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Plan for this Lecture

Topic: Methods for analyzing omics datasets while 
integrating prior knowledge

• Systems Biology and Knowledge Networks
• Sample Clustering
• Gene Prioritization
• Gene Set Characterization

Emphasis: tools that take advantage of prior knowledge 
networks (KnowEnG)

Goal: understand basic concepts and aware of approaches 
and resources
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Systems Biology

• Systems biology is the computational and mathematical modeling 

of complex biological systems.

• Studies the interactions between the components of biological 

systems such as genes, proteins, metabolites, etc. (i.e. biological 

networks), and how these interactions give rise to the function and 

behavior of that system (phenotype) 
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Figure from Angione, C. Human Systems Biology and Metabolic Modelling: A 

Review-From Disease Metabolism to Precision Medicine. Biomed Res Int 2019.



Using Statistical and Machine Learning Methods
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• No training example exists and the goal is to learn structure 

in the data

• Training examples are provided with desired inputs and 

outputs to help learning the desired rule

Supervised 

Learning
Unsupervised 

Learning

Classification
(resistance group)

Regression
(survival time)

Supervised Feature Selection
(biomarkers)

Clustering
(subtyping)

Dimensionality Reduction
(data visualization)

Applied to heterogeneous ‘omics and phenotype data and prior knowledge  



Some Example Applications
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• Identifying the subtypes of a 

disease 

• Identifying genes associated with a 

disease

• Predicting whether a patient is 

sensitive or resistant to a drug

• Predicting the survival probability of 

a cancer patient

• etc.

Classification
(resistance group)

Regression
(survival time)

Supervised Feature Selection
(biomarkers)

Clustering
(subtyping)



Prior Knowledge as Biological Networks

• Existing prior knowledge in literature captures known interactions 

within and across different levels of the biological systems

• Knowledge Network - a graphical representation of the 

interactions of the components of a biological systems
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Figure from https://commons.wikimedia.org/wiki/File:Gene_Regulatory_Network.jpg 



Directed Biological Networks
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Gene regulatory networks

• Nodes represent genes, proteins, etc.

• Edges show regulatory relationships between the nodes

• The network shows which entities (e.g. transcription factors) 

regulate the expression of each gene

• Edges can have meaningful weights

Figure from Song, et al. "Comparative transcriptional profiling and preliminary 

study on heterosis mechanism of super-hybrid rice." Molecular plant 3.6 (2010).



Directed Biological Networks
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Signaling Networks

• Represents 

communications within and 

between cells

• Responsible for receiving, 

transmitting and 

processing information

• The network is a graphical 

representation of the 

interactions of the 

components of a biological 

systems

Signal Transduction Pathway

https://commons.wikimedia.org/wiki/File:Signal_transduction_pathways.svg



Experimental Networks
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Protein-protein interaction networks

• Nodes represent proteins

• Edges show interactions between proteins

• Interactions usually refer to different levels of physical contact and 

proximity of protein molecules

Figure from Jeong, Hawoong, et al. "Lethality and 

centrality in protein networks." Nature 411.6833 (2001).



Experimental Networks
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Gene co-expression networks

• Nodes represent genes

• An edge exists between two genes 

that are highly co-expressed across 

different samples
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Figure from https://commons.wikimedia.org/wiki/File:Gene_co-

expression_network_with_7221_genes_for_18_gastric_cancer_patients.png

Figure from https://www.freecodecamp.org/news/how-machines-make-predictions-finding-correlations-in-complex-data-dfd9f0d87889/



Computational Networks
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Evolutionary Conservation networks

• Nodes represent gene DNA or protein amino acid sequences

• Edges represent the similarity between the pair of sequences, the 

more similarly the more recently the nodes share an evolutionary 

history

https://www.ncbi.nlm.nih.gov/books/NBK1762/pdf/Bookshelf_NBK1762.pd

f

Text Mining networks

• Nodes represent gene entities

• Edges represent the frequency names, aliases, and synonyms for a 

pair of genes co-occur in literature abstracts

Figure from Yahaya, et al. "Gene expression changes associated 

with the airway wall response to injury." PloS one 8.4 (2013).



Computational Networks
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Integrated networks

• Nodes represent gene or proteins

• Edges represent the weighted combination of normalized edge 

weights from many different types of network edges based on some 

predetermined criteria



Visualizing and Sharing Biological Networks
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https://home.ndexbio.org/quick-start/

https://cytoscape.org/release_notes_3_2_1.html
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KnowEnG: Platform for Network-

guided Analysis

14

https://knoweng.org/analyze/

https://knoweng.org/analyze/


KnowEnG: Knowledge Engine for Genomics

• ‘omics Data Analysis Pipelines

• Using Prior Knowledge

• In a Scalable Cloud Platform
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KnowEnG Pipelines and User Interface

• Sample Clustering
• What are the separate transcriptomic 

subtypes of patients and how do they 

relate to outcome? 

• Feature(Gene) Prioritization
• What genes are differentially expressed 

with respect to viral shedding

• Gene Set Characterization
• What pathways do these differentially 

expressed genes relate to?

• Signature Analysis
• Given a new patient, what subtype does 

their profile most resemble?

• Spreadsheet Visualization
• Given multiple omics and clinical 

datasets on patient samples, what 

features relate to selected phenotypes?

16



Analysis Pipelines Using Prior Knowledge

• Knowledge Network (KN): heterogeneous graph whose nodes and 

edges encodes major public data sets  as a network represented by  

genes/proteins, their properties, and relationships

• Omics data: a spreadsheet (rows = genes or proteins) to be 

analyzed

17

SPREADSHEET

Knowledge network + user spreadsheet 
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KnowEnG Prior Knowledge Networks

18

https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md

https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md
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Network-guided Sample 

Clustering
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Network-guided Sample Clustering

20

Goal: 

• Stratification (clustering) of tumor samples based on somatic mutation 

profiles

Main Issue: 

• The mutation data is very sparse and most conventional clustering 

techniques fail to identify reasonable patterns

• Although two tumors may not share the same somatic mutations, they 

may affect the same pathways and interaction networks



Knowledge-Guided Analysis for Sample Clustering

• Problem: Data sparsity in gene-level somatic 

mutation data

• Toy Example
• Due to the sparsity of the data, all samples 

are at equal distance of each other

21



Knowledge-Guided Analysis for Sample Clustering

• Problem: Data sparsity in gene-level somatic 

mutation data

• Toy Example
• Due to the sparsity of the data, all samples 

are at equal distance of each other

• Pathway information clarifies the similarity 

among some samples
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Knowledge-Guided Analysis for Sample Clustering

• Problem: Data sparsity in gene-level somatic 

mutation data

• Toy Example
• Due to the sparsity of the data, all samples 

are at equal distance of each other

• Pathway information clarifies the similarity 

among some samples

• Conventional clustering methods can then 

identify clusters based on network-

smoothed features

23



Network-based Stratification (NBS)

• Network Smoothing – Random Walk with Restart

• Patient Sampling for Robust Clustering

24



Random Walk With Restart Algorithm

• Fast, scalable guilt-by-

association method
• Same ideas as personalized 

PageRank

• Intuition
• Walker at a node either

• With probability 1-r, follows an 

outgoing edge

• With restart probability r, returns to 

node in restart set

• Converges to long run “stationary” 

distribution of the walker over the 

nodes

• Final node ranking based on 

distribution incorporates
• Connectedness of node in network

• Proximity of node to restart set

25https://cseweb.ucsd.edu/~atsiatas/pr_diffusion_slides.pdf

Initialization

Propagation

Convergence

Restart 

Jump 

with r

Edge 

Follow 

with 1-r



NBS Sample Clustering with KnowEnG

• 3276 tumor samples from TCGA from 12 cancer 

projects with sparse non-synonymous somatic 

mutation 

• Perform standard and network-guided Sample 

Clustering in platform

• Knowledge-guided clusters significantly relate to 

survival outcome 

• Much better than standard 

methods that do not 

incorporate prior knowledge

• In line with specialized 

method developed in TCGA

paper that would be very 

difficult to reproduce
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Integrating Experimental Assays for Stratification

• Data from each experimental 

assay is subjected to sample 

clustering to find cancer 

subtypes per assay

• Mutation data required 

specialized knowledge guided 

methods (panel F)

mRNA

miRNA

Copy Number

DNA Methyl

Protein RPPA

Mutations

27



Cluster-Of-Cluster-Assignments (COCA)

• Merge cluster assignments x samples matrices

• Cluster the samples in the multi-omics matrix

28

miRNA

mRNA

Protein

Cluster Samples



13 Cancer Subtypes from 6 Assays

• Strong 

relationship 

between 

subtypes & 

disease

• Interesting 

relations 

between 

clusters of 

different 

data types 

Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals 

molecular classification within and across tissues of origin." Cell 158.4 (2014). 29
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Next Stop in Characterizing Cancer Subtypes

• Find top related mutations and copy number alterations

• Compare each subtype vs `all others`

• KnowEnG calls this `Gene Prioritization`

Figure from Hoadley, et al. "Multiplatform analysis of 12 cancer types reveals 

molecular classification within and across tissues of origin." Cell 158.4 (2014).
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Towards Network-Guided Gene Prioritization

Drug Sensitivity Example

• Goal:

• Identifying genes whose basal mRNA expression determines the drug 

sensitivity in different samples (supervised feature selection)

• Motivations:

• Overcoming drug resistance

• Revealing drug mechanism of action

• Identifying novel drug targets

• Predicting drug sensitivity of individuals

32
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Gene Prioritization
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Examples of current methods:

• Score each gene based on the correlation of its 

expression with drug response 
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Gene Prioritization
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Examples of current methods:

• Score each gene based on the correlation of its 

expression with drug response 

• Use multivariable regression algorithms such as 

Elastic Net to relate multiple genes’ expression 

values to drug response

genes
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Gene prioritization

Examples of current methods:

• Score each gene based on the correlation of its 

expression with drug response 

• Use multivariable regression algorithms such as 

Elastic Net to relate multiple genes’ expression 

values to drug response

Shortcoming:

• These methods do not incorporate prior information 

about the interaction of the genes

35



ProGENI

Hypothesis:

• Since genes and proteins involved in drug MoA are functionally related, prior 

knowledge in the form of gene interaction network (e.g. PPI) can improve 

accuracy of the prioritization task

36
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ProGENI

ProGENI: Network-guided gene prioritization

• An algorithm that incorporates gene network information to improve 

prioritization accuracy

37



ProGENI

Step 1: Generate new features representing expression of each gene and 

the activity level of their neighbors weighted proportional to their relevance

38



ProGENI

Step 1: Generate new features representing expression of each gene and 

the activity level of their neighbors weighted proportional to their relevance
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Figure from Rosvall and Bergstrom. "Maps of random walks on complex networks reveal 

community structure." Proceedings of the national academy of sciences 105.4 (2008).



ProGENI

Step 1: Generate new features representing expression of each gene and 

the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

40



ProGENI

Step 1: Generate new features representing expression of each gene and 

the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set
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ProGENI

Step 1: Generate new features representing expression of each gene and 

the activity level of their neighbors weighted proportional to their relevance

Step 2: Find genes most correlated with drug response (RCG set)

Step 3: Score genes based on their relevance to the RCG set

Step 4: Remove network bias by normalizing scores w.r.t. scores 

corresponding to global network topology

42



Datasets

• Human lymphoblastoid cell lines (LCL)

• Gene expression (~17K genes of ~300 cell lines)

• Drug response of 24 cytotoxic treatments

• Publicly available dataset from GDSC

• Gene expression (~13K genes of ~600 cell lines from 13 

tissues)

• Drug response of 139 cytotoxic treatments

• Publicly available prior knowledge

• Network of gene interactions (PPI and genetic interactions) 

from STRING (~1.5M edges, ~15.5K nodes)

43



Validation using drug response prediction

• Genes ranked highly using a good prioritization method are good 

predictors of drug sensitivity

44



Validation using drug response prediction
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LCL Dataset Pearson Elastic Net

Num. Drugs (out of 24) 

ProGENI > Baseline
14 20

FDR (Wilcoxon signed-rank test) 6.5 E-3 9.6 E-5

GDSC Dataset Pearson Elastic Net

Num. Drugs (out of 139)

ProGENI > Baseline
66 110

FDR (Wilcoxon signed-rank test) 9.1 E-4 4.0 E-21



Functional validation

We validated role of 33 (out of 45) genes (73%) for three drugs. 

46
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Gene Expression Signatures
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Gene Expression Signatures

• Massive Transcriptomic Profiling Projects
• TCGA and ICGC

• GTEX and CCLE

• LINCS

• Definitions
• Projects produce expression vectors for 

samples (e.g. gene expression levels)

• Scoring the difference in expression between 

samples of two (or more) conditions produces 

differential expression vectors

• Signature (of a biological state):
• Gene Set – differentially, characteristically 

expressed genes in that state relative to some 

reference (control or population)

• Differential Expression Vector – the differential 

expression scores for the subset of genes in the 

same comparison

48
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Figure from Greenough, et al. "A gene expression signature that correlates with CD8+ 

T cell expansion in acute EBV infection." The Journal of Immunology 195.9 (2015).



Gene Expression Signatures

• Example Comparisons
• Mutated vs Wild-Type

• Metastatic vs Primary

• Tumor vs Normal

• Perturbagens

• Drug Treatment vs Placebo

• Environmental Stimuli vs Control

• Gene Signatures provide a uniquely 

characteristic pattern of gene expression 

that is tied to its studied biological or 

medical phenomenon
• Enable researchers to relate samples and other 

phenomenon by finding the similarity to the gene 

signatures

• Focus understanding on underlying mechanism 

for phenomenon to a subset of gene behaviors

49
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Public Resources for Gene Signatures

• There are many public resources for acquiring gene expression 

signatures
• Extracting signatures yourself

• Libraries of Curated Signatures

• Lab will use signatures from the Library of Integrated Network-

Based Cellular Signatures (LINCS)

50



The LINCS DataCube of Signatures

• Gathering a data cube of gene signatures 

• Using many different:
• Cell Types

• Dozens of cell lines

• Induced pluripotent stem cells

• Primary Cells

• Perturbagens 

• Small molecules / Drugs

• CRISPR overexpression and 

• shRNA knockdown

• Microenvironments 

• Ligands

• Experimental Assays

• Gene expression: microarray, RNA-seq, L1000

• Protein expression: RPPA, P100 mass 

spectrometry

• Morphological and Proliferation: biochemical 

and imaging assays

51



Signature Similarity Analysis

• Given a query signature and a library of reference signatures, 

how do you find the similar signatures?

Types of Similarity Comparisons

Gene Set & Differential Expression Vector

Differential Expression Vector & Differential Expression Vector

Gene Set & Gene Set 
52



Standard Similarity Measures

53

• When both signatures are represented as 

differential expression vectors:

• In one analysis, they did not observe a large 

performance difference between the possible 

measures



• When sample signature is vector and library signature is gene set 

• GSEA - http://software.broadinstitute.org/gsea/index.jsp

• Modification of the Kolmogorov-Smirnov Statistic
• Calculate the enrichment score (ES) that represents the amount the genes in the gene 

set are over-represented in the top or the bottom of the signature vector

• Estimate statistical significance of the ES by permuting the mappings between the data

• Adjust for multiple hypothesis testing when analyzing a large number of gene sets

Gene Set Enrichment Analysis

54

http://software.broadinstitute.org/gsea/index.jsp


Gene Set Association Tests

55

• For use when both signatures are gene sets

• Also known as Gene Set Characterization

• One-sided exact Fisher / Hypergeometric 

distribution tests

• Covered by Saurabh this morning

• Available through tools like: 

• DAVID - https://david.ncifcrf.gov/

• Enrichr - http://amp.pharm.mssm.edu/Enrichr/

• Metascape - http://metascape.org/gp/index.html

Universe of Genes

Standard Enrichment Test

User GS KnownGS

https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
http://metascape.org/gp/index.html
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Network-Guided Gene Set 

Characterization
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Idea for a Network-based Method

• Use guilt-by-association principles to 

find out which annotations are well 

connected to the query genes in a 

heterogeneous network.

• These well connected annotations 

should be specific to the query genes, 

and not simply hub nodes in the 

network.

• Developed Discriminative Random 

Walks with Restart (DRaWR)

57
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Value of Network-Guided Analysis

58

• Take advantage of gene neighbors

• Incorporate dependencies from separate knowledge in 

analysis

User Set

Apoptosis Genes

Genes That Bind To 
Apoptosis Genes



Value of Network-Guided Analysis

• Extension to poorly    

annotated domains

• Integrating multiple data types

59
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Network-based DRaWR Method
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• DRaWR – using random 
walks on a network

• Construct a heterogeneous 
network of interest A
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Network Methods for GSC

61

• DRaWR – using random 
walks on a network

• Construct a network of 
interest

• Find stationary distribution on 
network
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Network Methods for GSC
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• DRaWR – using random 
walks on a network

• Construct a network of 
interest

• Find stationary distribution on 
network

• Find gene set specific 
distribution

• Return annotation nodes that 
are especially related to the 
query
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Application of DRaWR to Social Aggression

• Idea: Evolutionary “toolkits” – genes and modules with lineage-specific 

variations but deep conservation of function

• Questions: Are there toolkits that underlie social behaviors

• Such as aggressive response to territorial intrusions?

• Study: gather brain transcriptomic responses to social challenge from 

three social species – honey bees, mice, and stickleback fish

• With and without exposure to intraspecies intruder

• From different brain regions and/or durations after event

• Results: sets of differentially expressed genes across three species
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Failure of Standard Approach

• Would like to find Gene Ontology 

annotations that:
• Relate to DE gene sets of all three species

• However, Gene Ontology annotation 

quality varies greatly in three species

• Or relate to DE genes sets of the Mouse

• However, the corresponding sets from the 

other species might have greatly different 

function 

• Solution: 
• Integrate Orthology and Gene Ontology 

information in a three species network 

• Find Gene Ontology terms that are 

strongly connected to the DE gene sets of 

all three species simultaneously

64

Statistical 

Enrichment Test



Findings with DRaWR

• Annotations of two (red and green) conserved Gene Modules

• Specific results for red module

65

B) Module 14

Branch GO ID GO Description HB MM SB Combo HB MM SB Max HB MM SB Min

BP GO:0032366 intracellular sterol transport 2 0.3% 1.6% 0.1% 0.4% 1.6% 0.040 0.040

BP GO:0071704 organic substance metabolic process 3 5 4 2.3% 2.2% 0.3% 0.4% 2.3% 0.134 0.040 0.040

BP GO:0016043 cellular component organization 4 9 12 2.3% 2.2% 2.9% 0.8% 2.9% 0.175 0.151 0.002 0.002

BP GO:0007160 cell-matrix adhesion 5 74 16 2.5% 0.4% 3.5% 1.8% 3.5% 0.002 0.001 0.001

MF GO:0017048 Rho GTPase binding 6 30 13 3.1% 2.0% 3.9% 0.8% 3.9% 0.020 0.024 0.002 0.002

BP GO:0038032 termination of G-protein coupled receptor signaling pathway11 1 44 1.6% 6.8% 1.4% 0.3% 6.8% 0.000 0.000

MF GO:0051015 actin filament binding 17 114 9 7.6% 4.0% 8.0% 8.3% 8.3% 0.013 0.125 0.013

MF GO:0003755 peptidyl-prolyl cis-trans isomerase activity22 42 17 4.7% 2.1% 9.1% 1.3% 9.1% 0.031 0.108 0.031

BP GO:0031032 actomyosin structure organization 2 18 1.8% 0.4% 2.7% 9.6% 9.6% 0.047 0.047

MF GO:0003779 actin binding 48 284 78 8.7% 10.0% 6.9% 8.3% 10.0% 0.086 0.021 0.001 0.001

#Annotated DRaWR GO Term Rank Fisher Pvalue



Gene Ranking / Function Prediction

• Given:

• Novel gene set(s) generated by a genomic researcher

• Task:
• Rank genes for the strength of their relationship to the 

user’s gene set(s)…

• … in order to assess the coherence of the genes in the 

experimental gene set or identify putative related genes

66

Figure from Arzt, et al. "Pipa: custom integration of protein interactions and pathways." GI-Jahrestagung. 2011.



GeneMANIA Approach

• GeneMANIA stands for 
• Multiple Association Network Integration Algorithm

• Main Idea
• Given a gene set with a known functions

• And several gene-gene interaction affinity networks

• Find genes that relate to the functional set through the edges of the 

given networks

• Approach
• Find out how well each network predicts the membership of the given 

set

• A linear regression-based algorithm that calculates a single composite 

functional association network from multiple data sources

• Do label propagation guilt-by-association algorithm on the composite 

functional association network

67



GeneMANIA Performance

• Participated in grand challenge for this function 

prediction task on Mouse genes

• Did extraordinary well in the competition and has 

improve method since then

• Has easy to use webserver for running functional 

prediction with small genesets

68
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In this Lecture and the Lab

• Biological Knowledge Networks
• KnowEnG Platform

• Network-Guided Sample Clustering
• Network Based Stratification, COCA

• Network-Guided Gene Prioritization
• ProGENI

• Gene Signatures and Similarity Methods
• LINCS, GSEA, Enrichr, DAVID

• Network-based Gene Set Characterization

• DRaWR

• Network-based Function Prediction
• GeneMANIA

69
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Thank you, Any Questions?

70
Reproduced by permission of Pierre de Meyts in 

Ebrahim. "Metabolomics, nutrition and why epidemiology matters." (2016).
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KnowEnG Resources

• Also Check Out:

• Network Preparation for uploading your custom network to the platform for analysis

• Signature Analysis for mapping samples to signatures by correlation of omics profiles

• Tutorials:

• Quickstarts: https://knoweng.org/quick-start/

• YouTube: https://www.youtube.com/channel/UCjyIIolCaZIGtZC20XLBOyg

• Resources:

• Data Preparation Guide: https://github.com/KnowEnG/quickstart-

demos/blob/master/pipeline_readmes/README-DataPrep.md

• Knowledge Network Contents: 

• Summary: https://knoweng.org/kn-data-references/

• Download: https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md

• Research

• Knowledge-guided analysis of omics Data (KnowEng cloud platform paper): 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000583

• TCGA Analysis Walkthrough: https://github.com/KnowEnG/quickstart-

demos/tree/master/publication_data/blatti_et_al_2019

• Source Code:

• Docker Images: https://hub.docker.com/u/knowengdev/

• Github Repos: https://knoweng.github.io/

• Other Cloud Platforms

• https://cgc.sbgenomics.com/public/apps#q?search=knoweng

• Contact Us with Questions and Feedback: knoweng-support@illinois.edu

72
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https://github.com/KnowEnG/quickstart-demos/tree/master/publication_data/blatti_et_al_2019
https://hub.docker.com/u/knowengdev/
https://knoweng.github.io/
https://cgc.sbgenomics.com/public/apps#q?search=knoweng
mailto:knoweng-support@illinois.edu


Using A Permanent KnowEnG Account

• For permanent account: 
• Go to https://knoweng.org/analyze/

Click on “Create an account”

• Follow the instructions

73

https://knoweng.org/analyze/


Regression algorithms

• Lasso: learns a linear model from the training data using only a 

few features (sparse linear model)

• Elastic Net: learns a linear model from the training data by linearly

combining ridge and Lasso regression regularization terms (a 

generalization of both Lasso and ridge regression)
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Regression algorithms

• Kernel-SVR: 

• Linear SVR learns a linear model such that it has at most ε-deviation 

from the response values and is as flat as possible

(Smola and Schölkopf, 1998)

• Kernel-SVR generalizes the idea to nonlinear models by mapping the 

features to a high-dimensional kernel space 
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Other Network Based Characterization Methods

• SPIA Idea: 
• Combine with standard enrichment p-value that asks about the significance of the 

number of perturbed genes in the pathway 

• Perturbagen p-value, which asks if the amount of total accumulated perturbation 

after one network propagation step is significant when considering the value it takes 

with random controls

• SANTA Idea:
• Quantify the Network Density of Gene Set by Shortest Path Length criteria
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Incorporating Meta-Paths

• DRaWR random walks on heterogeneous 

networks make no consideration / memory of 

the edge types they have followed

• Explore if similarity in a gene set can best be 

described by particular types of meta-paths 

amongst its genes.
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Paths from G1 -> G2:

type_A

type_A - type_B

type_C- type_C

type_B - type_C (x2)

meta-path:
a path defined by 
sequence of edges 
types between two 

nodes



Ranking Genes for Disease

• Initial Study: 
• 53 MSigDB DE gene sets from separate cancer 

studies

• Question:
• If we hide a subset of genes disrupted by the 

development of cancer, what types of networks are 

best suited to recover them?

• Evaluation:
• Partition 75% of DE genes for training, 25% for testing

• Use DRaWR on KnowNet subnetworks and training 

data to rank genes 

• Report average AUCs of ranking using test genes as 

truth
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Networks Under Consideration

• Gene-Gene Edge Types

• H: Homology

• CoEx: Co-Expression

• TM: Text Mining

• Exp: Experimental Interaction

• Gene-Property Edge Types

• PD: Protein Domains

• GO: Gene Ontology
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• Number of Species

• Human: only

• 2sp: Human and Mouse

• Specificity of the edges

• Specific: high confidence 

edges

• Loose: all edges of that types

• Combinations of Edge Types

• 1ty: One primary type

• 2ty: Primary type + homology

• Many: 3+ edge types



Best Networks

• Gene Ontology annotations and 
Text Mining relations are the 
best edge types for recovering 
cancer set DE genes

• Networks with all edges (Loose) 
are better at recovering gene 
than networks with only high 
confidence edges

• Protein Domain annotations are 
poor predictors for cancer DE 
genes, but great for embryonic 
development
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Species NEdgeT EdgeType EdgeThresh avg min max

Human many GO.TM.H Loose 0.723 0.610 0.847

Human many All Loose 0.722 0.614 0.863

2sp many GO.TM.H Loose 0.721 0.610 0.843

2sp many All Loose 0.714 0.606 0.852

2sp 2ty GO.H Loose 0.706 0.578 0.862

2sp 2ty TM.H Loose 0.701 0.567 0.813

Human many All Specific 0.701 0.590 0.838

Human many GO.TM.H Specific 0.701 0.584 0.855

Human many GO.TM Loose 0.701 0.545 0.870

2sp many GO.TM.H Specific 0.699 0.579 0.848

2sp many All Specific 0.698 0.594 0.824

2sp many GO.TM Loose 0.695 0.537 0.863

2sp 2ty GO.H Specific 0.694 0.555 0.853

Human 1ty Text Mining Loose 0.693 0.544 0.838

Human 1ty Gene Ontology Loose 0.690 0.541 0.851

2sp 1ty Gene Ontology Loose 0.689 0.538 0.848

Human many GO.TM Specific 0.675 0.539 0.831

2sp 2ty TM.H Specific 0.673 0.563 0.797

2sp many GO.TM Specific 0.671 0.541 0.823

2sp 2ty PPI.H Loose 0.668 0.557 0.800

2sp 1ty Gene Ontology Specific 0.666 0.515 0.844

Human 1ty Gene Ontology Specific 0.664 0.534 0.842

2sp 2ty CoE.H Loose 0.663 0.508 0.827

2sp 2ty Exp.H Specific 0.656 0.549 0.769

Human 1ty Text Mining Specific 0.656 0.555 0.812

2sp 2ty Exp.H Loose 0.647 0.533 0.763

2sp 2ty PPI.H Specific 0.644 0.515 0.746

Human 1ty Co-expression Loose 0.629 0.498 0.840

Human 1ty Experimental Specific 0.604 0.455 0.756

Human 1ty Co-expression Specific 0.601 0.353 0.875

Human 1ty Prot-Prot Inter Loose 0.598 0.475 0.730

2sp 2ty CoE.H Specific 0.598 0.477 0.725

2sp 2ty PD.H Loose 0.592 0.481 0.701

Human 1ty Experimental Loose 0.589 0.424 0.778


