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• Terminology

• Successes and Excellent Reasons for Hype

• Lessons Along the Way for ML in Medical Practice

• Garbage in/Garbage Out

• Use Prior Knowledge

• Curse of Dimensionality

• Data Leakage

• Interpretability and Complex Decision Boundaries

• Objective Function Misalignment, Class Imbalance

• Association versus Causation

• Use decision-theoretic thinking

• Fairness and Calibration
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Terminology
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Artificial Intelligence

Problem Solving By 

Search/Pathfinding/Logical 

Reasoning

Agent Perception/Planning/ 

Decision Making

Machine Learning

Reinforcement 

Learning

Supervised Learning

Unsupervised 

Learning

Deep Learning
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Excellent Reasons For Hype

• High profile super-human performance systems

• IBM DeepBlue Chess, 1997

• IBM Watson Jeopardy, 2011

• Hinton, ImageNet Classification 2012-

• AlphaGO, 2016

• Poker, Pac-Man, Quake3, Dota2, StarCraft2, 
Atari, speech recognition, skin cancer 
detection, prostate cancer detection, diabetic 
retinopathy, machine translation

• Self-driving cars, factory robots

• Natural language processing, GPT3, codex
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AlphaFold achieves near experimental 
accuracy
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Care, diligence and acknowledgement of 
unique challenges are required 
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Probabilistic View of Supervised Learning

• We have input features 𝒙 ∈ ℝ𝑑 (numerical descriptions 
of examples) 

• 𝒙 = [185, 70], representing weight/height

• We have output labels 𝑦 ∈ ℝ (numerical outcomes, 
sometimes multidimensional as well)

• 𝑦 =0 or 1, representing diabetes diagnosis

• 𝑦 = A1c measurement

• We seek a function f(⋅) such that f(𝒙) ≃ 𝑦

• Machine Learning/Deep Learning are tools to find 
this function 

• It is helpful to view this as coming from estimating 
𝑝(𝑦|𝑥) and then picking 𝑦
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Example feature vectors 𝒙

• a greyscale 256x256 image where each pixel 
takes value between 0 and 255, and d = 256 ×
256 = 65,536 

• a color image with 256x256 pixels and r, g, b 
“channels” making 256x256x3 array of numbers 
between 0 and 255 and
d = 256 × 256 × 3 = 196,608 

• a non-negative count vector of 10,000 genes 
measured by RNA-seq in blood with d=10,000 

• a vector of estimated probabilities in the range 
[0, 1] of methylation at d = 750,000 CpG sites in 
the genome 
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Example labels

• Whether the patient is healthy (0) or has cancer 
(1) 

• Whether this DNA variant causes outlier 
expression (1) or not (0) 

• Whether this patient will have a severe reaction 
(1) or not to COVID (0) 

• The number of COVID patients entering the ER 
tomorrow

• Variant pathogenicity {B, LB, VUS, LP, P}

• Pixel position of LL and UR corners of bounding 
box around a tumor in a chest x-ray
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Example functions

• If weight/height > 3, predict diabetes (1), else 
predict no diabetes (0)

• This is example of a decision tree (using an 
augmented/crossed feature)

• Deep neural networks, random forests, logistic 
regression, KNN, SVM, etc, are all just 
algorithms to take training data in and produce 
concrete calculation representing f(𝒙) ≃ 𝑦

• Conceptually no different from above 
decision tree
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Bayes Rule & Bayes Error

• The Bayes Rule is the best function f(⋅)
possible which has performance of Bayes Error

• “Best” means we need a loss function to 
evaluate if f(𝒙) ≃ 𝑦 numerically

• 0/1 loss for classification 

• f 𝒙 − 𝑦 2 for regression

• The Bayes rule for 0/1 loss in binary classes:

𝑓 𝒙 = ቐ1, if 𝑝 𝑦 = 1 𝒙 >
1

2
0, otherwise
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Lesson: Garbage in, Garbage Out

• The Bayes Error tells us the best we can do 
predicting y from measurements x

• If x is number of ChrY copies in each cell of 
fetus, Bayes Error for sexing fetus is near 0

• p(y=1|x=0) ≃ 0, p(y=1|x>0) ≃ 1

• If x is WGS of mother and father, Bayes error 
for sexing fetus is near 0.5

• p(y=1|x) ≃ 0.5 for all x

• Human-level performance can be rough proxy 
in some cases for Bayes Error

• If human case is hopeless, think hard first
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Lesson: Focus More on the Data

• Often data cleaning, collection, representation 
will improve your performance much faster than 
overly focusing on ML algorithm/methods

• AutoML tools like AutoGluon rapidly test and 
combine many cutting-edge tools

• If AutoML fails catastrophically, perhaps 
Bayes Error is high or data 
integrity/representation is poor

• If no opportunity to improve data, then focus on 
modeling assumptions and selecting best suited 
algorithms
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We learn from limited examples

• We have data pairs 𝒙𝑛, 𝑦𝑛 , 𝑛 = 1,… , 𝑁

• From these we need to estimate 𝑝 𝑦 𝒙 or 𝑓 𝒙

• If Bayes rule 𝑓 𝒙 is simple, we can use lower N

• One male and one female example could 
train the Bayes classifier in sex pred from 
ChrY per cell count

• If 𝒙 is all sensor measurements in car and 𝑦
is gas/brake pressure and steering angle, 
much larger N needed
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Overfitting

• Complex 
decision
boundaries
fit “noise”

• Higher error
on unseen
test data
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https://en.wikipedia.org/wiki/Overfitting#/media/File:Overfitting.svg
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Cross-validation
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https://upload.wikimedia.org/wikipedia/commons/b/b5/K-fold_cross_validation_EN.svg
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Lesson: Regularization/Occam’s Razor

• Simple answers require less evidence/data

• Complicated answers require greater evidence

• L1&L2 penalties/Dropout/Shrinkage/Bayesian 
methods can help

• Cross-validation commonly used to evaluate 
over-fitting and tune regularization 
hyperparams/priors

• Data Augmentation (e.g., jittering bootstrap, 
image manipulation, language rearrangements) 
can add robustness to common but irrelevant 
differences 
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Why “Deep” Learning

• Each layer is its own ensemble of learners

• Intuitively layers extract features, then combine 
them in increasingly sophisticated ways

• Greater abstraction deeper in network
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Figure from Olah, et al., "Feature Visualization", Distill, 2017.

Layer2 Layer3 Layer4 Layer5 Layer6
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https://doi.org/10.3348/kjr.2019.0312

https://doi.org/10.3348/kjr.2019.0312
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Lesson: Use prior knowledge

• Transfer learning

• Great for NLP or images where huge 
datasets available for pretraining

• Don’t train a huge CNN from scratch with 
100’s of medical images

• Don’t train a huge transformer from scratch 
in 10K clinical notes

• Bayesian methods can be even more rigorous 
when good prior data is available, e.g., in lab 
tests
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Curse of dimensionality

• Volume of d-dimensional box grows 
exponentially 

• Observing 10-point grid requires 10d

observations, e.g. to fit 𝑝 𝑦 𝒙 over all 𝒙

• High-dimensions not intuitive

• Volume almost entirely on outer-shell/veneer

• You are an extremist, in high enough dim

• Data not uniform in feature space

• Lives on low-dimensional “manifold”

• Most randomly generated images look like 
TV fuzz, not kittens
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Lesson: Model complexity/dim and lack of 
interpretability can hide overfitting
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• Interpretability a thorny subject

• Use “simple” models where possible

• Understand risks of black boxes, SHAP/etc
not global explainer

+ 0.005 x                                     =

“Poodle” “nematode” “tennis ball”

72% confidence 4% confidence 98% confidence
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Data Leakage

• We mentioned cross-validation, but generally 
we also want hold out test set 

• Evaluates generalization performance

• Data leakage refers to information from a test or 
validation set entering the model fitting 
procedure

• If f(𝒙) was developed with any knowledge 
from test set, the evaluation is 
optimistic/corrupted
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Examples of data leakage

• You plotted/inspected all your data before 
model building/fitting

• You scaled your features before you did the 
data split

• You produced a “Table 1” prior to model building

• You did PCA/umap/etc for dimensionality 
reduction or manifold learning using all data

• You collected some data, worked with it, 
collected more and re-split randomly

• Your DNA variant impacts same codon but you 
split by DNA base position
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Lesson: Take ML study design seriously

• Very first step of ML project is designing your 
train, validation, test splits up front

• Stratified split your test set off and zip the data

• Only unzip when FINAL model selected and 
tuned

• You get 1 shot only. Cannot go back and 
tweak/tune hyperparams, try another model, 
etc

• Using cross-validation in non-test set data costs 
computations but can be very effective for 
model selection and hyper parameter tuning
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Model training and evaluation require 
objectives

• ML does not know what you want, only the loss 
function you provide it to minimize

• The training loss function is not the only metric 
you should look at

• Think of ML as a cursed monkey paw that 
grants wishes in easiest and often worst way 
possible

• “I wish to be richest person on earth”

• ML: “Done. I have killed all other people”

• Objective function misalignment is the core of 
sci-fi AI gone wrong, but is very real problem
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Lesson: Beware of misalignment

• Made up example: train a model for maximal accuracy 
in Sickle Cell Disease

• Take last 50k patients seen in Midwest clinic and train 
model with some lab measures

• Model gets 99.9% accuracy!

• Always says no SCD because only 50 patients had 
illness and labs mostly imputed/uninformative

• Add extensive EHR data, use AUROC and recall to 
evaluate to ensure catching of cases

• Get 0.97 AUROC, .96 recall with logistic regression 

28

Not Black or African American Black or African American

No SCD 49,000 1,000

Has SCD 2 48
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Label/feature leakage is prominent form of 
misalignment

• Pathology slides labeled pathogenic with high 
accuracy, precision, recall, AUROC

• ML learned that pathologist put arrows 
pointing to malignant features and just looks 
for arrows

• Radiology DICOM (images and 
metadata/demographics) and it diagnoses 
case/control accurately

• Metadata contains information related to 
case versus control and was not stripped 
from dataset 

• CNN knows race from chest xray…last slide 
revisited
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Lesson: Do an error analysis

• Generate a confusion matrix

• Randomly examine ~dozens of cases from 
each quadrant TP, FP, FN, TP

• Assume the algorithm is a cheater, and try to 
find out how it cheated

• Use local explanation and/or counterfactual 
algorithms to try to understand why each case 
landed in their quadrant of the confusion matrix

30

Truth\Prediction Class 0 Class1

Class 0 # TN # FP

Class 1 # FN # TP
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Causality is hard

• Most ML systems will be doing associational 
predictions and not causal ones

• This can lead to cheating as discussed before 
(camels are on sand, cows on grass)

• This can lead to poor decision making based on 
model outputs

• COVID-19 mortality model has NPV 99.8% 
and PPV 70%, how to use?

• NPV is high, triage and send them home!

• This is causal inference assertion. NPV that 
high only when getting full clinical support.
Not same as if removing support
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Lesson: use causal judgements with care

• Increasing literature around causal ML 
algorithms

• All observational causal inference is based 
on assumptions that may not hold

• Where possible use ML models (even “causal” 
ones) in way that would be safe under 
associational interpretations

• In COVID-19 model, consider alert system 
that only adds oversight/care and does not 
remove it

32
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Levels of difficulty/data requirements 
increase as outputs become complex

• Roughly, in increasing orders of “difficulty”:

• Binary classification

• Multiple ordinal classes (think: low, medium, 
high)

• Multiple categorical classes (think: lung, liver, 
spleen)

• Univariate regression (think: A1c levels)

• Multivariate regression (think: transcriptome 
expression levels)

• Univariate functional/density estimation

• Multivariate functional/density estimation

33
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Taking a step back and see big picture

• Easy to get caught up in building a great ML 
tool, but think about how it fits into process

• Example: “We built sophisticated regression to 
determine amount of contamination in sample”

• How will lab use? Probably only a few 
choices such as: pass sample, or fail sample 
and re-analyze. 

• Would binary classification make more 
sense?

• Will it be automated or human-in-the-loop?

• What are practical costs/benefits of deciding 
to pass versus fail? How to tune algorithm?
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Decision theoretic framework

• Choice among actions 𝑎 ∈ 𝒜 from an action 
space, e.g.:

• 𝒜 = {“re-sequence”, “proceed with current 
data”}

• 𝒜 = {“give chemo”, “do surgery/radiation”, 
“wait and see”}

• (Unknown) state of nature: 𝜃 ∈ Θ

• Θ = {“sample contaminated”, “sample 
uncontaminated”}

• Θ = {“aggressive tumor”, “benign tumor”}

• Loss/utility function- 𝑙 𝑎, 𝜃 ≥ 0
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Decision Theory, Continued

• Decision procedure/rule from features to 
actions: f 𝒙 ∈ 𝒜

• Risk function 𝑅 𝜃, f = 𝐸𝜃 𝑙(𝜃, f 𝒙 )

• Good rules f(⋅) will minimize the risk function

• Need to quantify your loss table (hard!), and 
combine with confusion matrix (easy!) to assess 
operating points/decision rules:

36

Loss Table.   a = cols

𝜃 = rows

Use current data Re-sequence samples

No contamination 0 $ to resequence + $-

value of delayed results

Contamination $-value of potential 

medical error from 

contamination

$ to resequence + $-

value of delayed results
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Lesson: use decision theoretic thinking

• Often you will not be able to “pin down” a loss

• Still a valuable exercise to get stakeholders 
thinking about overall process

• Thinking about an “action space” can help 
frame ML task (e.g., regression vs 
classification)

• Loss/cost differential of FP versus FN

• Often highly imbalanced in medicine, need to 
consider because operating point on ROC or 
precision/recall curves usually will not be at 
FP=FN

• If human-in-loop, action can be “flag for manual 
review”…may not have automated positive 
actions

37



©2018 MFMER  |  slide-38

Lesson: Use Model Calibration or Fairness 
Modifications to Complex Models

• When a complex model predicts class 
probabilities they are often uncalibrated

• The probability is not accurate except in 
selecting class with highest probability

• Often probabilities will all be very near 0 or 1, 
making models appear “over confident”

• If used in human-in-loop decision support 
context, important to calibrate a model after 
training it

• “Fairness measures” are at odds with a well-
calibrated model so one may need to choose 
between them [Pleiss et al 2017]
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Production data may look different from 
training (and testing!) data

• “Out of distribution” refers to systematic changes to 𝑝(𝒙)
or 𝑝(𝑦|𝒙) in the real setting 

• 𝑝(𝒙) would change if demographics at deployed 
hospital different than hospital model trained at

• 𝑝(𝑦|𝒙) could change if, e.g., a new variant made COVID 
more lethal, perhaps in specific cohort, as compared to 
time of training data

• Out of distribution detection might label individual 𝒙 as 
outliers from training data, which could warn about 
model uncertainty

• Be especially careful with synthetic/augmented data
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Lesson: Quantify Uncertainty and Monitor 
Models Deployed

• If you train a neural network with dropout for 
regularization (a good idea!) you should use 
“Monte Carlo Dropout”

• Easy to implement (~1 line of code), 
increased accuracy, built in uncertainty 
estimates

• Otherwise consider more sophisticated 
Bayesian method or other tools that can let you 
know when they are unsure

• Monitor live models for “drift” (e.g., increased 
calling of positive class compared to train set)
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Review and Bringing It All Together

• Garbage in/Garbage Out

• Use Prior Knowledge

• Curse of Dimensionality

• Data Leakage

• Interpretability and Complex Decision Boundaries

• Objective Function Misalignment, Class Imbalance

• Association versus Causation

• Use decision-theoretic thinking

• Fairness and Calibration

• Out of Distribution Predictions
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Questions?
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