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Plan for this Lecture

Topic: Methods for analyzing omics datasets while
integrating prior knowledge

» Systems Biology and Knowledge Networks
» Sample Clustering

* Gene Prioritization

* Gene Set Characterization

Emphasis: tools that take advantage of prior knowledge
networks (KnowEnG)

Goal: understand basic concepts and aware of approaches
and resources



Systems Biology
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« Systems biology is the computational and mathematical modeling
of complex biological systems.
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; ¢ : Figure from Angione, C. Human Systems Biology and Metabolic Modelling: A
ngure from OI.tva' ’ Z'N: and Barabasi Review-From Disease Metabolism to Precision Medicine. Biomed Res Int 2019.
Life's complexity pyramid.

 Studies the interactions between the components of biological
systems such as genes, proteins, metabolites, etc. (i.e. biological
networks), and how these interactions give rise to the function and
behavior of that system (phenotype)



Using Statistical and Machine Learning Methods

Knowen

Applied to heterogeneous ‘omics and phenotype data and prior knowledge

Unsupervised Supervised
Learning | Learning
:
I
I
« No training example exists a:nd the goal is to learn structure
In the data
« Training examples are prowqjed with desired inputs and
outputs to help learning the desired rule

Clustering Classification Regression

(subtyping) (resistance group) (survival time)

Dimensionality Reduction Supervised Feature Selection

(data visualization) (biomarkers)



Some Example Applications

Knowen

Clustering -
(subtyping) * |dentifying the subtypes of a
disease
Supervised Feature Selection . . .
: (biomarkers) - |dentifying genes associated with a
disease

Classification

(resistance group)

* Predicting whether a patient is
sensitive or resistant to a drug

Rigvriviﬁiiie?” * Predicting the survival probability of
a cancer patient

° etc.



Prior Knowledge as Biological Networks
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« Existing prior knowledge In literature captures known interactions
within and across different levels of the biological systems

 Knowledge Network - a graphical representation of the
Interactions of the components of a biological systems
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Directed Biological Networks

Knowen
Gene regulatory networks

« Nodes represent genes, proteins, etc.
« Edges show regulatory relationships between the nodes

« The network shows which entities (e.g. transcription factors)
regulate the expression of each gene

« Edges can have meaningful weights
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Figure from Song, et al. "Comparative transcriptional profiling and preliminary
study on heterosis mechanism of super-hybrid rice." Molecular plant 3.6 (2010).



Directed Biological Networks
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Signaling Networks

Hormones,
Survival Factors Transmitters Growth Factors
(e.g., IGF1) (e.g. interleukins (e.g. TGFa, EGF) Extracellular

* Represents " 1) e e
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Experimental Networks
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Protein-protein interaction networks
* Nodes represent proteins
« Edges show interactions between proteins

* Interactions usually refer to different levels of physical contact and
proximity of protein molecules

Figure from Jeong, Hawoong, et al. "Lethality and
centrality in protein networks." Nature 411.6833 (2001).



Experimental Networks

Gene co-expression networks
« Nodes represent genes

* An edge exists between two genes
that are highly co-expressed across
different samples

BEMC Bioinformatics. 2008; 9: 559. PMCID: PMC2631488
Published online 2008 Dec 29. doi: 10.1186/1471-2105-9-559

WGCNA: an R package for weighted correlation network analysis

Reviewed by Peter Langfeldefl and Steve Horvath®™2

KNOWEeNg 3 tseaonees

Figure from https://commons.wikimedia.org/wiki/File:Gene_co-
expression_network_with_7221 genes_for_18 gastric_cancer_patients.png

Figure from https://www.freecodecamp.org/news/how-machines-make-predictions-finding-correlations-in-complex-data-dfd9f0d87889/
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Computational Networks

] ] Knowen
Evolutionary Conservation networks

* Nodes represent gene DNA or protein amino acid sequences

* Edges represent the similarity between the pair of sequences, the
more similarly the more recently the nodes share an evolutionary

history
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Text Mining networks S
_— Figure from Yahaya, et al. "Gene expression changes associated
° N Od eS re p rese nt g e n e e ntltl eS with the airway wall response to injury." PloS one 8.4 (2013).

« Edges represent the frequency names, aliases, and synonyms for a
pair of genes co-occur in literature abstracts
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Computational Networks

Knowen sl
Integrated networks

* Nodes represent gene or proteins

« Edges represent the weighted combination of normalized edge
weights from many different types of network edges based on some

predetermined criteria
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Mucleic Acids Res. 2015 Jan;43(Database issue)D447-52. doi: 10.1093/nargku1003. Epub 2014 Oct 28 Genome Res. 2011 Jul:21(7):1108-21. doi: 10.1101/gr. 115%92.110. Epub 2011 May 2.
STRING v10: protein-protein interaction networks, integrated Prioritizing candidate disease genes by network-based boosting
over the tree of life. of genome-wide association data.
Szklarczyk D', Franceschini A, Wyder §', Forslund K2, Heller D7, Huerta-Cepas J?, Simonovic M?, Roth Lee I', Blom UM, Wang P1, Shim JE, Marcotte EM.

A' Santos A3, Tsafou KP?, Kuhn M*, Bork P®, Jensen LJ®, von Mering C7.
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Visualizing and Sharing Biological Networks
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KnowEnG: Platform for Network-
guided Analysis

Knoweng s Analysis Pipelines Data Support

Start a New Pipeline Welcome, Charles Blatti
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Signature Analysis Learn About the Knowledge Network

Spreadsheet Visualization The knowledge-guided analyses use the KnowEnG Knowledge Network,
biological datasets of gene/protein interactions, relationships, and annotal

https://knowengq.org/analyze/
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KnowEnG: Knowledge Engine for Genomics

KNOWEeNG 2:: areorceience

Samples
¢ . . . . EEEEEEEEEN
- ‘omics Data Analysis Pipelines 0
o [@ RNA-seq,
C [®  Somatic
O [®@ Mutations,
= etc..
|
| |

- Using Prior Knowledge

Physical interactions;
co=expression;pathways,
biological processes,
text mining, etc.

- In a Scalable Cloud Platform

15



KnowENnG Pipelines and User Interface

KNOWEeNG 2:: areorceience

Sample Clustering

* What are the separate transcriptomic
subtypes of patients and how do they
relate to outcome?

Knowerng s AnalysisPipelines ~ Data  Support

Start a New Pipeline Welcome, Charles Blatti

About KnowEnG Pipelines e

® F e at u re (G e n e) P ri O r i ti Z ati O n F::p‘:e:"j'e::; Welcome to the KnowEnG Platform. KnowEnG el
. What genes are differentially expressed S e i bt ]

with respect to viral shedding ‘ g o e e
- Gene Set Characterization

Signature Analysis Learn About the Knowledge Network

« What pathways do these differentially R e
expressed genes relate to?

- Signature Analysis e

« Given a new patient, what subtype does ” el s
their profile most resemble?

- Spreadsheet Visualization

« Given multiple omics and clinical
datasets on patient samples, what
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Analysis Pipelines Using Prior Knowledge

Knowen

Graph Mining

Knowledge Network (KN): heterogeneous graph whose nodes and
edges encodes major public data sets as a network represented by

genes/proteins, their properties, and relationships

Omics data: a spreadsheet (rows = genes or proteins) to be

analyzed
& + + - -
Gl1 |09 (03 0.4 | 0.0
G2 (0109 0.1 (0.2
Zi .. |0.8]0.0 1.0 |03
.. |0.0]10 0.8 [ 1.0
G100| 0.9 | 0.1 0.1 (09
> SPREADSHEET

Knowledge network + user spreadsheet

duluJea| aulyoe|p
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KnowENnG Prior Knowledge Networks

Protein-Protein
Interactions

Gene-Gene Protein

Homology
Regulation

— Annotations

Gene-

Property —+— Characteristics

— Experimental
Outcomes

https://qithub.com/KnowEnG/KN Fetcher/blob/master/Contents.md

Version:

Number of Species:
Number of Resources:
Number of Datasets:
Number of Edge Types:
Number of Edges:
Number of Nodes:
Number of Gene Nodes:

KNOWLEDGE NETWORK CONTENTS:

Number of Property Nodes:

KN-20rep-1702
20

13

159

43
233,459,368
594,474
404,868
189,605

BioGRID iz
& 1709 HumanNetER

ALLVAMHVAYRRHEKKRKFMK
ALLVAMHVAYRRHEKKRKFMK

Pathway Commons

@ =1 MSigDB
go == Molecular Signatures
=== Database

PANTHER

Classification System
Motif 1 Motif 2 Pd, | .
Hic,‘.c 13 cA E’*’J " e n

J
ATTATGACTAGCACGTGATAA
TAATACTGATCGTGCACTATT,
«

D

RO < Enrichr
ALLEN BRAIN ATLAS

01‘ argetScan
Prediction of microRNA targels

Edge Type Collection —

Text_Mining/Integrated
Coexpression
Experimental_Interaction

Conservation/Proximity

a Network o

KNOWBNG 5 thinsties
Human All
Human _, HNetwork L All —~
Edges ~ Datasets © Edges ~ Datasets ~
{millions) (millions)
9.0 2 130.6 19
713 2 119.8 19
5.4 4 108.7 21
1.6 2 26.1 36
Pathway_Database 1.1 3 63.4 20
Total 24.3 ] 4487 42
Human Human All All
Edge Type a Metwork . Property Human L, MNetwork ., Property
Collection Edges Nodes 7~ Datasets T Edges Nodes
(millions) (thousands) (millions) (thousands)
Tissue_Expression 13.7 259 32 13.7 259
Disease/Drug 6.0 82.3 13 6.3 234
Regulation 4.4 3.3 10 4.4 33
Pathways 0.6 16.9 5 1.4 346
Ontologies 0.3 17.2 5 1.2 23.5
Protein_Daomains 0.0 6.2 2 0.5 7.8
Total 25.0 151.7 &7 28.1 178.5
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Network-guided Sample
Clustering

. o Similarity is
ambiguous

because little
Standard overlap exists

» o among patient
n @ Similarity mutations.

@ & ® !
@ -

@ Network - S (]
based B3, Similarity
Analysis A S
- (54 ]
Gene Mutations > e

per Sample g f

Mutation Scores After
Network Propogation

Knowledge-guided
using NBS

----------------

Similarity
measure
improved by
considerin
mutationa
impact on local
networks.
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Network-guided Sample Clustering

Knowen

Goal:

- Stratification (clustering) of tumor samples based on somatic mutation
profiles

Main Issue:

- The mutation data is very sparse and most conventional clustering
techniques fall to identify reasonable patterns

 Although two tumors may not share the same somatic mutations, they
may affect the same pathways and interaction networks

20



Knowledge-Guided Analysis for Sample Clustering

KNOWEeNG 2:: areorceience

S1 S2 S3 S4 S5 S6

- Problem: Data sparsity in gene-level somatic co1
mutation data G02

GO3
G0o4

- Toy Example GO5

Due to the sparsity of the data, all samples ggﬁ’

are at equal distance of each other GO8

GO9
G10
G11
G12
G13
G14
G15
G16
G17
G18

21



Knowledge-Guided Analysis for Sample Clustering

- Problem: Data sparsity in gene-level somatic
mutation data

- Toy Example
- Due to the sparsity of the data, all samples
are at equal distance of each other

Pathway information clarifies the similarity
among some samples

1 GO1

P1
P1
P1
P1
P1
P2
P2
P2
P2
P2
P2
P3
P3
P3
P3
P3
P3

GO02
GO03
G0O4
GO5
GO6
GO7
GOS8
G09
G10
G11
G12
G13
G14
G15
G16
G17
G18

KNOWEeNG 2:: areorceience

S1 S2 S3 S4 S5 S6
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Knowledge-Guided Analysis for Sample Clustering

- Problem: Data sparsity in gene-level somatic
mutation data

- Toy Example
- Due to the sparsity of the data, all samples
are at equal distance of each other

Pathway information clarifies the similarity
among some samples

Conventional clustering methods can then
identify clusters based on network-
smoothed features

P1
P1
P1
P1
P1
Pl
P2
P2
P2
P2
P2
P2
P3
P3
P3
P3
P3
P3

Knowen CENTER OF BACELLENCE

3 S4 S5 S6
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Network-based Stratification (NBS)

BIG DATA TO KNOWLEDGE
CENTER OF EXCELLENCE

Knowen
Nat Methods. 2013 Nov;10(11):1108-15. doi: 10.1038/nmeth.2651. Epub 2013 Sep 15.

Network-based stratification of tumor mutations.
Hofree IW, Shen JP, Carter H, Gross A, Ideker T.

C Network NMF: WL?'(IJF- WHII + ;'IIWtLII,_-

A b

Somatic mutation matrix

atients x genes
(P 9 ) O Gene ."9‘0 : .\‘. e Patients
R = .
Drzw at.sartnple of ganes %Gene-g?ne O 0‘0 Fl (patientsix/genes) L = network influence
and patients v mteractlon 0 o0—Q =4 post-smoothing constraint
oq i 1G] ratrix::

Network smoothing:
for each patient, project mutations
onto a network and propagate

]

!

Network clustering:
cluster smoothed (patients x genes)
matrix using network NMF

]

Repeat N times

\4

Aggregate consensus matrix
(patient x patient)

Network smoothing:

O Patient
genotype 1 O

@ Patient
genotype 2

@ Co-occurrence of
genotype 1 and 2

Patients

- Network Smoothing — Random Walk with Restart
- Patient Sampling for Robust Clustering

k
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Random Walk With Restart Algorithm

- Fast, scalable guilt-by-
association method

- Same ideas as personalized
PageRank

. Intuition

-  Walker at a node either

With probability 1-r, follows an
outgoing edge

With restart probability r, returns to
node in restart set

- Converges to long run “stationary”
distribution of the walker over the
nodes

- Final node ranking based on
distribution incorporates

- Connectedness of node in network

- Proximity of node to restart set

Knowen

o
S Edge

O Follow
O with 1-r

https://cseweb.ucsd.edu/~atsiatas/pr_diffusion_slides.pdf 25



NBS Sample Clustering with KnowEnG

KNOWEeNG 2:: areorceience

« 3276 tumor samples from TCGA from 12 cancer

projects with sparse non-synonymous somatic +  Much better than standard
mutation methods that do not

_ incorporate prior knowledge
- Perform standard and network-guided Sample

Clustering in platform e
- Knowledge-guided clusters significantly relate to
survival outcome

o
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W'» Cluster n=
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0.8 — cluster 3 (n = 367)
— cluster 4 (n= 380) « In line with specialized
cluster 5 in = 5) .
-l — Cluster 6 (n = 68) method developed in TCGA
cluster 7 (n = 51)
4 cluster 8 (n = 47) paper that would be very
= cluster 9 (n = 43) el
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0.0 1 1 1 1 1 1 i 8 - h
0 1000 2000 3000 4000 5000 G000 7000 04 L -
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1000 2000 3000 4000 5000 600D 7000
Time (days)

Knowledge-guided analysis of "omics" data using the
KnowEnG cloud platform

Charles Blatti Il g, Amin Emad B. Matthew J. Berry, Lisa Gatzke, Milt Epstein, Daniel Lanier, Pramod Rizal, Jing Ge,
Xiaoxia Liao, Omar Sobh, Mike Lambert, Corey $ Post, Jinfeng Xiao, [ - | Saurabh Sinha [ view all ]

Published: January 23, 2020 « https://doi.org/10.1371/journal pbio 3000583
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Integrating Experimental Assays for Stratification

. a MRNA... |
- Data from each experimental . = -

assay Is subjected to sample
clustering to find cancer
subtypes per assay

- Mutation data required
specialized knowledge guided
methods (panel F)
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Cluster-Of-Cluster-Assignments (COCA)

Knowen

- Merge cluster assignments x samples matrices
- Cluster the samples in the multi-omics matrix

MiRNA

MRNA

Protein

C1
C2
C3

C1
C2
c3

C1
C2
Cc3

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

Cluster Samples

r---‘---1

S1 S2 S3 5S4 S5

mi.C1
mi.C2
mi.C3
m.C1
m.C2
m.C3
p.C1l
p.C2

p.c3 [ |

BIG DATA TO KNOWLEDGE
CENTER OF EXCELLENCE
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13 Cancer Subtypes from 6 Assays

(g |
- Strong
relationship
between
subtypes &
disease
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Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin.” Cell 158.4 (2014).
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Network-Guided Gene
Prioritization

Ranking of
1 @ Differential Gene score is
2 Expression (DE) calculated
Standard Sample Samples @ S cgre independent of the
Disease 3 @ relationship
Labels ﬁ @ tTest among genes.
o— 4 4

5 Rewards genes that
@ @ 1 g 1 @ ar:e ashsociated witl&
. Network - L 2 2 G2 s the phenotype an
= based —.—) — core are also well
KnOWIedge Guided @ An?aslgsis f; ’ 3 & ?E: 3 @ Change connected to
: w Network - ‘ phenotype-associat-
Gene Expression @ 4 @ Aza;slﬁiis 4 @& ed genes.

Values per Sample
@ Transformed Final ProGENI

Transformed Gene DE Score Ranking
Expression Values

&

using ProGENI
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Next Stop in Characterizing Cancer Subtypes

KNOWEeNG 2:: areorceience

- Find top related mutations and copy number alterations
- Compare each subtype vs all others
- KnowENG calls this "Gene Prioritization®

BN I el v
B \ G Y™ " s R Ay

ApC [T APC
KRAS e T Illll\l KRAS wild type
EGFR | AL EGFR lNA

C s%&% |||f ! ol w | I iy | , | & I " “ %)((:2 Copy Number
E%%g'; ik ?I |MH LI T 1 tl ' . | EReee '

Al | I 0 | 1 U] ) ‘l n RB1 -
it ol i VIR '"" { T oy W
CDKNZA | B CDKN2A neutral

TP53 WL | w0 o | | | P53

Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin." Cell 158.4 (2014).
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Towards Network-Guided Gene Prioritization

Knowen

Drug Sensitivity Example

Goal:

* |dentifying genes whose basal mMRNA expression determines the drug
sensitivity in different samples (supervised feature selection)

* Motivations:
- Overcoming drug resistance ' =)
SRS B, =B T
« Revealing drug mechanism of action
« ldentifying novel drug targets ;{?E -y
+2] r =[?] ‘

Predicting drug sensitivity of individuals wew
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Gene Prioritization

Examples of current methods:

Score each gene based on the correlation of its
expression with drug response

KNOWEeNG 2:: areorceience

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Clemons PA', Shamii AF', Schreiber SL'.

response
|
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Gene Prioritization

Examples of current methods:

« Score each gene based on the correlation of its
expression with drug response

« Use multivariable regression algorithms such as
Elastic Net to relate multiple genes’ expression
values to drug response

KNOWEeNG 2:: areorceience

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Clemons PA', Shamii AF", Schreiber SL*.

Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling
of anticancer drug sensitivity.

Barretina Jﬂ. Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov

GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-
Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J,
Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S,

TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.

response
|
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Gene prioritization

Examples of current methods:

Score each gene based on the correlation of its
expression with drug response

Use multivariable regression algorithms such as
Elastic Net to relate multiple genes’ expression
values to drug response

Shortcoming:
These methods do not incorporate prior information

about the interaction of the genes

KNOWeNG2:: treorexcelience

Nat Chem Biol. 2016 Feb;12(2):109-16. doi: 10.1038/nchembio.1986. Epub 2015 Dec 14.

Correlating chemical sensitivity and basal gene expression
reveals mechanism of action.

Clemons PA1, Shamiji AF1, Schreiber SL1.

Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

The Cancer Cell Line Encyclopedia enables predictive modelling
of anticancer drug sensitivity.

Barretina J', Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov
GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-
Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J,
Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S,
Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz

TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA.

35



ProGENI

KNOWEeNG 2:: areorceience

Hypothesis:

« Since genes and proteins involved in drug MoA are functionally related, prior
knowledge in the form of gene interaction network (e.g. PPI) can improve
accuracy of the prioritization task

response
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ProGENI

KNOWENG 3 SSonniies

ProGENI: Network-guided gene prioritization

« An algorithm that incorporates gene network information to improve
prioritization accuracy

Genome Biology
Emad et al. Genome Biology (2017) 18:153
Featured article: new insights DO 10.1186/513055-017-1282:3 Genome Biology
into mechanisms of
chemoresistance

Knowledge-guided gene prioritization ® e
reveals new insights into the mechanisms
of chemoresistance

Amin Emad’®, Junmei Cairns?, Krishna R. Kalari®, Liewei Wang® and Saurabh Sinha®’
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ProGENI

BIG DATA TO KNOWLEDGE

Kn Dwen CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Genes

",': ?:-.l" N5
L3 -“*""#

Gene expressions H‘-‘F
LB
L]

/' — F

Perform Network
transformation of
gene expressions

:-

Cell lines
i

Network
38



KNOWEeNG 2:: areorceience

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

O
& »g@
O
ON O
{ QO

R | W
1l " "' LA
‘am i E}]
| .l-.:E
&
| | £
\ Figure from Rosvall and Bergstrom. "Maps of random walks on complex networks reveal
demy of sciences 105.4 (2008).

O@O

Cell lines
-

n
community structure." Proceedings of the national aca

Perform Network
transformation of
gene expressions

39
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ProGENI

KNOWENG i ssomuse

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Drug response

(e.g. 1C50)
Genes
o O =T NS
£H A At 3 -:gl'!!:1 |
th P.Iulirlm- -\ .':
Gene expressions \ i, " E

Perform Network Identify response correlated
transformation of genes (RCG) and use them as the
gene expressions restart set for a RWR

Network
40



ProGENI

Knowen CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set

Drug response

(e.g. 1C50)
Genes
o B =TT 'q:q-:J
£ QICe: 2 :,.
- |
d) 1 IF I lf [ ]
F.!. l H' [ | \ .:
Gene expressions \ T e e >
- h.
anm
!. W |
Perform Network Identify response correlated Obtain equilibrium
transformation of genes (RCG) and use them as the probability distribution
gene expressions restart set for a RWR for the nodes

Network
41



ProGENI

Knowen CENTER OF EXCELLENCE

Step 1: Generate new features representing expression of each gene and
the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)
Step 3: Score genes based on their relevance to the RCG set

Step 4: Remove network bias by normalizing scores w.r.t. scores
corresponding to global network topology

Drug response

(e.g. 1C50)
[
Genes
o B =TT 'q:q-:J
: ll | II.| }
: | II .
d) 1 IF I lf [ ]
Ii" e - s . Normallzew rt.
Gene expressions \ o g
- h.
anm
!. W |
Perform Network Identify response correlated Obtain equilibrium Rank genes according
transformation of genes (RCG) and use them as the probability distribution to normalized
gene expressions restart set for a RWR for the nodes probability scores

Network
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Datasets

Knowen

* Human lymphoblastoid cell lines (LCL) (1:\%11(%
* Gene expression (~17K genes of ~300 cell lines)
* Drug response of 24 cytotoxic treatments @

« Publicly available dataset from GDSC

* Gene expression (~13K genes of ~600 cell lines from 13
tissues)

* Drug response of 139 cytotoxic treatments

» Publicly available prior knowledge

* Network of gene interactions (PPl and genetic interactions)
from STRING (~1.5M edges, ~15.5K nodes)

% STRING
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Cell lines

Validation using drug response prediction

KNOWeNG ::: v or bcetience

« Genes ranked highly using a good prioritization method are good
predictors of drug sensitivity

Repeat N, times
2y "Itl. .
el el ‘:!I_
Test set
Genes
oy =y > —>
e L ] =
] i
(. - rh.
Gene expressions Training set .
Divide samples Train a SVR on training Predict drug
into training and Rank all genes set using expression of sensitivity of

test sets

highly ranked genes the test set
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Validation using drug response prediction

KNOWEeNG 2:: areorceience

LCL Dataset - Pearson  Elastic Net

Num. Drugs (out of 24)
ProGENI > Baseline

FDR (Wilcoxon signed-rank test) 6.5 E-3 9.6 E-5

14 20

GDSC Dataset - Pearson  Elastic Net

Num. Drugs (out of 139)
ProGENI > Baseline

FDR (Wilcoxon signed-rank test) 9.1 E-4 4.0 E-21

66 110

. 0.85 . ; 07 7.0 08 .
*® o.. L e .
e O ° e ° L
07f 4o/ | o®s ® ...'J . 07 e
D) 0.80 Y E pY “ ® :Pp
i " o« «®
—_— * Y 3 [ ] LK )
£ & (g0 06| t 07l B, | K
in we . . 5 Pl ege ° T . H
- S 0.75 ' (8 L2 . p
> . 1 %o 06l v, 1
E | e | ee W /e ) (& 7 o *
® 0.6 *° ) L
e |° V4 ] <, [l
a . 0.70 fgyagl 2 L
— ‘. Y [
) ot® 0.5} ° 1 0.6 :
a . dfg e e o 0.5
v . .
065} 1
o5l
L ]
. . . 050 . . 04 . . 05 . . 04 R
05 06 07 06 07 08 04 05 06 07 05 06 07 08 04 05 06 07
17-AAG 681640 A-443654 A-770041 ABT-263
FDR = 3.2E-29 FOR = 1.2E-31 FOR = 7.1E-33 FDR = 1.2E-31 FDR = 2.9E-34
PIF = §8.00 % PIF = 87.20 % PIF = 87.20 % PIF = 87.20 % PIF = 86.80 %

SPCI (EN-SVR)
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Functional validation

Knowen

We validated role of 33 (out of 45) genes (73%) for three drugs.

Absolute value of
Gene Symbol Rank (ProGENI) Rank (Pearson}) Pearson correlation Evidence
coefficient
ATF1 1 1 0.2000 Direct (this study)
MIsS12 2 4 0.1887 Direct (this study)
OSBPL2 5 6 0.18865 Direct (this study)
CSNK2A1 7 1587 0.0752 Direct (literature)
PSIP1 (LEDGF) 8 46 0.1537 Direct (literature)
CAMKZ2A 9 6991 0.0157 Direct (literature)
CSNK2A2 10 4870 0.0347 Direct (literature)
GOSR1 11 6867 0.0167 Direct (this study)
MAPKS 13 7574 0.0112 Direct (literature)
SPH 14 6287 0.0217 Direct (literature)
CREB1 15 665 0.1000 Direct (literature)
NOC3L 3 3 0.1893 Not found
IL27RA 4 2 0.1911 Not found
MGEAS 6 7 0.1814 Not found
WAPAL 12 8 0.180% Not found
BT549
p-value < 0.0001 p-value < 0.0001 g
: 1.0
. ) 0.8 . —
_ N 5. =, i
! X 0.4+ ) .
024 = Negsi ’ 024 = Negsi i -2
D.ﬂ_z 'y S|MIS1i1 6 ; 0—“_2 i leSEF-‘;_2 : : /
concentration (M) concentration (uM) s \\ RPSSKAS

\/

RP&sKA2
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Knowen CENTER OF EXCELLENCE

Gene Expression Signatures

Samples Signatures Sample-Signature Similarity

@@ @@@
_._>
@ @@ Similarity

@ ©

signatures

Gene Expression Gene Expression
Values Values



Gene Expression Signhatures

Knowen

- Massive Transcriptomic Profiling Projects
- TCGA and ICGC
- GTEX and CCLE
- LINCS

- Definitions

- Projects produce expression vectors for
samples (e.g. gene expression levels)

- Scoring the difference in expression between
samples of two (or more) conditions produces
differential expression vectors

- Signature (of a biological state):

- Gene Set — differentially, characteristically
expressed genes in that state relative to some
reference (control or population)

- Differential Expression Vector — the differential
expression scores for the subset of genes in the
same comparison

;

l—nﬁ?ﬂ

EER =

NN SEESEENE
s ENEEEE CEENE

=

e

Figure from Greenough, et al. "A gene expression signature that correlates with CD8+
T cell expansion in acute EBV infection." The Journal of Immunology 195.9 (2015).
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Gene Expression Signhatures

- Example Comparisons
Mutated vs Wild-Type
Metastatic vs Primary
Tumor vs Normal
Perturbagens
Drug Treatment vs Placebo
Environmental Stimuli vs Control
- (Gene Signatures provide a uniquely
characteristic pattern of gene expression
that is tied to its studied biological or
medical phenomenon

Enable researchers to relate samples and other
phenomenon by finding the similarity to the gene
signatures

Focus understanding on underlying mechanism
for phenomenon to a subset of gene behaviors

Knowen

#

l—.ffﬂ

=

o ]

e

3 EER =
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AN EEE ENOEEN
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&
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1 R EE
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Public Resources for Gene Signatures

Knowen

There are many public resources for acquiring gene expression
signatures
Extracting signatures yourself

& GEO2Enrichr [el=leyi™!

Libraries of Curated Signhatures

}:{ G E N SVA :—- hp:gle?ullagr E‘EﬂEures

- wm==__ Database

Lab will use signatures from the Library of Integrated Network-
Based Cellular Signatures (LINCS)

NIH LINCS

PROGRAM
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The LINCS DataCube of Signatures

Knowen
Gathering a data cube of gene signatures
Using many different: DR ——
Cell Types 5 L L

Dozens of cell lines
Induced pluripotent stem cells
Primary Cells

Perturbagens
Small molecules / Drugs
CRISPR overexpression and
SshRNA knockdown
Microenvironments
Ligands

Experimental Assays
Gene expression: microarray, RNA-seq, L1000

Protein expression: RPPA, P100 mass
spectrometry

Morphological and Proliferation: biochemical
and imaging assays

cell types
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Signature Similarity Analysis

KNOWeNG ::: v or bcetience

- Given a query signature and a library of reference signatures,

- - - - Mol Cell Biol. 2008 Oct;28(19):5851-64. doi: 10.1128/MCE.00305-08. Epub 2008 Aug 4.
h OW d O yo u fl n d th e SI m I I ar S I g n atu reS? A gene signature-based approach identifies mTOR as a regulator

of p73.
Rosenbluth JM', Mays DJ, Pino MF, Tang_LJ, Pietenpal JA

BIOLOGICAL STATE REFERENCE DATABASE CONNECTIONS
OF INTEREST (PROFILES)
SIGNATURE
| ) @ % & g EX %? ﬂé; i
positive
O
w g\_/@ m\_/@ m\_/m m\_/@ w\ S
il @ = £ E &£ o
. = = = = — | EROS
5 query = = . output
down : E
W(& = = @ = ﬁ | IRSN
% E é ,% negative
;'ong v?cleak rT:lI s;ong
positive positive negative

Types of Similarity Comparisons
Gene Set & Differential Expression Vector
Differential Expression Vector & Differential Expression Vector
Gene Set & Gene Set
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Standard Similarity Measures

Knowen (TER OF EXCELLEN
* When both signatures are represented as
differential expression vectors:
Correlation Formula DX v} Description Stucly
i Pearsan I T Linear similarity measure that uses Pearsan 1920 [29]
£ : mean-centering and narmalization
,-'E =, T —TF of the profiles,
L VT
£ Cosing G Linear similarity measurs that uses
S rnorma ization of the crnfil es.
SN
|. l'lL'I
2 Spearman N Lt Bt Zp=arman correlatian is Fearson spearman 1994 [34]
I where »is rank of x, corralation or the ranks of slements
Y (¥ . I 5 — o in the profile.
[ o

in , 55 rank of ¥ inow

1000
* |n one analysis, they did not observe a large  ®°

. . - 600
performance difference between the possible
measures 20 I Ii
0

0
0
PLoS One. 2013 Jul 10;8(7).e68664. doi: 10.1371/journal pone 0068664. Print 2013 O O O O \9 O ‘/ G}
: L o _ 07 @,@,4/@00”/
Comparison of profile similarity measures for genetic interaction S e ‘90,) _9@ ’b 6/6"
networks. (3 0

Deshpande R', Vandersluis B, Myers CL.
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Gene Set Enrichment Analysis  oSpy

Gene Set Enrichment Angl;s_i; Knowen

 When sample signature is vector and library signature is gene set
[ ] GSE A - :e:a:.-l;:t:nu:lzrjm:;t‘;n:;;s:::ali::);\rl:c:g:-based approach for

interpreting genome-wide expression profiles.
Subramanian A', Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL

Golub TR, Lander ES, Mesirov JP.

Leading edge subse!
4 Gene S

I [ 1

Correlation with Phenotype

R

Random Walk

——

~

ES(S)I S

e
-

Maximum deviation Gene List Rank 3S
from zero provides the
enrichment score ES(S)

A Phenotype B

Ranked Gene List

* Modification of the Kolmogorov-Smirnov Statistic

« Calculate the enrichment score (ES) that represents the amount the genes in the gene
set are over-represented in the top or the bottom of the signature vector

« Estimate statistical significance of the ES by permuting the mappings between the data
« Adjust for multiple hypothesis testing when analyzing a large number of gene sets
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http://software.broadinstitute.org/gsea/index.jsp

Gene Set Association Tests

Knowen

* For use when both signatures are gene sets
« Also known as Gene Set Characterization

* One-sided exact Fisher / Hypergeometric
distribution tests
« Covered by Saurabh this morning

 Available through tools like:

 DAVID -
* Enrichr -
* Metascape -

Standard Enrichment Test

User GS KnownGS

—
—

—

Universe of Genes
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https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
http://metascape.org/gp/index.html

National Institutes
of Health

Knoweng::: soauste: T

Network-Guided Gene Set

Characterization
Pathway

o _ @ . Enrichment Mo
User Gene Set / | Score incomplete
| ‘ 4

highex score annotations of

\ o pathways.
Overlap = ® )| p2
Enrichment . 59— lowerscore
4

@ ® Nel.;two&k-
Knowledge-guided i
using DRaWR Gene Universe

Standard

Considers network
neighbor enrichment
in scoring pathways.

higher score * This pathway ranks

higher due to
lower score network neighbors.

Expanded User Gene Set
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ldea for a Network-based Method

Knowen

Use guilt-by-association principles to
find out which annotations are well
connected to the query genes in a
heterogeneous network.

These well connected annotations
should be specific to the query genes,
and not simply hub nodes in the
network.

Developed Discriminative Random
Walks with Restart (DRaWR)

Query Species
All Gene Nodes

Biginformatics. 2016 Jul 15,3214 2167-F35. doi: 10,1083 bioinformatic s/btw151. Epub 2016 Mar 159
Characterizing gene sets using discriminative random walks with
restart on heterogeneous biological networks.

Blatti C?, Sinha 5°.
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Value of Network-Guided Analysis

Knowen

- Take advantage of gene neighbors

User Set
Apoptosis Genes

Genes That Bind To
Apoptosis Genes

 Incorporate dependencies from separate knowledge In
analysis
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Value of Network-Guided Analysis

Knowen

Extension to poorly - Integrating multiple data types
annotated domains

Embryonic Brain
Development

0 >

(70}
Q5 oS
3z
o< S
(7o B )] zm
> < -
- Q O wn
(TN G) Q5
S - 32
d< 8.
[7,]
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Network-based DRaWR Method

Knowen

DRaWR - using random ["Red" Type
Features
walks on a network

* Construct a.heterogeneous N N
network of interest >
£ 9
83 D=
3 S
> & z2
R) R
S = ® o
oz .-
N> N>

{“ ”
Heterogeneous { Blue” Type
Features
Edge Types
type_A
Bioinformatics. 2016 Jul 15;32(14):2167-75. doi: 10.1093/bioinformatics/btw151. Epub 2016 Mar 19.

type_B Characterizing gene sets using discriminative random walks with restart
type C on heterogeneous biological networks.

Blatti C', Sinha S2.
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Network Methods for GSC

Knowen

* DRaWR - using random
walks on a network

» Construct a network of
interest

* Find stationary distribution on
network

61



Network Methods for GSC

* DRaWR - using random
walks on a network

* Construct a network of
interest

» Find stationary distribution on
network

* Find gene set specific
distribution

* Return annotation nodes that
are especially related to the

query

Query
Genes

Knowen
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Application of DRaWR to Social Aggression

KNOWeNG 2 ssomsines:

* ldea: Evolutionary “toolkits” — genes and modules with lineage-specific
variations but deep conservation of function
* Questions: Are there toolkits that underlie social behaviors
* Such as aggressive response to territorial intrusions?
« Study: gather brain transcriptomic responses to social challenge from
three social species — honey bees, mice, and stickleback fish
« With and without exposure to intraspecies intruder
* From different brain regions and/or durations after event

« Results: sets of differentially expressed genes across three species

| —B - o

MOUSE STICKLEBACK
DEGs at FDR < 0.05 DEGs at FDR <0.10 DEGs at FDR < 0.10
m 1SRN
/ K3
3 Amygdala Diencephalon
Frontal Cortex &0 min
) P 120 min ' 120 min
B0 60 min Hypothalamus 60 min
3U min Telencephalon
120 min
120 min
Cross-species systems analysis of evolutionary toolkits of neurogenomic 120 min el
response to social challenge 120 min

60 min

Michael C. Saul', Charles Blatti'?, Wei Yang'?, Syed Abbas Bukhari', Hagai Y. Shpigler'#,

Joseph M. Troy"®, Christopher H. Seward'®, Laura Sloofman®, Sriram Chandrasekaran’,

Alison M. Bell"38° Lisa Stubbs'3%? Gene E. Robinson'®'°, Sihai Dave Zhao''"", and Saurabh

Sinha'219", 63




Failure of Standard Approach

- Would like to find Gene Ontology
annotations that:

- Relate to DE gene sets of all three species
However, Gene Ontology annotation
quality varies greatly in three species

- Or relate to DE genes sets of the Mouse

However, the corresponding sets from the
other species might have greatly different
function

. Solution:
- Integrate Orthology and Gene Ontology
information in a three species network

- Find Gene Ontology terms that are
strongly connected to the DE gene sets of
all three species simultaneously

STICKLEBACK

MOUSE

Knowen

/ Statistical

\

Enrichment Test

/

Genes

Features

¢ 3dAl 34HN.1v3d
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Findings with DRaWR

Knowen CENTER OF BACELLENCE

- Annotations of two (red and green) conserved Gene Modules

D Biological Process Cellular Component Molecular Function
100- : . © V-type ATPase, 15 2
Intracellular Muscle 0.2- V1 Domain Hydrogen-Exporting
— Transport  Contraction ’ ATPase
esion
Mitochondrial Fatty 14 Rho GTPase
< 5 e Bindin:
<o) Acid Oxidation AMP Deaminase 9
HlaanShack Multienzyme Complex
- . Proteins ®
= Actin Filament
s S%:g:‘:g 0.0- 0.5+ Prolyl Binding
| =4 .
g 93 Structural ) ° Ll
a Proteins Chaperonin- .
A Containing Complex 04 Heat Shock
: g . Protein
y Binding
. 0 Zona Pellucid - . »
Purine | * i ~05.{ Mitochondrial Fatty
Metabolism Acid Oxidation
@ ° .
-100 50 0 50 04 00 04 -05 0 05 10
Dimension X
- Specific results for red module
114 #Annotated DRaWR GO Term Rank Fisher Pvalue

Branch GO ID GO Description HB MM SB Combo HB MM SB Max HB MM SB Min
G0:0032366 intracellular sterol transport 0.040
BP G0:0071704 organic substance metabolic process 3 0.1340.040
BP G0:0016043 cellular component organization 4 9 12 0.175 0.151
5
6

2.9%
3.5%
3.9%
6.8%
8.3%

BP G0:0007160 cell-matrix adhesion
MF G0:0017048 Rho GTPase binding
BP G0:0038032 termination of G-protein coupled receptq 11 1 44
MF G0:0051015 actin filament binding 17 114 9

6.8%
4.0%

7.6% 8.0% 8.3%

MF GO:0003755 peptidyl-prolyl cis-trans isomerase activif 22 42 17 | 4.7% 9.1%
BP G0:0031032 actomyosin structure organization 2 18 9.6% 9.6%
MF G0:0003779 actin binding 48 284 78 | 8.7% 10.0% 6.9% 8.3% 10.0%
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Gene Ranking / Function Prediction

Knowen
Given:
Novel gene set(s) generated by a genomic researcher
Task:

Rank genes for the strength of their relationship to the
user’'s gene set(s)...

... in order to assess the coherence of the genes in the
experimental gene set or identify putative related genes

Figure from Arzt, et al. "Pipa: custom integration of protein interactions and pathways." Gl-Jahrestagung. 2011.
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GeneMANIA Approach

Knowen

- GeneMANIA stands for
- Multiple Association Network Integration Algorithm

- Main ldea
- Given a gene set with a known functions
- And several gene-gene interaction affinity networks

- Find genes that relate to the functional set through the edges of the
given networks

- Approach

- Find out how well each network predicts the membership of the given
set
A linear regression-based algorithm that calculates a single composite
functional association network from multiple data sources
- Do label propagation guilt-by-association algorithm on the composite
functional association network

Genome Biel. 2008;9 Suppl 1:54. dei: 10.1138/gb-2008-8-51-c4. Epub 2008 Jun 27.

GeneMANIA: a real-time multiple association network integration
algorithm for predicting gene function.

Mostafavi 51, Ray D, Warde-Farley D, Grouios C, Momis O
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GeneMANIA Performance

Knowen

Participated in grand challenge for thls functlon
prediction task on Mouse genes ssmsmmise v s

A critical assessment of Mus musculus gene function prediction
using integrated genomic evidence.
o F 1

Myers CL, LesH T, Zhang C, =) Eim W

Krumps 1 : inski G, Qi ¥, =vi 5, L == ariet G, Qiu
touoglu £ Srds- D. Grouio Ray D, B Deng M an M
0 J, seph Sun F, Tro reoth

Did extraordinary well in the competition and has
Improve method since then o o

I MouseFunc winner
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Has easy to use webserver for running functional
prediction with small genesets
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of Health

In this Lecture and the Lab

* Biological Knowledge Networks

«  KnowEnG Platform

* Network-Guided Sample Clustering Start aNew Pipeline

« Network Based Stratification, COCA

: C el . About KnowEnG Pipelines
* Network-Guided Gene Prioritization

ProGENI Sample Clustering
: T F Prioritizati
* Gene Signatures and Similarity Methods s
« LINCS. GSEA. Enrichr. DAVID Gene Set Characterization
* Network-based Gene Set Characterization ABHEUITE Ayt
- DRaWR Spreadsheet Visualization
* Network-based Function Prediction Network Frepaabon

- GeneMANIA
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fH alth

Thank you, Any Questions?

Thanks to Systems
Biology, we now have
a clear picture of

complex diseases!

s 2008

Reproduced by permis fP e de Meyts
Ebrahim. "Metabolomic t dwhy pd miology matters." (2016). 70
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KnowEnG Resources

Knowen

Also Check Out:
* Network Preparation for uploading your custom network to the platform for analysis

« Signature Analysis for mapping samples to signatures by correlation of omics profiles

Tutorials:

* Quickstarts: https://knoweng.org/quick-start/

* YouTube: https://www.youtube.com/channel/UCjyllolCaZIGtZC20XLBOyg
Resources:

» Data Preparation Guide: https://github.com/KnowEnG/quickstart-
demos/blob/master/pipeline_readmes/README-DataPrep.md

« Knowledge Network Contents:
- Summary: https://knoweng.org/kn-data-references/
« Download: https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md

Research

« Knowledge-guided analysis of omics Data (KnowEng cloud platform paper):
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000583

 TCGA Analysis Walkthrough: https://github.com/KnowEnG/quickstart-
demos/tree/master/publication_data/blatti et al 2019

Source Code:

« Docker Images: https://hub.docker.com/u/knowengdev/

* Github Repos: https://knoweng.github.io/
Other Cloud Platforms

» https://cqc.sbgenomics.com/public/apps#g?search=knowenqg
Contact Us with Questions and Feedback: knoweng-support@illinois.edu

BIG DATA TO KNOWLEDGE
CENTER OF EXCELLENCE
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mailto:knoweng-support@illinois.edu

Using A Permanent KnowEnG Account

KNOWeNG;:: s orexcelience

- For permanent account:

« Go to https://knowenqg.org/analyze/
Click on “Create an account”

- Follow the instructions

PLATFORM IS NOW AVAILABLE !

LOGIN OR REGISTER

Welcome to the KnowEnG Platform !

Starting a Pipeline
KnowEnG enables knowledge-guided machine learning and graph mining
analysis on genomic datasets using scalable cloud computation and exploration
of results with interactive visualizations.

WATCH OUR VIDEO

TUTORIALS
KNOWLEDGE-GUIDED PIPELINES

Account Access

Researchers can upload their data in form of a spreadsheet and choose from several analysis
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Regression algorithms

Knowen

- Lasso: learns a linear model from the training data using only a
few features (sparse linear model)

B = arg min (Ily — XBII* + MlI8Ih)

- Elastic Net: learns a linear model from the training data by linearly
combining ridge and Lasso regression regularization terms (a
generalization of both Lasso and ridge regression)

B = argmgn (Ily = XBI” + A2||Bll2 + A1]18]]1)
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Regression algorithms

Knowen

« Kernel-SVR:

« Linear SVR learns a linear model such that it has at most e-deviation
from the response values and is as flat as possible

(Smola and Scholkopf, 1998)

« Kernel-SVR generalizes the idea to nonlinear models by mapping the
features to a high-dimensional kernel space
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Other Network Based Characterization Methods

KNOWEeNG 2:: areorceience

Bicinformatics. 2000 Jan 1;25(1x75-82. doi: 10.1093/bicinformatics/bins77. Epub 20038 Mov 5. o o
A novel signaling pathway impact analysis.
Tarca AL'. Draghici S, Khatri P, Hassan S8, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R 0 e e e e o
o (a) Q (b)
. SPIA ldea: ~ -

Combine with standard enrichment p-value that asks about the significance of the
number of perturbed genes in the pathway

« Perturbagen p-value, which asks if the amount of total accumulated perturbation
after one network propagation step is significant when considering the value it takes
with random controls

PLoS Comput Biol. 2014 Sep 11;109):e1003805. doi: 10,137 1/journal pcbi. 1003308, eCollection 2014 Sep.
SANTA: quantifying the functional content of molecular
networks.

Cornish AJ?, Markowetz F2.
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Incorporating Meta-Paths

Knowen

DRaWR random walks on heterogeneous
networks make no consideration / memory of
the edge types they have followed

O Paths from G1 -> G2:

—, type A meta-path:
type A -type B a path defined by
type C-type C sequence of edges
type B -type C (x2) types between two

nodes

Explore if similarity in a gene set can best be
described by particular types of meta-paths
amongst its genes.

77



Ranking Genes for Disease

Knowen
- Initial Study:
- 53 MSIigDB DE gene sets from separate cancer
studies .
=1 MSigDB
. QueStion: _: Eﬂ;tlet\;::rl.aer Signatures

- If we hide a subset of genes disrupted by the
development of cancer, what types of networks are
best suited to recover them?

Comparing ROC Curves

—_
!

o oo
~ 0 @O
:

O = N W RN oD
TR, S oo T i Tl

- Evaluation:

- Partition 75% of DE genes for training, 25% for testing

- Use DRaWR on KnowNet subnetworks and training
data to rank genes RS AT SiS

- Report average AUCs of ranking using test genes as o B
truth

——Worthless
— Good

True positive rate
cooooo

Excellent
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Networks Under Consideration

- Gene-Gene Edge Types
- H: Homology
CoEx: Co-Expression
TM: Text Mining
Exp: Experimental Interaction

- Gene-Property Edge Types
PD: Protein Domains
GO: Gene Ontology

Knowen

Number of Species
* Human: only
e 2sp: Human and Mouse
Specificity of the edges
« Specific: high confidence
edges
* Loose: all edges of that types
Combinations of Edge Types
« 1ty: One primary type
« 2ty: Primary type + homology
« Many: 3+ edge types
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Best Networks

Knowen

species B NEdgeT Bl EdgeType ] ~]

Human many GO.TM.H l.oose 0.847
Human many All l.oose 0.863
2sp many GO.TM.H l.oose 0.843
2sp many All oose 0.852
2sp 2ty GO.H l.oose 0.706 0.578 0.862
. 2sp 2ty TM.H loose 0.701 0.567 0.813
. Gene Ont0|0gy annotations and Human  many Al Specific 0701 059 0.838
. . . Human many GO.TM.H Specific 0.701 0.584 0.855

TeXt M I n I ng re | athnS are th e Human many GO.T™M loose 0.701 0.545 -
1 2sp many GO.TM.H Specific 0.699 0.579 0.848
best edge types for recovering {pecic | |oesa SN oszs
cancer set DE genes 2sp many | GO.TM loose. 0.695 0.537 |0.863
2sp 2ty GO.H Specific 0.694 0.555 0.853
Human 1ty Text Mining l.oose 0.693 0.544 0.838
. Human 1ty Gene Ontology |.oose 0.690 0.541 ' 0.851
o N etworks W|th a” edges (Loose) 25p 1ty Gene Ontology oose 0.689 0.538 0.848
o Human many GO.TM Specific 0.675 0.539 0.831
are better at recovering gene 25p 2ty TM.H Specific 0.673 0563 0.797
H H 2sp many GO.TM Specific 0.671 0.541 0.823
than networks with only high
2sp 1ty Gene Ontology Ypecific 0.666 0.515 0.844
Confldence edges Human 1ty Gene Ontology Specific 0.664 0.534 0.842
2sp 2ty CoE.H l.oose 0.663 0.508 0.827
2sp 2ty Exp.H Specific 0.656 0.549 0.769
- Protein Domain annotations are e v e e o o
pOOF predICtOI’S for cancer DE 2sp 2ty PPLH Specific 0.644 0.515 0.746
. Human 1ty Co-expression: [oose 0.629 0.498 0.840
genes, but great for embryonic Human 1ty | Experimental | fpecific | 0.604 0455 0756

Human 1ty Co-expression Specific 0.601

d eve I O p m e nt Human 1ty Prot-Prot Inter |.0o0se 0.598 0.475 0.730
25p 2ty CoL.H Speditic 0.556 0.477 0.725
2sp 2ty PD.H l.oose 0.592 0.481 0.701

Human 1ty Experimental | l.oose U.589 0.424 0.//8



