and variants
Variants and frequency data Co-located variants and frequency data
Additional annotations Additional transcript, protein and regulatory annotations
Predictions Variant predictions, e.g. SIFT, PolyPhen
Filtering options Pre-filter results by frequency or consequence type
Advanced options Settings to optimise VEP

Species:	Human (Homo sapiens) Assembly: GRCh38.p13 (If you are looking for VEP for Human GRCh37, please go to <u>GRCh37</u> website@.)					Ve!P	
Name for this job (optional):							
Input data:	Either paste data:		Identifiers Additional ide	ntifiers for genes, transc	cripts and variants		
	17 43047665 . C T		Variants and frequency dat	a Co-located variant	ts and frequency data	а	
		Analysis	Jobs		Submitted at		
	Examples: Ensembl default, VCF, Variant identifiers, HGVS notations, SPDI	Variant Effect Predictor	VEP analysis of paste Homo_sapiens Queued	d data in	26/02/2020, 04:29 (GMT)	8/	< 🕯
	Or upload file: Choose File No file chosen		Filtering options Pre-filter	er results by frequency (or consequence type		
	Or provide file URL:		Advanced options Settin	ngs to optimise VEP			
Transcript database to use:	 Ensembl/GENCODE transcripts Ensembl/GENCODE basic transcripts RefSeq transcripts Ensembl/GENCODE and RefSeq transcripts 						

https://useast.ensembl.org/info/docs/tools/vep/index.html

MAYO CLINIC ወወ

https://useast.ensembl.org/info/docs/tools/vep/index.html

©2021 MFMER | slide-17

Web interface

· Point-and-click interface · Suits smaller volumes of data Documentation

Uploaded variant	Location	Allele	<u>Consequence</u>	Symbol	Exon	HGVSc ∳	HGVSp	cDNA position ∳	CDS position	Protein position	Amino acids	Codons	Existing variant	Feature strand	MANE
-	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	21/22	ENST00000352993.7:c.2019G>A	ENSP00000312236.5:p.Trp673Ter	2138	2019	673	W/*	TG G /TG A	rs397509284, CM042679, COSV58785802	-1	-
-	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	22/23	ENST00000357654.9:c.5445G>A	ENSP00000350283.3:p.Trp1815Ter	5558	5445	1815	W/*	TG G /TG A	rs397509284, CM042679, COSV58785802	-1	NM_007294.4
	<u>17:43047665-</u> <u>43047665</u>	Т	3 prime_UTR_variant, NMD_transcript_variant	BRCA1	22/23	ENST00000461221.5:c.*5228G>A	-	5546	-	-	-	-	<u>rs397509284,</u> <u>CM042679,</u> <u>COSV58785802</u>	-1	-
	<u>17:43047665-</u> <u>43047665</u>	Т	missense_variant	BRCA1	21/22	ENST00000468300.5:c.2059G>A	ENSP00000417148.1:p.Asp687Asn	2253	2059	687	D/N	GAC/AAC	<u>rs397509284,</u> <u>CM042679,</u> <u>COSV58785802</u>	-1	-
-	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	23/24	ENST00000471181.7:c.5508G>A	ENSP00000418960.2:p.Trp1836Ter	5740	5508	1836	W/*	TGG/TGA	<u>rs397509284,</u> <u>CM042679,</u> <u>COSV58785802</u>	-1	-
	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	22/23	ENST00000491747.6:c.2133G>A	ENSP00000420705.2:p.Trp711Ter	2232	2133	711	W/*	TGG/TGA	rs397509284, CM042679, COSV58785802	-1	-
-	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	21/22	ENST00000493795.5:c.5304G>A	ENSP00000418775.1:p.Trp1768Ter	5536	5304	1768	W/*	TGG/TGA	rs397509284, CM042679, COSV58785802	-1	-
	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	7/8	ENST00000586385.5:c.375G>A	ENSP00000465818.1:p.Trp125Ter	519	375	125	W/*	TGG/TGA	rs397509284, CM042679, COSV58785802	-1	-
•	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	10/11	ENST00000591534.5:c.918G>A	ENSP00000467329.1:p.Trp306Ter	1020	918	306	W/*	TGG/TGA	rs397509284, CM042679, COSV58785802	-1	-
•	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	4/5	ENST00000591849.5:c.144G>A	ENSP00000465347.1:p.Trp48Ter	301	144	48	W/*	TGG/TGA	<u>rs397509284,</u> <u>CM042679,</u> <u>COSV58785802</u>	-1	-
-	<u>17:43047665-</u> <u>43047665</u>	Т	stop_gained	BRCA1	14/15	ENST00000644379.1:c.1832G>A	ENSP00000496570.1:p.Trp611Ter	1832	1833	611	W/*	TGG/TGA	<u>rs397509284,</u> <u>CM042679,</u> <u>COSV58785802</u>	-1	-
	<u>17:43047665-</u> <u>43047665</u>		stop_gained	BRCA1	22/23	NM_007294.4:c.5445G>A	NP_009225.1:p.Trp1815Ter	5558	5445	1815	W/*	TGG/TGA	rs397509284, CM042679, COSV58785802	-1	-
		Gene	DRUAT ENSG00000012048												

Gene Synonyms Location

Description

BRCA1 DNA repair associated [Source:HGNC Symbol;Acc:<u>HGNC:1100</u> &] BRCC1, FANCS, PPP1R53, RNF53 <u>Chromosome 17: 43.044.295-43.170.245</u> reverse strand.

Gene: BRCA1 ENSG0000012048

Description	BRCA1 DNA repair associated [Source:HGNC Symbol;Acc: <u>HGNC:1100</u> &]
Gene Synonyms	BRCC1, FANCS, PPP1R53, RNF53
Location	<u>Chromosome 17: 43,044,295-43,170,245</u> reverse strand. GRCh38:CM000679.2
About this gene	This gene has 34 transcripts (splice variants), 233 orthologues, is a member of 1 Ensembl protein family and is associated with 80 phenotypes.
Transcripts	Hide transcript table

Show/hide	columns (1 hidden)							Filter
Name 🖕	Transcript ID 💧	bp 🖕	Protein 🖕	Biotype	CCDS 🖕	UniProt 🖕	RefSeq Match 🖕	Flags 🖕
BRCA1-210	ENST0000471181.7	7270	<u>1884aa</u>	Protein coding	<u>CCDS11456</u> @	P38398	-	TSL:1 GENCODE basic APPRIS P4
BRCA1-203	ENST00000357654.9	7088	<u>1863aa</u>	Protein coding	CCDS11453	P38398	<u>NM_007294.4</u> &	TSL:1 GENCODE basic APPRIS ALT2 MANE Select v0.7
BRCA1-221	ENST00000493795.5	5732	<u>1816aa</u>	Protein coding	CCDS11459	P38398	-	TSL:5 GENCODE basic
BRCA1-208	ENST00000468300.5	3273	<u>699aa</u>	Protein coding	CCDS11455	P38398	-	TSL:1 GENCODE basic
BRCA1-219	ENST00000491747.6	2379	<u>759aa</u>	Protein coding	CCDS11454 @	<u>A0A024R1V0</u> & <u>P38398</u> &	-	TSL:5 GENCODE basic
BRCA1-202	ENST0000354071.7	4497	<u>1399aa</u>	Protein coding	-	<u>Q5YLB2</u> &	-	TSL:1 GENCODE basic
BRCA1-201	ENST0000352993.7	3668	<u>721aa</u>	Protein coding	-	<u>A0A024R1Z8</u> & <u>P38398</u> &	-	TSL:5 GENCODE basic
BRCA1-232	ENST0000644379.1	2571	<u>659aa</u>	Protein coding	-	A0A2R8Y7V5 @	-	CDS 5' incomplete
BRCA1-230	ENST0000634433.1	2534	<u>798aa</u>	Protein coding	-	A0A0U1RRA9	-	CDS 3' incomplete TSL:5
BRCA1-234	ENST0000652672.1	2291	<u>601aa</u>	Protein coding	-	<u>A0A494C182</u> &	-	CDS 3' incomplete
BRCA1-209	ENST00000470026.5	2108	<u>649aa</u>	Protein coding	-	E7EWN5®	-	CDS 3' incomplete TSL:1
BRCA1-214	ENST00000477152.5	1980	<u>622aa</u>	Protein coding	-	<u>E9PH68</u> &	-	CDS 3' incomplete TSL:1
BRCA1-215	ENST00000478531.5	1972	<u>623aa</u>	Protein coding	-	<u>E7EUM2</u> டீ	-	CDS 3' incomplete TSL:1

https://useast.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g =ENSG00000012048;r=17:43044295-43170245

Gene: BRCA1

Gene: BRCA1 ENSG0000012048

Description Gene Synonyms

Location

About this gene Transcripts

Show/hide	columns (
Name 🖕	Transo
BRCA1-210	ENST00
BRCA1-203	ENST000
BRCA1-221	ENST000
BRCA1-208	ENST000
BRCA1-219	ENST000
BRCA1-202	ENST000
BRCA1-201	ENST000
BRCA1-232	ENST000
BRCA1-230	ENST000
BRCA1-234	ENST000
BRCA1-209	ENST000
BRCA1-214	ENST000

BRCA1 DNA repair associated [Source:HGNC Symbol;Acc:<u>HGNC:1100</u> &] BRCC1, FANCS, PPP1R53, RNF53 Chromosome 17: 43.044.295-43.170.245 reverse strand.

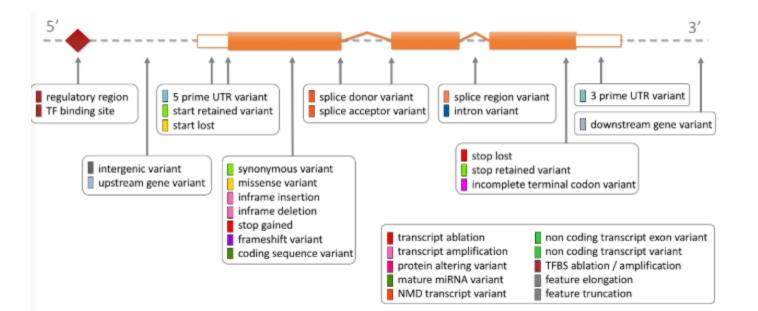
Which transcript should I use?

For automated analysis, if you are doing NGS analysis and you need to capture all possible transcripts, **<u>GENCODE</u>** provides one of the most comprehensive gene sets.

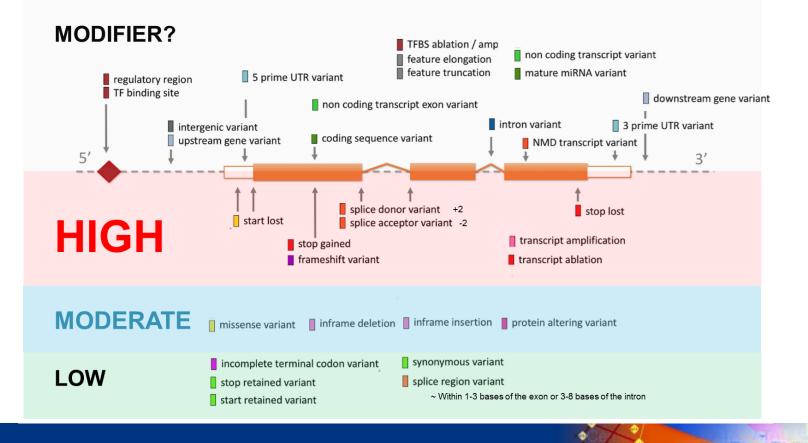
For human genetics or variant annotation, a more restricted transcript set is usually sufficient and <u>"NCBI RefSeq"</u> is the standard with the newest MANE catalogue providing the clinically relevant transcripts.

BRCA1-215 ENST00000478531.5 1972

623aa Protein coding


<u>E7EUM2</u> &

CDS 3' incomplete TSL:1


https://useast.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g =ENSG00000012048;r=17:43044295-43170245

Variant Severity: Variable definitions but helps prioritize

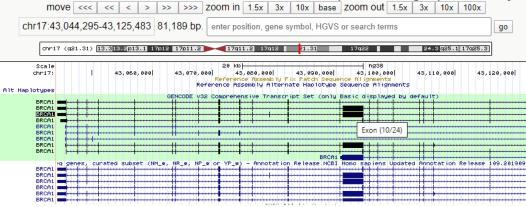
Variant Severity: Variable definitions but helps prioritize

Where is it? Which exon? Regulatory elements nearby? Visualization is key!

#CHRON	POS	ID	REF	ALT	QUAL	FILTER
chr1	55039879		A	ACTG	35	PASS
chr2	47805173		G	A	35	PASS
chr2	47799169		С	G	35	PASS
chr13	32319070		Т	A,TA	35	PASS
chr19	11113686		A	G	35	PASS
chr2	21011802		С	Т	35	PASS
chr?	5977709		Т	С	35	PASS
chr17	43094795		A	С	35	PASS
chr19	11102787		G	A	35	PASS
chr7	6003794		Т	A	35	PASS
chr3	37028782		AG	CC	35	PASS
chr2	47798826		A	AAC	35	PASS
chr7	5987451		CTT	С	35	PASS
chr13	32340378		AGCAAG	ATGCTG	35	PASS
chr2	21038086		С	A	35	PASS

Experimentally Defined Genomic Features: UCSC Genome Browser - Visualization

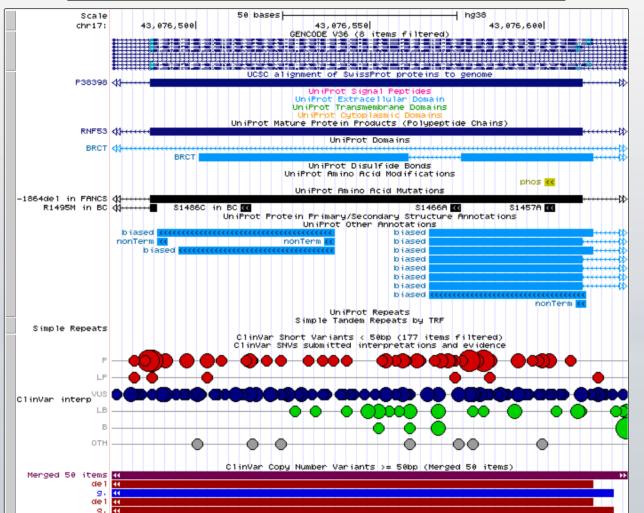
D756–D761 Nucleic Acids Research, 2020, Vol. 48, Database issue doi: 10.1093/nar/gkz1012 Published online 6 November 2019


UCSC Genome Browser enters 20th year

Christopher M. Lee ^{©1,*}, Galt P. Barber¹, Jonathan Casper¹, Hiram Clawson¹, Mark Diekhans¹, Jairo Navarro Gonzalez¹, Angie S. Hinrichs¹, Brian T. Lee ^{©1}, Luis R. Nassar¹, Conner C. Powell¹, Brian J. Raney¹, Kate R. Rosenbloom¹, Daniel Schmelter¹, Matthew L. Speir¹, Ann S. Zweig¹, David Haussler^{1,2}, Maximilian Haeussler¹, Robert M. Kuhn¹ and W. James Kent¹

¹Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA and ²Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA

Received September 11, 2019; Revised October 16, 2019; Editorial Decision October 17, 2019; Accepted October 25, 2019


UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly

- Web-based viewer for genome sequence data and annotations.
- Steadily added data and software features to the website since first coming online in July 2000, and currently hosts 206 assemblies from 105 species

Variant Interpretation: Rationale

- Is a previously published variant associated with a disease phenotype pathogenic?
- Are all variants observed in a control population benign?
- What evidence to we use to ultimately classify a variant?
- How do we ensure consistency among clinicians, clinical laboratories, and researchers?

15-20 years ago...

- If you thought a gene may be implicated in a specific disease:
 - ► You could screen a cohort of patients and look for variants in said gene
 - If you identified a variant in a patient and did not find it in 50 control samples (100 alleles!!!) you could deem this as a pathogenic variant
- Does this make sense statistically?

Common framework and criteria for germline variant classification

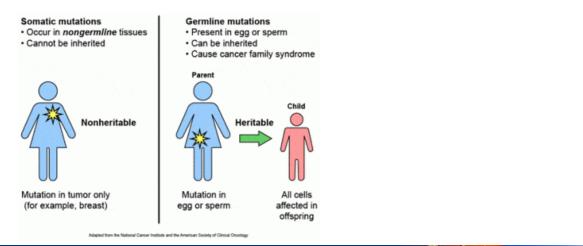
American College of Medical Genetics and Genomics

Translating Genes Into Health®

Common framework and criteria for germline variant classification

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee



2015 ACMG guidelines

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD²¹⁶, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD⁵²⁴, Wayne W. Grody, MD, PhD³¹⁶¹¹, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

- These recommendations primarily apply to genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes.
- It is not intended for the interpretation of somatic variation, pharmacogenomic variants, or variants in genes associated with multigenic non-Mendelian complex disorders.

Class

Pathogenic

Likelv

Pathogenic

Variant of

Uncertain

Significance

Likely Benign

Benign

2015 ACMG guidelines

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD²¹⁶, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD⁵²⁴, Wayne W. Grody, MD, PhD³⁴¹¹, Madhuri Hegde, PhD¹⁵, Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

- These recommendations primarily apply to genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes.
- It is not intended for the interpretation of somatic variation, pharmacogenomic variants, or variants in genes associated with multigenic non-Mendelian complex disorders.
- Care must be taken when applying these rules to candidate genes ("genes of uncertain significance", GUS)
- This report recommends the use of specific standard terminology: 'pathogenic', 'likely pathogenic', 'uncertain significance', 'likely benign', and 'benign' to describe variants identified in Mendelian disorders.

Variant of Uncertain Significance

Likelv

Pathogenic

Likely Benign

Benign

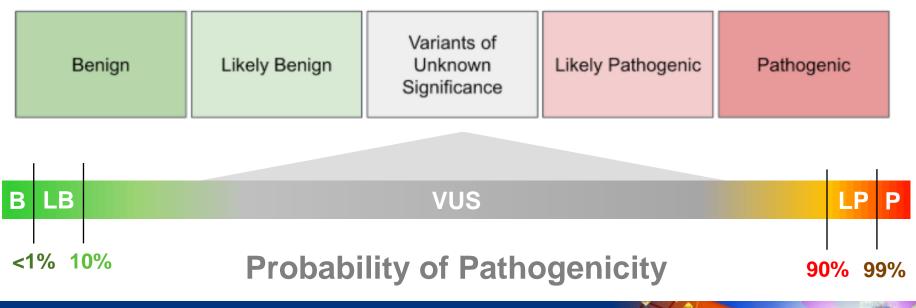
Class

Pathogenic

We interpret by sorting variants into categories

*Variant: An alteration in the normal sequence of a gene: ATA TGA TCA ACA GTT

Caution: A deleterious variant is not always pathogenic or disease causing.


02012 MFMER

3198462-32

What is `Likely`?

The rules proposed to classify sequence variants follows is a heuristic system for variant classification that is compatible with a formal, quantitative, Bayesian classifier.

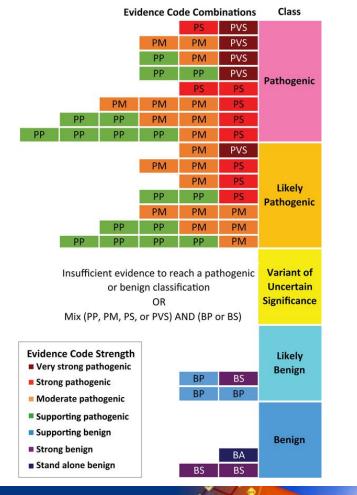
2015 ACMG Guidelines

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,x3}, Wayne W. Grody, MD, PhD^{3,k11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

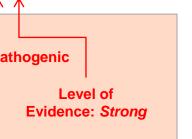
The guideline defined 28 criteria, with codes that addressed types of variant evidence. Each evidence type or criterion code was assigned a direction, benign (B) or pathogenic (P), and a level of strength: stand-alone (A), very strong (VS), strong (S), moderate (M), or supporting (P).

	Ber	^{lign} → ←	Pathogenic							
	Strong	Supporting	Supporting	Moderate	Strong	Very strong				
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4					
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Stient variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino add residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1				
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3					
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data						
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2					
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3						
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5							
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4							



ACMG 2015 guidelines discrete criteria have a strong quantitative correlation with the odds of pathogenicity of a variant.

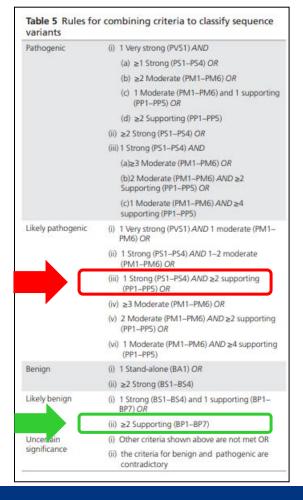
		BENIGN CRITERIA		PATHOGENIC CRITERIA			
Strength of Evidence		Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Odds of Pathogenicity*		-18.7	-2.08	2.08	4.33	18.7	350.0
es	Population Data	<i>BA1</i> + BS1 BS2			PM2	PS4	
Category and ACMG/AMP Code	Allelic Evidence & Co-Segregation Data	BS4	BP2 BP5	PP1			
					PM3 PM6	PS2	
Evidence Category and Corresponding ACMG/AMP Codes	Computation & Predictive Data		BP1 BP3 BP4 BP7	PP2 PP3	PM1 PM4 PM5	PS1	PVS1
orres	Functional Data	BS3				PS3	
Ŭ	Other		BP6	PP4 PP5			



Pathogenic	(i) 1 Very strong (PVS1) AND		
	(a) ≥1 Strong (PS1–PS4) OR		
	(b) ≥2 Moderate (PM1–PM6) OR		
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR		
	(d) ≥2 Supporting (PP1-PP5)		
	(ii) ≥2 Strong (PS1–PS4) OR		
	(iii) 1 Strong (PS1-PS4) AND		
	(a)≥3 Moderate (PM1–PM6) OR		
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR		
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)		
ikely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 		
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR		
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR		
	(iv) ≥3 Moderate (PM1–PM6) OR		
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR		
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)		
Benign	(i) 1 Stand-alone (BA1) OR		
	(ii) ≥2 Strong (BS1–BS4)		
Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR		
	(ii) ≥2 Supporting (BP1–BP7)		
Uncertain	(i) Other criteria shown above are not met OR		
significance	(ii) the criteria for benign and pathogenic are contradictory		

Pathogenic	(i) 1 Very strong (PVS1) AND	PS4 + PM2 + PP1
	(a) ≥1 Strong (PS1–PS4) OR	$\wedge \wedge$
	(b) ≥2 Moderate (PM1–PM6) OR	
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	Dette service
	(d) ≥2 Supporting (PP1-PP5)	Pathogenic
	(ii) ≥2 Strong (PS1–PS4) OR	I
	(iii) 1 Strong (PS1-PS4) AND	Level of
	(a)≥3 Moderate (PM1–PM6) OR	Evidence: Strong
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR	Lindon on only
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	= Likely Pathoge
Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR	- Likely Falloge
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR	
	(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR	
	(IV) 25 MODELALE (FIVIT-FIMID) OK	
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR	
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	
Benign	(i) 1 Stand-alone (BA1) OR	
	(ii) ≥2 Strong (BS1–BS4)	
Likely benign	 (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR 	
	(ii) ≥2 Supporting (BP1–BP7)	
Uncertain	(i) Other criteria shown above are not met OR	
significance	(ii) the criteria for benign and pathogenic are contradictory	

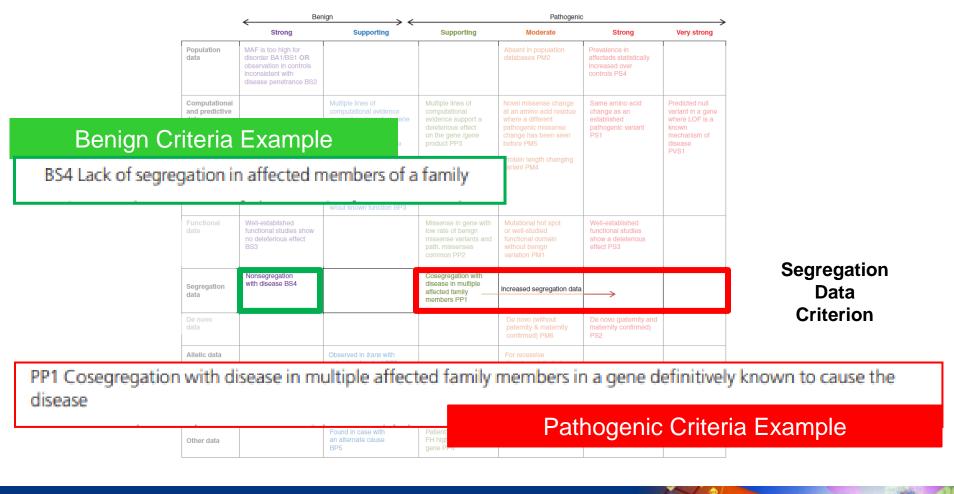
= Likely Pathogenic



Pathogenic	(i) 1 Very strong (PVS1) AND	PS4 + PM2 + PP1
	(a) ≥1 Strong (PS1-PS4) OR	$\wedge \wedge$
	(b) ≥2 Moderate (PM1–PM6) OR	
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	
	(d) ≥2 Supporting (PP1-PP5)	Pathogenic
	(ii) ≥2 Strong (PS1~PS4) OR	I and the second se
	(iii) 1 Strong (PS1-PS4) AND	Level of
	(a)≥3 Moderate (PM1–PM6) OR	Evidence: Strong
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR	
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	= Likely Pathogenic
Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR	- Likely Fallogenic
	 (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR 	
	 (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR 	BP4
	(iv) ≥3 Moderate (PM1–PM6) OR	\wedge \wedge
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR	
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)	
Benign	(i) 1 Stand-alone (BA1) OR	Benign
	(ii) ≥2 Strong (BS1–BS4)	Denigh
Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR	Level of
	(ii) ≥2 Supporting (BP1–BP7)	Evidence: Supporting
Uncertain significance	(i) Other criteria shown above are not met Ok	
agrinicatice	 (ii) the criteria for benign and pathogenic are contradictory 	

T

T



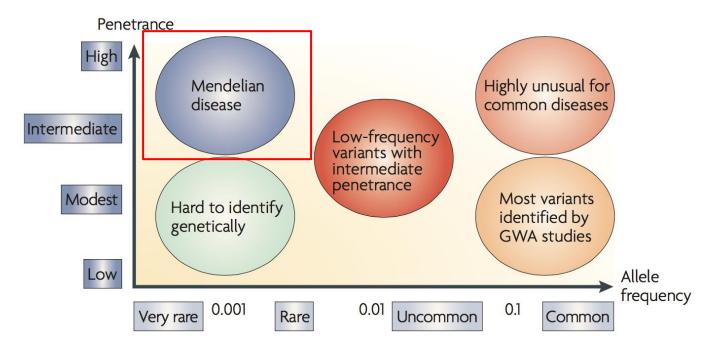
Conflicting evidence example:

PS4 + PM2 + BP2 + BP4

Variant of UncertainSignificance (VUS or VOUS)

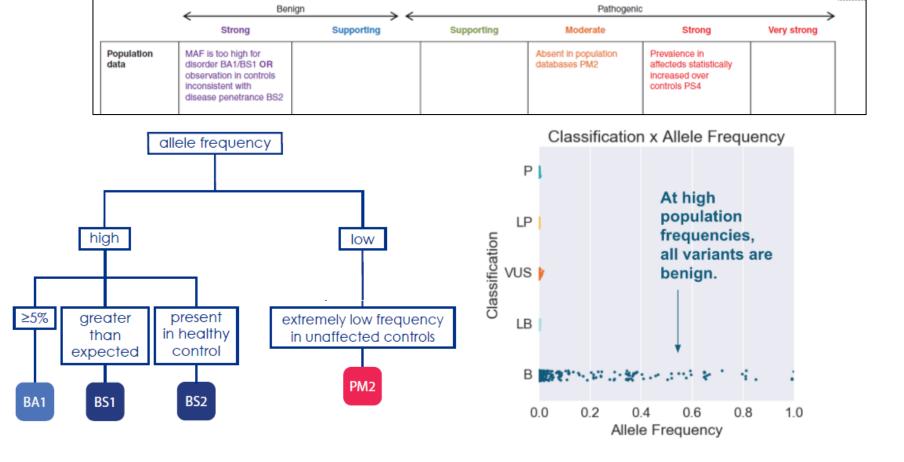
Richards CS et al. *Gen Med.* 2015;17:405-423

	€ Ber	iign 🔶 🗲	Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Verv strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\longrightarrow		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				


Richards CS et al. *Gen Med.* 2015;17:405-423

©2021 MFMER | slide-41

T


Т

Allele Frequency (BA1, BS1, PM2) How common is this variant?

<u> https://gnomad.broadinstitute.org/</u>

The cutoffs of each of these criteria depends on many factors such as: Prevalence of disease, age of onset, and penetrance

©2021 MFMER | slide-43

M CL

Allele Frequency (BA1, BS1, PM2) How common is this variant?

BA1:

>5% allele frequency in any general continental population of at least 2,000 alleles for a gene without a gene or variant specific recommendation.

BS1:

Allele frequency is greater than expected for disorder (lower than BA1)

PM2:

Absent from controls (or at an extremely low frequency if recessive).

https://gnomad.broadinstitute.org/

Exome Aggregation Consortium (ExAC)

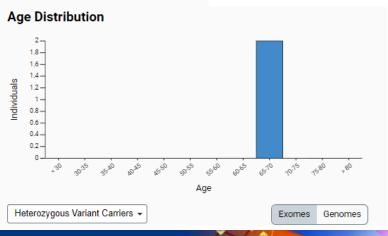
125,748 exome sequences 15,708 whole-genome sequences 141,456 individuals

genome aggregation database

Search by gene, region, or variant

gnomAD

Single nucleotide variant: 6-51944718-G-A (GRCh37)


Filter	Exomes Pass	Genomes Pass	Total
Allele Count	2	1	3
Allele Number	251434	31396	282830
Allele Frequency	0.000007954	0.00003185	0.00001061
Popmax Filtering AF @ (95% confidence)	-	-	
Number of homozygotes	0	0	0

References

- dbSNP (rs727504096)
- UCSC
- ClinVar (177240)

Report

- · Report this variant
- Request additional information

Population	Allele Count	Allele Number	Number of Homozygotes	Allele Frequency
 African 	2	24962	0	0.00008012
East Asian	1	19950	0	0.00005013
Latino	0	35438	0	0.000
Ashkenazi Jewish	0	10370	0	0.000
 European (Finnish) 	0	25122	0	0.000
European (non- Finnish)	0	129146	0	0.000
Other	0	7226	0	0.000
 South Asian 	0	30616	0	0.000
Male	2	153358	0	0.00001304
Female	1	129472	0	0.000007724
Total	3	282830	0	0.00001061
	-			

Include: 🗹 Exomes 🗹 Genomes

ᢎ᠋ᠮ

MAYO CLINIC http://gnomad.broadinstitute.org/

List of nine variants for which there was some evidence of pathogenicity even though the MAF was high for these variants!

Gene	Variant	Classification	applied (not including BA1 or BS1)	ClinVar ID	ClinGen Allele Registry ID	Chr	Position	Ref	Alt	ExAC Source Pop	ExAC Source Pop MAF	ClinVar disease entry
ACAD9	NM_014049.4: c44 41dupTAAG	VUS	PS3_Supporting; BS2	1018	CA114709	3	128,598,490	с	CTAAG	AFR	0.1261	Deficiency of Acyl- CoA dehydrogenase family, member 9
GJB2	NM_004004.5: c.109G>A (p.Val37lle)	Pathogenic	PS4; PP1_Strong; PM3_VeryStrong; PS3_Moderate	17023	CA172210	13	20,763,612	с	т	EAS	0.07242	Deafness, autosomal recessive
HFE	NM_000410.3: c.187C>G (p.His63Asp)	Pathogenic*	PS4	10	CA113797	6	26,091,179	с	G	NFE	0.1368	Hereditary hemochromatosis
HFE	NM_000410.3: c.845G>A (p.Cys282Tyr)	Pathogenic*	PS4; PP3	9	CA113795	6	26,093,141	G	A	NFE	0.05135	Hereditary hemochromatosis
MEFV	NM_000243.2: c.1105C>T (p.Pro369Ser)	VUS	PM3; PM5	2551	CA280114	16	3,299,586	G	A	EAS	0.07156	Familial Mediterranean fever
MEFV	NM_000243.2: c.1223G>A (p.Arg408Gln)	VUS	PM3; PM5	2552	CA280116	16	3,299,468	с	т	EAS	0.05407	Familial Mediterranean fever
PIBF1	NM_006346.2: c.1214G>A (p.Arg405Gln)	VUS	PM3; BS2	217689	CA210261	13	73,409,497	G	A	AMR	0.09858	Joubert syndrome
ACADS	NM_000017.3: c.511C>T (p.Arg171Trp)	VUS	PS3_Moderate; PM3; PP3	3830	CA312214	12	121,175,678	с	т	FIN #	0.06589	Deficiency of butyryl- CoA dehydrogenase
зтр	NM_000060.4: c.1330G>C (p.Asp444His)	Pathogenic	PS3; PM3_Strong; PP3; PP4	1900	CA090886	3	15,686,693	G	с	FIN #	0.05398	Biotidinase deficiency

*ACMG/AMP criteria selected does not match the classification as these variants are common low-penetrant variants and the ACMG/AMP guidelines are not designed for this variant type

SILLER | SILLE-47

1

Detected at >5% MAF only in Finnish population (see text).

Genomic coordinates on build GRCh37

AFR: African/African American, EAS: East Asian, NFE: Non-Finnish European, AMR: Latino, FIN=Finnish

Allele Frequency (BA1, BS1, PM2) Other considerations...

What is a control population? Unselected?

For dominant disorders (AD): Adult-onset disorders could be represented in the gnomAD database in still unaffected probands. Instead of controls the database could be refer to better as "general population".

ClinGen Sequence Variant Interpretation Recommendation for PM2 - Version 1.0 Working Group Page: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/ Date Approved: September 4, 2020

SVI Recommendation for Absence/Rarity (PM2) - Version 1.0

The ClinGen Sequence Variant Interpretation (SVI) Working Group proposes decreasing the weight of criterion PM2 ("Absent from controls, or at extremely low frequency if recessive, in Exome Sequencing Project, 1000Genomes Project, or Exome Aggregation Consortium") from a Moderate strength level to a Supporting strength level (PM2_Supporting).

PM2:

Absent from controls (or at an extremely low frequency if recessive).

PM2_supporting

Demotion of this category to supporting is currently recommended.

inicalgenome.org/site/assets/files/5182/pm2_-_svi_recommendation

	€ Ber	^{nign} → ←	Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\longrightarrow		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cls</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

Richards CS et al. *Gen Med.* 2015;17:405-423

©2021 MFMER | slide-49

T

Т

	€ Ber	nign 💦 🔶	Pathogenic					
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→			
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>ds</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		s on the		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5		1 40			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

MAYO CLINIC

Richards CS et al. Gen Med. 2015;17:405-423

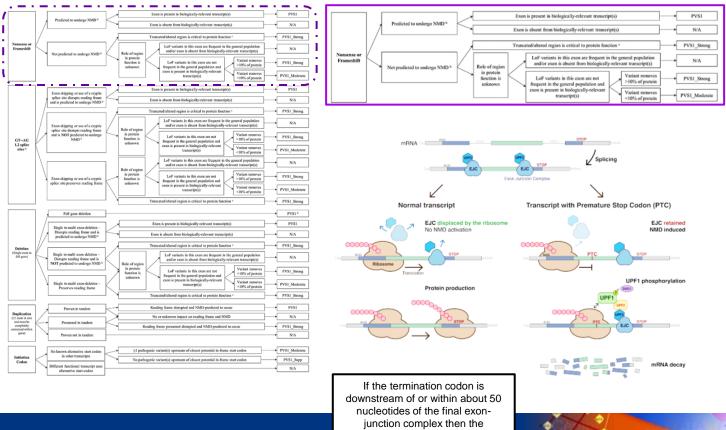
©2021 MFMER | slide-50

T

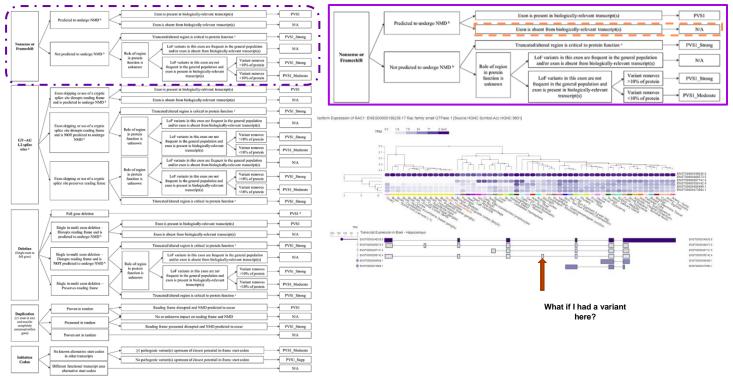
T/

Computational and predictive dataMultiple lines of computational evidence suggest no impact 0n gene /gene product BP4Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3Novel missense change at a amino acid residue where a different pathogenic missense change has been seen before PM5Same amino acid change as an established pathogenic variant mechani disease PVS1Predicter variant pathogenic missense change has been seen before PM5Same amino acid established pathogenic variant where LGPredicter established pathogenic variant where LGPredicter established pathogenic variant pathogenic variant p	i gene Fis a
--	-----------------

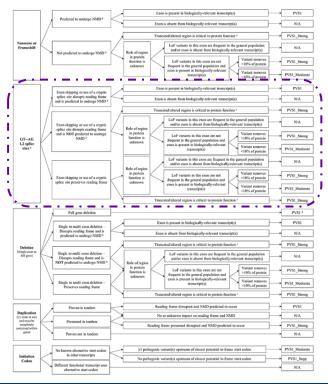
Loss of Function Criteria (PVS1) (only "very strong" level of evidence)

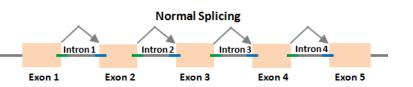

Null variant in a gene where loss of function (LoF) is a known mechanism of disease.

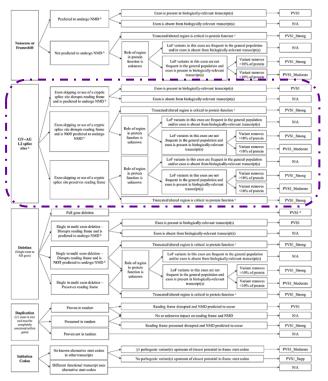
MAYO CLINIC

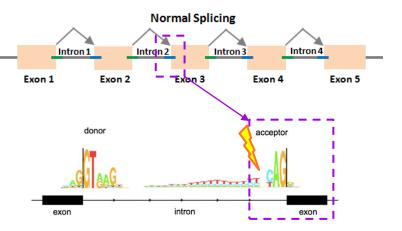

ᠬᢧ᠋ᠳ

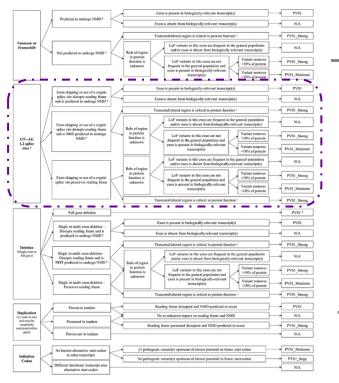
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.236

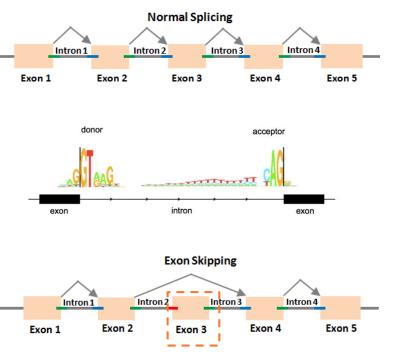

©2021 MFMER | slide-52


transcript is translated normally.

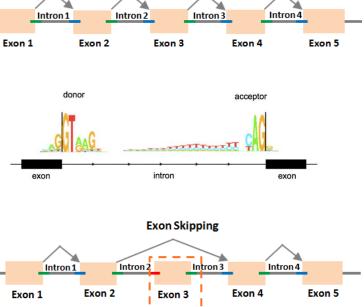

https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23626




https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23626



https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23626

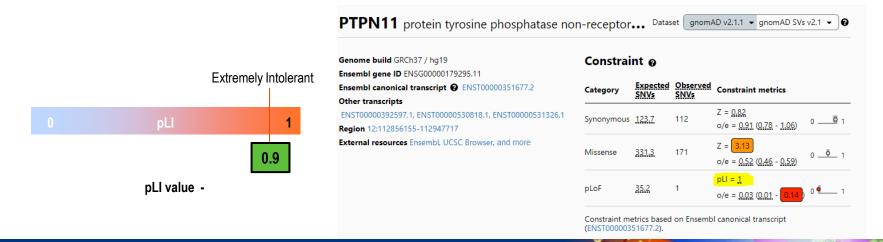


https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23626

PVS1- How to investigate if LOF is a `known mechanism of disease`

https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23626

Table 3.


Missense and LoF annotations and curations per gene from ClinGen Variant Curation Expert Panels

Gene	Disease Area (MOI)	HI Score	gnomAD LoF <i>oe</i> metric (90% CI)	PVS1?	Missense Z score (ExAC / gnomAD)	PP2?]
MYH7	Cardio (AD)	0	0.45 (0.35–0.57)	Yes (Mod)	6.54 / 3.93	No]
BRAF		1	0.1 (0.05–0.21)	No	3.99 / 3.72	Yes	
HRAS		0	0.36 (0.16-0.93)	No	2.69 / 1.51	Yes	1
KRAS		0	0.63 (0.34-1.24)	No	1.36 / 2.32	Yes	
MAP2K1		0	0.15 (0.07–0.38)	No	3.43 / 3.11	Yes	A B
MAP2K2	RAS (AD)	1	0.1 (0.04-0.33)	No	1.48 / 1.87	Yes	
PTPN11	1	3	0.03 (0.01-0.14)	No	3.43 / 3.13	Yes	
RAFI		0	0.19 (0.11–0.35)	No	2.82 / 2.46	Yes	
SHOC2		-	0 (0.00–0.14)	No	2.57 / 2.97	Yes	
SOS1]	0	0.07 (0.03-0.14)	No	2.18 / 3.05	Yes	
PTEN	PHTS (AD)	3	0.24 (0.13-0.51)	Yes	3.71 / 3.49	Yes	
CDH1	HDGC (AD)	3	0.25 (0.15-0.43)	Yes	0.81 / 0.71	No	
PAH	PKU (AR)	30	1.12 (0.84–1.50)	Yes	-1.54 / -0.65	No	and the second in the
CDH23		30	0.38 (0.26-0.57)	Yes	-0.24 / 0.71	No	https://doi.org/10.1186/1750-1172-3-13
GJB2]	-	2.62 (1.39–1.98)	Yes	-1.07 / 1.17	No	
MYO7A		-	0.7 (0.58–0.85)	Yes	-1.44 / 1.07	No]
SLC26A4	HL (AR)	-	0.89 (0.68–1.18)	Yes	-3.23 / -2.01	No]
TECTA	1	30	0.45 (0.35-0.58)	Yes	2.3 / 1.61	No	1
USH2A	1	30	0.76 (0.67–0.86)	Yes	-5.12 / -2.47	No	1
сосн		-	0.59 (0.40-0.91)	No	0.34 / 0.68	No]
KCNQ4		-	0.22 (0.12-0.41)	Yes	2.73 / 1.83	No]
MYO6	HL (AD)	-	0.3 (0.22–0.42)	Yes	1.02 / 1.39	No]
TECTA	1	30	0.45 (0.35-0.58)	No	2.3 / 1.61	No	1

How do I know if loss of function variants cause disease?

pLI score - Probability a gene is haploinsufficient - where heterozygous LoFs are not tolerated. >0.9 is a common threshold. Particularly good for autosomal dominant disease.

https://gnomad.broadinstitute.org/gene/ENSG00000179295?dataset=gnomad_r2_1

PVS1- How to investigate if LOF is a `known mechanism of disease`

* 176876 Table of Contents	* 17687	76			
Title					
Gene-Phenotype Relationships	PROTEIN-TYROSINE PHOS PTPN11				
Text					
Description	Alternative t	itles; symbols			
Cloning and					
Expression		N-TYROSINE PHOSPHATASE 2C; F			
Mapping	TYROSINE PHOSPHATASE SHP2; SHP2				
Biochemical Features					
Gene Function	HGNC Ap	proved Gene Symbol: PTPN11			
Molecular Genetics	,				
Genotype/Phenotype Correlations	Cytogenet NCBI)	tic location: 12q24.13 Genomic coord			
Animal Model					
Allelic Variants	Gene-Ph	enotype Relationships			
Table View					
References	Location	Phenotype Clinical Synopses			
Contributors					
Creation Date	12q24.13	LEOPARD syndrome 1 Leukemia, juvenile myelomonocytic, somatic			
Edit History		Metachondromatosis			
-		Noonan syndrome 1			

ATASE, NONRECEPTOR-TYPE, 11;

ICD+

PTP2C

rdinates (GRCh38): 12:112.418.946-112.509.917 (from

Location	Phenotype Clinical Synopses	Phenotype MIM number	Inheritance	Phenotype mapping key
12q24.13	LEOPARD syndrome 1	151100	AD	3
	Leukemia, juvenile myelomonocytic, somatic	607785		3
	Metachondromatosis	156250	AD	3
	Noonan syndrome 1	163950	AD	3

OMIM - Online Mendelian Inheritance in Man®

*176876 Table of Contents	* 17687	76			
Title					
Gene-Phenotype Relationships	PROTI PTPN1	EIN-TYROSINE PHOSPHAT	ASE, NONR	ECEPTOR	-TYPE, 11
Text					
Description	Alternation	itles; symbols			
Cloning and	Allernative i	illes, symbols			
Expression	PROTEIN	N-TYROSINE PHOSPHATASE 2C; PT	TP2C		
Mapping	TYROSIN	NE PHOSPHATASE SHP2; SHP2			
Biochemical Features					
Gene Function	HGNC Ar	proved Gene Symbol: PTPN11			
Molecular Genetics					
Genotype/Phenotype	Cytogene	tic location: 12q24.13 Genomic coordi	nates (GRCh38): 12	:112,418,946-1	12,509,917 (from
Correlations	NCBI)				
Animal Model					
Allelic Variants	Gene-Ph	enotype Relationships			
Table View		51 1			
References	Location		Phenotype MIM number	Inheritance	Phenotype
Contributors		Phenotype Clinical Synopses			mapping key
Creation Date	12q24.13	LEOPARD syndrome 1	151100	AD	3
		Leukemia, juvenile myelomonocytic, somatic	607785		3
Edit History		Metachondromatosis	156250	AD	3
		Noonan syndrome 1	163950	AD	3

©2021 MFMER | slide-61

ICD+

OMIM - Online Mendelian Inheritance in Man®

PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR-TYPE, 11; PTPN11

Allelic Variants (36 Selected Examples) :

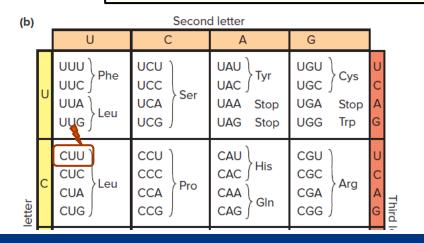
All ClinVar Variants

Number 🔺	Phenotype 🍦	Mutation 👙	SNP	gnomAD	ClinVar	
.0001	NOONAN SYNDROME 1	PTPN11, ALA72SER	rs121918453 -	-	RCV000014252	
.0002	NOONAN 5YNDROME 1	PTPN11, ALA72GLY	rs121918454 •	-	RCV000014253	
.0003	NOONAN SYNDROME 1	PTPN11, ASN308ASP	rs28933386 -	rs28933386	RCV000014254	
.0004	NOONAN SYNDROME 1	PTPN11, ASN3085ER	rs121918455 -	-	RCV000014255	
.0005	LEOPARD SYNDROME 1	PTPN11, TYR279CY5	rs121918456 •	-	RCV000030620	
.0006	LEOPARD SYNDROME 1	PTPN11, THR468MET	rs121918457 -	rs121918457	RCV000033533	
.0007	NOONAN 5YNDROME 1	PTPN11, SER502THR	rs121918458 -	-	RCV000014260	
.0008	NOONAN SYNDROME 1	PTPN11, TYR63CY5	rs121918459 -	rs121918459	RCV000014261	
.0009	NOONAN 5YNDROME 1	PTPN11, TYR62A5P	rs121918460 -	rs121918460	RCV000014257	
.0010	NOONAN 5YNDROME 1	PTPN11, ASP61GLY	rs121918461 •	-	RCV000014258	
.0011	NOONAN 5YNDROME 1	PTPN11, THR73ILE	rs121918462 •	-	RCV000014262	
.0012	NOONAN SYNDROME 1	PTPN11, PHE2855ER	rs121918463 -	-	RCV000014263	
.0013	MOVED TO 176876.0011	-	-	-	-	
.0014	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76LY5	rs121918464 -	-	RCV000014264	
0015	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76VAL	rs121918465 •	-	RCV000014265	
0016	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76GLY			6 .1	
0017	LEUKEMIA, JUVENILE MYELOMONOCYTIC, SOMATIC	PTPN11, GLU76ALA				ariants associate
.0018	NOONAN SYNDROME	PTPN11, GLN79ARG		۰ ۸ /۱۰	th tha	phenotype are
0019	NOONAN SYNDROME	PTPN11, THR411MET		VV I		pricholype ale
.0020	LEOPARD SYNDROME 1	PTPN11, ALA461THR			N /	issense
0021	LEOPARD SYNDROME 1	PTPN1, GLY464ALA			IVI	ISSENSE
0022	LEOPARD SYNDROME 1	PTPN11, GLN510PRO				
.0023	NOONAN SYNDROME	PTPN11, GLN510ARG	rs121918470 -	rs121918470	RCV000014273	

ClinGen

	V Gene Facts	4 Gene-Disease Validity Classifications	2 Dosage Sensitivity Classifications	12 Clinical Actionability Assertions	40 Variant Pathogenicity Assertions	0 / 0 CPIC / PharmGKB High Level Records	Follow Gene
Curation Sur	mmaries Status and Futu	re Work ③ Extern	al Genomic Resou	rces ClinVar Variant	ts 🕑		
G Gen	e-Disease Valid	ity				Group By Activity Grou	up By Gene-Disease Pair
Gene	Disease		MOI	Expert Panel	Classification		Report & Date
PTPN11	Noonan syndrome MONDO:0018997		AD 🚯	RASopathy GCEP 🗹	Definitiv	e	07/24/2018
PTPN11	Noonan syndrome with MONDO:0007893	multiple lentigines	AD 📵	RASopathy GCEP 🗹	Definitiv	e	07/25/2018
PTPN11	cardiofaciocutaneous sy MONDO:0015280	ndrome	AD 📵	RASopathy GCEP 🗹	Disputed	1	65/30/2018
PTPN11	Costello syndrome MONDO:0009026		AD 🚯	RASopathy GCEP 🗹	Disputed	1	65/31/2018

Noonan syndrome is believed to be caused **by gain-of-function** defects in *PTPN11* (PMID:11992261), and LEOPARD syndrome is believed to be caused by **dominant-negative mechanisms** (PMID: 16358218). Evidence gathered for the haploinsufficiency rating for this gene is related to the metachondromatosis phenotype.

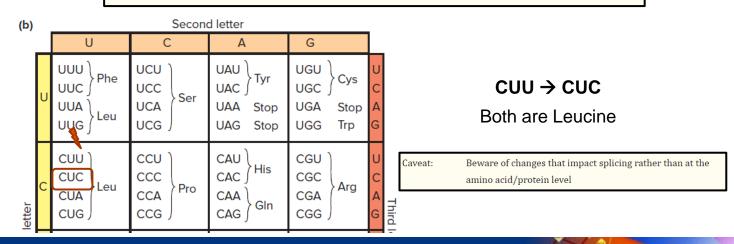


Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Sillent variant with non predicted spice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a delotericus effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	--	---	---	---

PS1

PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

Example: Val->Leu caused by either G>C or G>T in the same codon



Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a difforent pathogonic missenso change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1

PS1

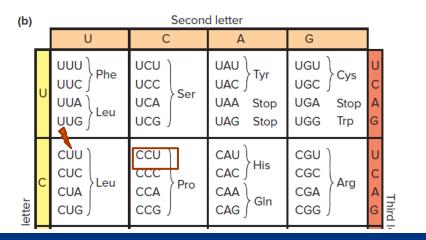
PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

Example: Val->Leu caused by either G>C or G>T in the same codon

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deloterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue whore a difforent pathogenic missenso change has been seeri before PM5 Protein sength changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	--	--	---	---

PM5 Novel missense change at an amino acid residue where a different

missense change determined to be pathogenic has been seen before


Example: Arg156His is pathogenic; now you observe Arg156Cys

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogonic missenso change has been seen before PM5 Protein tength changing	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
	Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3		variant PM4		

PM5 Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before

Example: Arg156His is pathogenic; now you observe Arg156Cys

Leu257Pro - Pathogenic

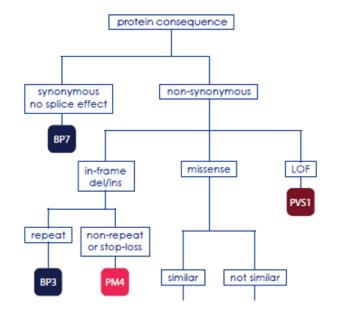
 $CUU \rightarrow CCU$

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deletorious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogonic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	--	--	---	---	---

PM5

Novel missense change at an amino acid residue where a different

missense change determined to be pathogenic has been seen before


Example: Arg156His is pathogenic; now you observe Arg156Cys

(b)		Secon	d letter			
_	U	С	А	G		Leu257Pro - Pathogenic
L	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	$CUU \rightarrow CCU$ Leu257His - ??? $CUU \rightarrow CAU$
letter	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC / His CAA CAA CAG / GIn	CGU CGC CGA CGG	Third I	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level

Computational and predictive data	Multiple lines of computational evidence suggest ho impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Sitient variant with non predicted splice impact BP7 In-frame indels in repeat	Multiple lines of computational evidence support a delotarious effect on the gene /gene product PP3	Novel missense change at an amino acid residue whore a difforent pathogonic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
---	---	--	---	---	---

Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.

In-frame removal or insertion of amino acids

PM4

Protein length changes as a result of in-frame deletions/insertions

NM_000179.3(MSH6): c.535_546del p.(Ala179_Ala182del)

- Insertions/deletions that occur in repetitive regions are more likely to be of little functional impact; therefore, it is important to assess the surrounding sequence for repetitiveness using a genome browser.
- It can also help to assess population databases, such gnomAD, for high confidence variant calls that indicate the site is multi-allelic, which could indicate that the region is prone to indels that are generally tolerated, depending on the overall allele frequency.
- It is important to verify the functional impact the deletion or insertion might have. Does it affect the zinc-fingers of a transcription factor? Does it remove important aminoacids in the catalytic site?
- To prevent double-counting of this evidence type, we recommend that PM4 should not be applied for any variant in which PVS1, at any strength level, is also applied.

Stop loss: Protein extending variants

PM4

Protein length changes as a result of in-frame deletions/insertions When a variant results in loss of the termination codon (stop-loss variant), the protein is extended; if a variant creates a premature termination codon (nonsense variant), the protein is shortened.

NM_000059.3(BRCA2): c.10256_10257insT p.(*3419Tyrext*18)

Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
	Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3		variant PM4		

▶ PP3

PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc)

Computational Impact Prediction

"In silico scores"

	 -				
Computational and predictive data	Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missonse in gene where only truncating cause disease BP1 Silvert variant with non predicted spice impact BP7 in-trame indels in repeat wout known function BP3	Multiple lines of computational widence support a deleterious effect on the gene (gene product PP3	Novel missense change tit an armin acid residue where a different pathogenic missense change has been seen before PMS Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1

Pathogenicity Scores

		20			1
BayesDel addAF dbNSFP version 4.1	addAF prediction Damaging	Mutation assessor dbNSFP version 4.1	prediction Medium	score 3.28	rankscore 0.9021
BayesDel noAF dbNSFP version 4.1	noAF prediction Damaging	MutationTaster 😯 dbNSFP version 4.1	Prediction Disease causing	Accuracy 🚱 1	converted rankscore 0.81
DANN 😧 version 2014	Score 0.9987	PROVEAN @	prediction Damaging	score -6.74, -6.44, -6.82, -6.71, -6.76	converted rankscore 0.9298
DEOGEN2	prediction Damaging, Tolerated	REVEL dbNSFP version 4.1	prediction Pathogenic	score 0.9599	rankscore 0.9939
dbNSFP version 4.1		SIFT (2) dbNSFP version 4.1	prediction Damaging	score O	converted rankscore 0.9125
EIGEN dbNSFP version 4.1	prediction Pathogenic	SIFT4G dbNSFP version 4.1	prediction Damaging	score 0.002, 0.001, 0.003, 0	converted rankscore 0.9282
EIGEN PC	prediction Pathogenic	PrimateAl	prediction	score	rankscore

PP3

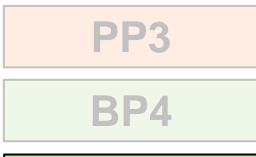
Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

BP4

Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc.)

Richards CS et al. *Gen Med.* 2015;17:405-423

Computational Impact Prediction Considerations


- PP3 or BP4 can be used only once in a variant. Many algorithms used the same or very similar training data for their predictions, each algorithm cannot be counted as an independent criterion.
- Consistent threshold for the tool(s) should be used for all the variants in that gene.
- Currently, a <u>meta-predictor such as REVEL</u> may be used in place of multiple predictors in the in silico analysis of missense variants.
- Splicing in silico tools can be difficult to utilize and the interpretation is often not standardized.

Richards CS et al. *Gen Med.* 2015;17:405-423

Computational Impact Prediction Splicing Scores

A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved.

Computational Impact Prediction A Commonly Used Powerful Splicing Tool

PP3 BP4 BP7

SpliceAl

Deep neural network based on premRNA transcript sequences that predicts splice sites using long-range primary genomic sequence flanking each position as input (+/-50 bp as default; +/-10,000 bp maximum).

https://spliceailookup.broadinstitute.org/

∆ type	∆ score ⑦	pre-mRNA position ⑦
Acceptor Loss	0.00	
Donor Loss	0.72	0 bp
Acceptor Gain	0.00	
Donor Gain	0.01	-47 bp

SpliceAl provides a table with delta scores (0-1) for acceptor loss, donor loss, acceptor gain, and donor gain within the designated flanking sequence. The delta score indicates the probability that the variant will alter splicing at the pre-mRNA position indicated

Scores are not deterministic of biological effect/deleteriousness, they are used as "supporting evidence"

gDNA: Chr6(GRCh37):g.51720765A>G cDNA: NM_138694.3(PKHD1):c.7837T>C Protein: p.Trp2613Arg

Polyphen-2: Probably damaging CADD: 29 M-CAP: Probably PredictSNP2: Deleterious

Scores agree towards SNV being deleterious

Likelihood of pathogenicity is affected, not determined.

	← Benign ← ←		Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
		woul known function bes				
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studles show a deleterious effect PS3	
Segregation data	with disease BS4		disease in multiple affected family members PP1	Increased segregation data	\longrightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>ds</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Richards CS et al. Gen Med. 2015;17:405-423

Functional Evidence:

PS3

Functional Consequence

Criteria for classifying pathogenic variants

Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.

Note:

Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established. BS3

No Functional Consequence

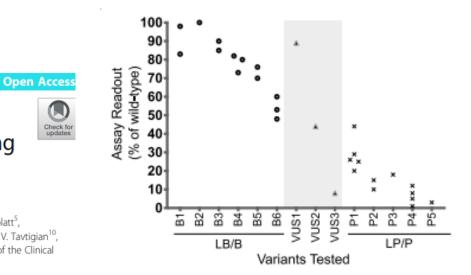
Criteria for classifying benign variants

Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.

What defines a "well established" functional study or assay? How reliable? This is not simple.

Richards CS et al. *Gen Med.* 2015;17:405-423

Functional Evidence:


GUIDELINE

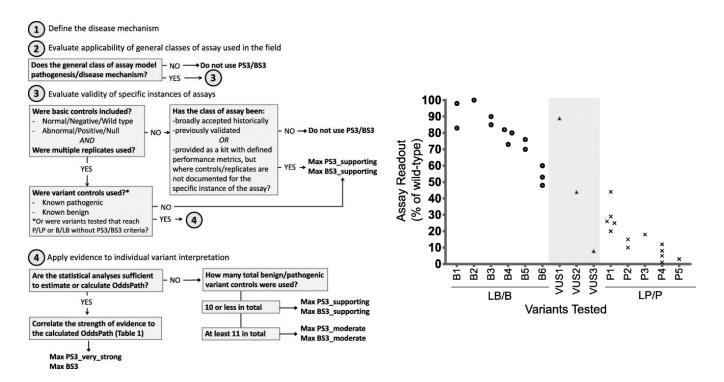
Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework

Sarah E. Brnich¹^(D), Ahmad N. Abou Tayoun², Fergus J. Couch³, Garry R. Cutting⁴, Marc S. Greenblatt⁵, Christopher D. Heinen⁶, Dona M. Kanavy¹, Xi Luo⁷, Shannon M. McNulty¹, Lea M. Starita^{8,9}, Sean V. Tavtigian¹⁰, Matt W. Wright¹¹, Steven M. Harrison¹², Leslie G. Biesecker¹³, Jonathan S. Berg^{1*} and On behalf of the Clinical Genome Resource Sequence Variant Interpretation Working Group

Table 3 Evidence strength equivalent of odds of pathogenicity

Odds of pathogenicity (OddsPath)	Evidence strength equivalen		
< 0.053	BS3		
< 0.23	BS3_moderate*		
< 0.48	BS3_supporting		
0.48-2.1	Indeterminate		
> 2.1	PS3_supporting		
> 4.3	PS3_moderate		
> 18.7	PS3		
> 350	PS3_very_strong		

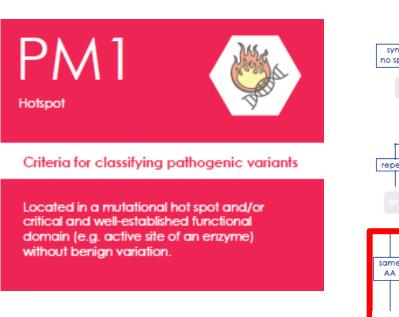
- Most functional evidence under these recommendations is demoted to PS3_supporting and in order to increase to moderate or strong, need to consider appropriate level of controls.
- Always consider if a test or assay is measuring the protein function or one of many.

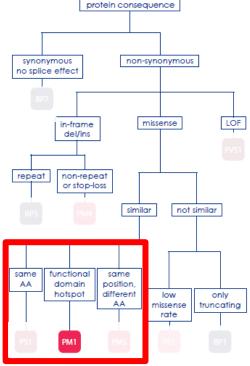

Richards CS et al. Gen Med. 2015;17:405-423

•

©2021 MFMER | slide-80

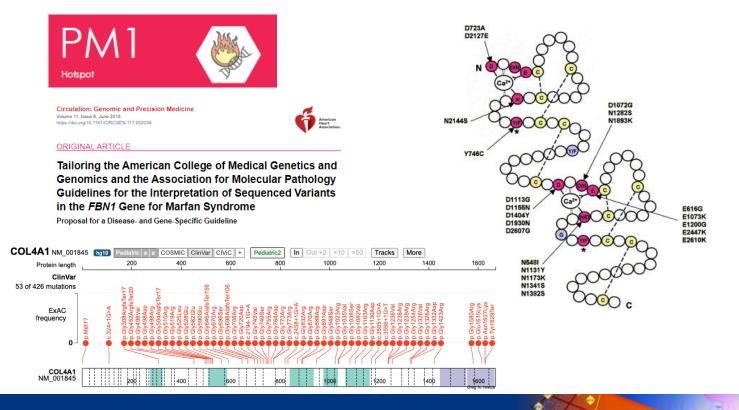
Check fo


Decision Tree to guide PS3/BS3 criterion



Brnich SE et al. Gen Med. 2019 Dec 31;12(1):3

"Functional" Impact Prediction: Computational or Knowledge-based



Richards CS et al. *Gen Med.* 2015;17:405-423

"Functional" Impact Prediction: Computational or Knowledge-based

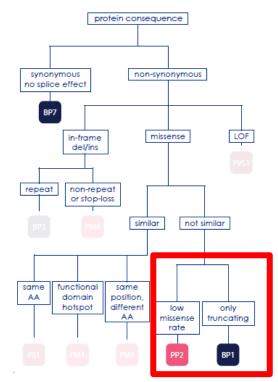
Richards CS et al. *Gen Med.* 2015;17:405-423

MAYO CLINIC

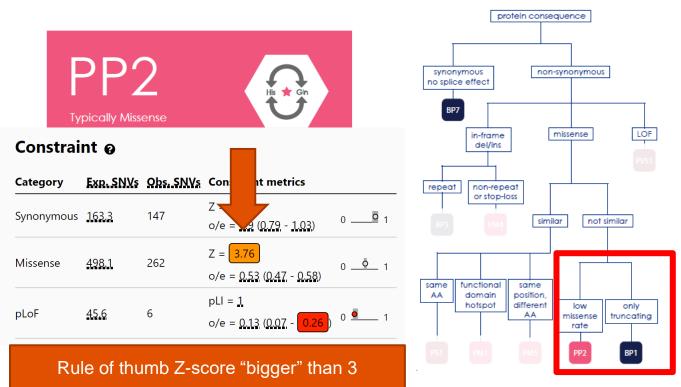
ጉብ

"Functional" Impact Prediction: Computational or Knowledge-based

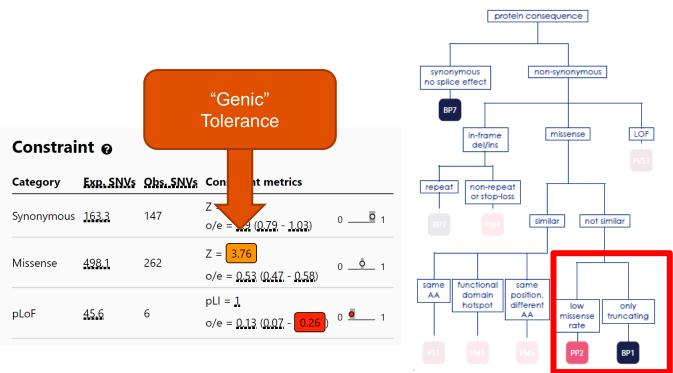
Reference laboratories are very conservative in the use of this criteria because of its subjectivity



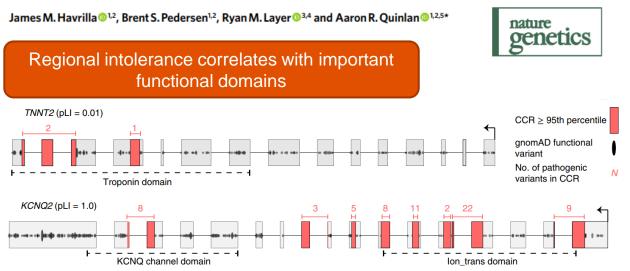
Automated criteria


Rule	Explanation
PM1 Moderate	UniProt protein CLN6_HUMAN trans-membrane region 'Helical' has 6 non-VUS missense/in-frame/non-synonymous, variants (6 pathogenic and 0 benign), pathogenicity = 100.0% which is more than threshold 50.0%.

Richards CS et al. *Gen Med.* 2015;17:405-423



Richards CS et al. *Gen Med.* 2015;17:405-423



Richards CS et al. Gen Med. 2015;17:405-423

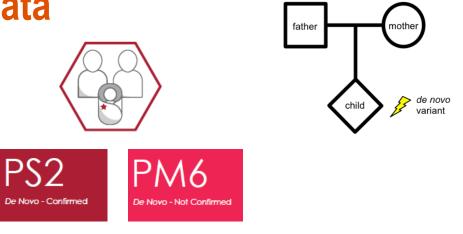
• Gene-wide summary measures of constraint are prone to overstating and understating constraint within specific regions of protein-coding genes

A map of constrained coding regions in the human genome

• Gene-wide summary measures of constraint are prone to overstating and understating constraint within specific regions of protein-coding genes

Graph co	ontrol			
Protein o	of GABRA1 (GENCODE: ENST00000023897.6, RefSeq: NM_00080	06.5, UniProt: P14867)		
⊖ Show <u>N</u>	Meta-domain landscape	Llumon Mutation	CHINICHAL JOURNAL	
Display C	linVar variants: 🗆 in this protein 🗹 in homologue protein domains	Human Mutation		
Downlo	ad current visualization Reset Zoom Reset Page	INFORMATICS Deen Access @ () (S	WHICH DO BOULTY	
Tolerant		MetaDome: Pathogenicity analysi aggregation of homologous huma		
Р				
Neutral		4		
ž	A			
ant	W WWW			
Intolerant	Million all aluthors of	a superior and the second		
Protein				

https://stuart.radboudumc.nl/metadome/dashboard ©2021 MFMER | slide-89


		← Benign ← ←		Pathogenic			>
		Strong	Supporting	Supporting	Moderate	Strong	Very strong
Populati data	tion	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Comput and pre- data			Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Function data	nal	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segrega		Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→	
	Case-specific data to consider				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
			Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cls</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other databas	se		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other da	ata		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

TAC

TA

Case-Specific Evidence -Segregation Data

De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.

Richards CS et al. *Gen Med.* 2015;17:405-423

PS2/PM6

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per Proband			
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships		
Phenotype highly specific for gene	2	1		
Phenotype consistent with gene but not highly specific	1	0.5		
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25		
Phenotype not consistent with gene	0	0		

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

PS2/PM6

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per Proband			
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships		
Phenotype highly specific for gene	2	1		
Phenotype consistent with gene but not highly specific	1	0.5		
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25		
Phenotype not consistent with gene	0	0		

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

If a NIPBL variant was de novo in one patient with Cornelia de Lange syndrome, with confirmed parental relationships and de novo in two additional unrelated patients with Cornelia de Lange syndrome with unconfirmed parental relationships, then ...

PS2/PM6

- parental confirmed
- phenotype consistency
- number of *de novo* observations

	Points per	Proband
Phenotypic consistency	<i>de novo</i> with confirmed parental relationships	<i>de novo</i> with unconfirmed parental relationships
Phenotype highly specific for gene	2	1
Phenotype consistent with gene but not highly specific	1	0.5
Phenotype consistent with gene but not highly specific and high genetic heterogeneity**	0.5	0.25
Phenotype not consistent with gene	0	0

Supporting (PS2_Supporting or PM6_Supporting)	Moderate (PS2_Moderate or PM6)	Strong (PS2 or PM6_Strong)	Very Strong (PS2_VeryStrong or PM6_VeryStrong)
0.5	1	2	4

If a NIPBL variant was de novo in one patient with Cornelia de Lange syndrome, with confirmed parental relationships and de novo in two additional unrelated patients with Cornelia de Lange syndrome with unconfirmed parental relationships, then VeryStrong evidence level is applied (PS2_VeryStrong) based on combined point value of 4 (Table 2).

PS2/PM6 – Additional considerations

- A patient with early infantile epileptic encephalopathy and a de novo SIK1 variant with confirmed parental relationships is awarded 1 point (as the patient's phenotype is consistent with the gene but not highly specific and the variant is de novo with confirmed parental relationships). If this patient is the only de novo occurrence for the variant, then a Moderate strength level (PS2_Moderate) is applied.
- A patient with nonsyndromic intellectual disability and a de novo ASH1L variant is awarded 0.5 points (as the variant is de novo with confirmed parental relationships and patient's phenotype is consistent with the gene but not highly specific and there is significant evidence of genetic heterogeneity). If this patient is the only de novo occurrence for the variant, then a Supporting strength level (PS2_Supporting) is applied.
- A patient with developmental delay but no other features of Cornelia de Lange syndrome and a de novo NIPBL variant with unconfirmed parental relationships is awarded zero points as this phenotype is not consistent with the gene/disease association. If this patient was the only de novo occurrence for the variant, then no de novo criteria are applied.

		∠ Ber	nign 🔶 🗲		Pathogenic		>
		Strong	Supporting	Supporting	Moderate	Strong	Very strong
Populatio data	on	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Compute and pred data			Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Function data	nal	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregat		Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	>	
Case-spe to co					De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic da	ata		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cls</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database	e		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other da	ata		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Richards CS et al. Gen Med. 2015;17:405-423

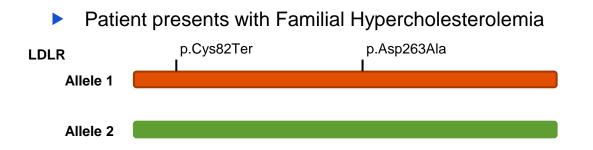
©2021 MFMER | slide-96

T

Case-Specific Evidence – Allelic Data

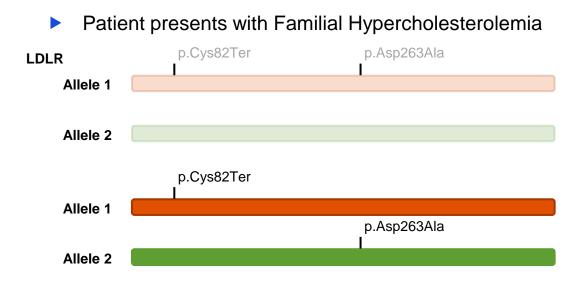
For recessive disorders, detected in trans with a pathogenic variant.

Note: This requires testing of parents (or offspring) to determine phase.



Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.

Richards CS et al. Gen Med. 2015;17:405-423


PM3/BP2

PM3/BP2

	✓ Ber	nign 🔶 🗲		Pathogenic		>
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	\rightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other		Reputable source w/out shared data = benign BP6	Reputable source			
ise-specif to consi		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

MAYO CLINIC

Richards CS et al. Gen Med. 2015;17:405-423

©2021 MFMER | slide-100

TA

TA

Case-Specific Evidence – Phenotype Specificity

Patient's phenotype or family history is highly specific for a disease with a single genetic etiology.

Richards CS et al. Gen Med. 2015;17:405-423

	< Ber	ign 💦 🔶		Pathogenic		>
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Reputable s	sources	Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

MAYO CLINIC

Richards CS et al. Gen Med. 2015;17:405-423

©2021 MFMER | slide-102

T

PP5/BP6

NM_000249.4(N	1LH1):c.931A>G (p.Lys311Glu)
Interpretation:	Likely pathogenic
Review status:	★★★☆ reviewed by expert panel
Submissions:	5 (Most recent: Sep 24, 2021)
Last evaluated:	Mar 9, 2018
Accession:	VCV000230595.10
Variation ID:	230595
Description:	single nucleotide variant

Who is reputable?

G

Interpretation (Last evaluated)	Review status (Assertion criteria)	Condition (Inheritance)	Submitter	More information	~
Likely pathogenic (Mar 09, 2018)	reviewed by expert panel (Guidelines v2.3) Method: curation	Lynch syndrome I Affected status: yes Allele origin: germline	International Society for Gastrointestinal Hereditary Turnours (InSIGHT) Accession: SCV000740673.1 Submitted: (Mar 23, 2018)	Other databases http://www.insight-database.org/ Comment: Multifactorial probability: 0.999 but with conflicting data. Reduced classification to class 4 pending somatic information.	
Uncertain significance (Dec 06, 2019)	criteria provided, single submitter (Ambry Autosomal Dominant and X- Linked criteria (3/2017)) Method: clinical testing	Hereditary cancer- predisposing syndrome Affected status: unknown Allele origin: germline	Ambry Genetics Accession: SCV000274194.5 Submitted: (Nov 30, 2020)	Comment: The p.K311E variant (also known as c.931A>G), located in coding exon 11 of the MLH1 gene, results from an A to G substitution at nucleotide (more)	~
Uncertain significance (Apr 24, 2019)	criteria provided, single submitter (LabCorp Variant Classification Summary - May 2015) Method: clinical testing	not specified Affected status: unknown Allele origin: germline	Women's Health and Genetics/Laboratory Corporation of America, LabCorp Accession: ScV000696173.3 Submitted: (Sep 24, 2019)	Comment: Variant summary: MLH1 c.931A>G (p.Ly8311Giu) results in a conservative amino acid change located in the N- terminal domain (IPR02099) of the encoded protein sequence. Four of (more)	~
Uncertain significance (Jun 21, 2020)	criteria provided, single submitter (Invitae Variant Classification Sherloc (09022015)) Method: clinical testing	Hereditary nonpolyposis colorectal neoplasms Affected status: unknown Allele origin: germline	Invitae Accession: SCV000543638.6 Submitted: (Jan 07, 2021)	Publications: PubMed (4) Comment: This sequence change replaces lysine with glutamic acid at codon 311 of the MLH1 protein (p.Lys311Glu). The lysine residue is highly conserved and there is (more)	~
Uncertain significance (Jun 11, 2020)	criteria provided, single submitter (GeneDx Variant Classification Process June 2021) Method: clinical testing	Not Provided Affected status: yes Allele origin: germline	GeneDx Accession: SCV000565923.3 Submitted: (Sep 24, 2021)	Comment: Not observed at a significant frequency in large population cohorts (Lek et al., 2016); In silico analysis supports that this missense variant has a deleterious (more)	~

Submitted interpretations and evidence

Knowledge Databases \ Previous Interpretations – ClinVar, HGMD

Variant of Interest: NM_000249.3(MLH1):c.1038G>T (p.GIn346His) (p.Q346H)

		Q346 [variant Create alert Ac	name] and MLH1 Ivanced		Search		
	https://www.ncbi.nlm.nih.gov	//clinvar/'	?term= <mark>Q346</mark> +%5Bvariant	+name%5D+and+N	/ILH1		
	Variation Location	Gene(s)	Protein change	Condition(s)	Clinical significance (Last reviewed)	Review s	tatus
PM5	NM_000249.3(MLH1):c.1037 A>G (p.Gln346Arg) GRCh37: Chr3:37061953 GRCh38: Chr3:37020462	<u>MLH1</u>		Lynch syndrome nd PM5 is ty I laboratories			expert
	 <u>NM_000249.3(MLH1):c.1038</u> <u>G>T (p.Gln346His)</u> <i>GRCh37:</i> Chr3:37061954 <i>GRCh38:</i> Chr3:37020463 	<u>MLH1</u>	stars or	ion has a "rev multiple sub retations with	mitters of F	of 2 and	expert
PS1	NM_000249.3(MLH1):c.1038 G>C (p.Gln346His) GRCh37: Chr3:37061954 GRCh38: Chr3:37020463	<u>MLH1</u>	0346H_01	r 3 stars exp	•		expert

Knowledge Databases \ Previous Interpretations – ClinVar, HGMD

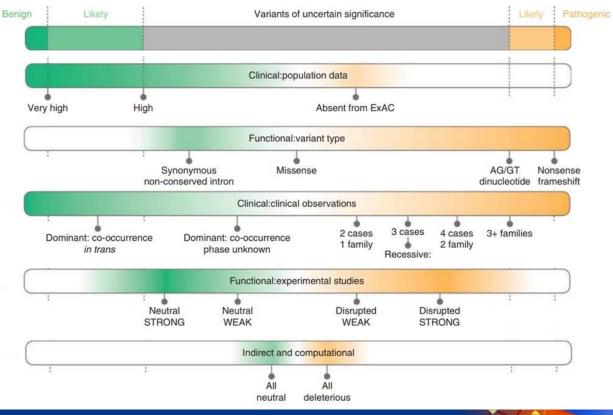
Variant of Interest: NM_000249.3(MLH1):c.1038G>T (p.GIn346His) (p.Q346H)

PS1			HGM	D® Pı	ofes	sional 2020.4	
CM1812352 C	CAG-CAC	Gln346His	c.1038G>C	p.Q346H	DM	Colorectal cancer, non-polyposis	<u>Shirts (2018) Am J Hum Genet 103, 19</u>
CM092210 C	AG-CAT	Gln346His	c.1038G>T	p.Q346H	DM	Colorectal cancer, non-polyposis	Tang (2009) Clin Genet 75, 334 Pagenstecher (2006) Hum Genet 119: 9 [Functional characterisation] Zhu (2013) Oncol Lett 5: 1710 [Additional report] 2 more reference(s)

- Potential PS1 or PM5 if there is literature available for the same missense variant or a similar substitution without a ClinVar assertion, carefully review the data for a potential application of PM5 or PS1.
- The variant has to stand on its own merits as P/LP for use of PS1 or PM5.

Publicly Available Calculators and Workflows

- Publically available tools that will help tally up your "points"
 - https://varsome.com/
 - http://wintervar.wglab.org/
 - http://www.medschool.umaryland.edu/Genetic_Variant_Interpretation_Tool1.ht ml/
 - https://mobidetails.iurc.montp.inserm.fr/MD/



ACMG Classification: Uncertain significance

PVS1 🛛 🕐 PS1 🖾 🕐	PS2 🛛 🕛 PS3 🖂 🛈	РЅ4 🗌 🕐 РМ1 🖾 🤅	РМ2 🔽 🕐 РМ3 🗌 🗘	РМ4 🛛 🕐 РМ5 🖂 🕐 РМ6 🖂 🕐
PP1 🛛 🕐 PP2 🖾 🕐	РРЗ 🔽 🕐 РР4 🗌 🗘	PP5 🛛 🕐 BP1 🖂 🤅) BP2 □ ① BP3 🛛 ①	BP4 🛛 🕐 BP5 🗌 🕐 BP6 🖾 🕐
BP7 ⊠ () BS1 □ ()	BS2 🗌 🕐 BS3 🛛 🕐	BS4 🛛 🕐 🛛 BA1 🖂 🕻		

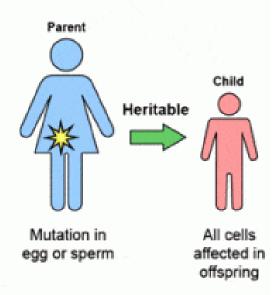
The ACMG guidelines are not mandatory, or the only ones used

Framework Summary for Variant Interpretation – 6 key questions

- Allele Frequency?
- What is the mechanism of disease?
- Known or predicted impact?
- Do we have functional evidence? How reliable?
- Phenotype overlaps with gene-disease association described?
- Does it segregate with disease?

Germline and Somatic Classification and Catalogue Differences

Somatic mutations


- Occur in nongermline tissues
- Cannot be inherited

Nonheritable

Mutation in tumor only (for example, breast)

Germline mutations

- Present in egg or sperm
- Can be inherited
- · Cause cancer family syndrome

Adapted from the National Cancer Institute and the American Society of Clinical Orocitogy

Warning! Germline and Somatic Classification and Catalogue Differences

Categories: Diagnostic Prognostic	Occur	ic mutations in <i>nongermline</i> ti ot be inherited	ssues • Present in egg or sperm • Can be inherited • Cause cancer family syndrome
Therapeutic			Categories:
			Pathogenic
	er I: Variants of Strong Clinical Significance	Tier II: Variants of Potential Clinical Significance	Likely Pathogenic
The	erapeutic, prognostic & diagnostic	Therapeutic, prognostic & diagnostic	VUS – Variant of Uncertain Significan
	er IV: Benign or ly Benign Variants	Tier III: Variants of Unknown Clinical Significance	Likely Benign Benign

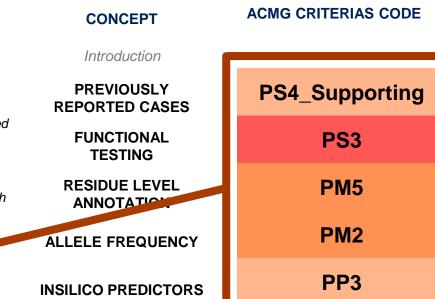
Questions?

Variant Interpretation Summary Example: BRCA1 (NM_007294.3) c. 212G>C, p.(Arg71Thr)

SUMMARY

The heterozygous c.212G>C (p.R71T) variant was detected in the BRCA1 gene (NM_007294.3) and involves the last residue of exon 4 of 23.

This variant has been reported in a single affected individual with the associated disease (Harter et al., 2017; PMID: 29053726).


Functional testing has been performed for this variant and supports decreased protein function with a reduced expression of mRNA in transfected HAP1 cells. (Findlay et al, 2018, PMID 30209399).

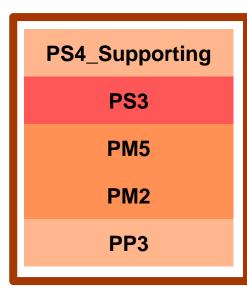
Another amino acid substitution occurring in the same residue (p.Arg71Gly, p.Arg71Lys) has been determined to contribute to the disease associated with this gene.

The variant detected is absent in a large control population database without reported homozygotes (Karczewski et al., 2020, PMID: 32461654)

Multiple computational predictors suggest a dam ging effect on gene or protein function.

Therefore, c.212(1), p.R71T) in the BRCA1 gene is classified as **Pathogenic.** Clinical correlation is recommended.

Conclusion



Variant Interpretation **Summary Example:** BRCA1 (NM_007294.3) c. 212G>C, p.(Arg71Thr)

Table 5 Rules for combining criteria to classify sequence variants

ACMG CRITERIAS CODE

MAYO CLINIC ᠿ᠋ᠹ