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Overview
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◦ What is a genome assembly?

◦ Sequencing technologies (2022)

◦ General steps in a genome assembly

◦ Planning an assembly project

◦ Assembly assessment

◦ Annotation



Ideal World!
I wouldn’t need to give this talk!
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AGTCTAGGATTCGCTACAGAT

TCAGGCTCTGAAGCTAGATCG

CTATGCTATGATCTAGATCTC

GAGATTCGTATAAGTCTAGGA

TTCGCTATAGATTCAGGCTCT

GATATAT

Human DNA

Sample

iSequencer™

46 complete, 

haplotype-

resolved, 

chromosome 

sequences

T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Ideal World!
But we may not be too far from 
this!
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Time, May 2022

Science, 
March 2022



(a)DNA is collected from the biological sample, fragmented, and 
sequenced. 

(b) Output from the sequencer consists of many millions/billions of 
(possibly short) unordered DNA fragments from random positions in 
the genome. 

(c) Fragments are compared with each other in some way to discover 
how they overlap. 

(d)The overlap relationships are captured in a large assembly graph

(e)The graph is refined to correct errors and simplify

(f) Finally, additional information such as mates, markers and other long-
range information can be used to order and orient the initial assembly 
(contigs) into large scaffolds

Schatz et al. Genome Biology 2012 13:243
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http://genomebiology.com/2012/13/4/243/figure/F1


Let’s Do a Genome Assembly!
◦ Sequence a sample, and have the computer do the rest?

◦ How do you find overlaps between sequences (when you have millions to billions of 
them)?

◦ You compare them all (overlapping pieces)

◦ You find shorter perfectly overlapping segments

◦ Faster but has a lot of assumptions!!!

◦ How do you store all this information? 

◦ How long does it take?
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Resource needs

• Technology dependent!

• Memory + CPU

• Short reads (billions of 
reads) 
• Sequencing costs - $$ 
• Compute costs - $$$$$$
• Results – fragmented, 

requires significant ‘cleanup’

• Long error-prone reads
• Sequencing costs - $$$$ 
• Compute costs - $$$$$ 
• Results – better quality, but 

can’t easily phase

• Long accurate reads 
• Sequencing costs - $$$$$$
• Compute costs - $$$
• Results – (partly) phased 

diploid assembly***
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*** - doesn’t help much if you have higher 
ploidy! (though this will likely change)



Results
◦ You spent your entire grant on getting sequence data and buy a monster multi-

core high-memory server 

◦ You assemble your genome with your favorite genome assembly tool

◦ You waited a week to a month and you now have results!

◦ Wait, why do I have a million scaffolds? And why is my server on fire?!?

Biology
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Current Sequencing Technologies
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Illumina
Millions to billions of short but highly accurate reads (>99.9%)

Can be paired-end (sequence ends of fragments)

Advantages

◦ Highly accurate (~99.9%)

◦ Relatively even coverage of the genome

◦ Well-vetted technology

◦ Most cost-effective, as low as $10 per billion bases

◦ (Generally) robust to sample issues

Disadvantages

◦ Requires high depth for many applications (50x + for assembly)

◦ Sequence length (100-150nt reads) problematic for repeats

◦ Maximum fragment length (<800bp) is an issue
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data



Illumina
https://www.atdbio.com/content/58/N
ext-generation-sequencing
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‘Long reads’

Pacific 
Biosciences 

(PacBio)

Oxford 
Nanopore 

(ONT)
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MinION



Oxford Nanopore
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Nanopore Readlengths 

Max: 146,992bp  
8x over 20kb 

41x over 10kbp 

Spike-in 

Mean: 5473bp  

noise 

 Oxford Nanopore Sequencing at CSHL 
30 runs, 267k reads, 122x total coverage 

Between 11 and 73k reads per run!  
Mean flow cell: 50 Mbp in 2 days 

Max flow cell: 446Mbp in 2 days 
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2016-2017Oxford Nanopore



Total bases: 
5,014,576,373 (5Gb) 
Number of reads: 
150,604
N50: 63,747
Mean: 33,296.44
Accuracy: 80-85%

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/

Whale watching: E. coli

N. Loman, ASM Microbe 2017

2017

Oxford Nanopore



E. coli: genome assembly in 8 reads

Read Length Ref start Ref end Time (m)

1 876991 4398844 634183 32.48

2 696402 470003 1166405 25.79

3 799047 1137438 1936485 29.59

4 642071 1759431 2401502 23.78

5 826662 2106227 2932889 30.61

6 883962 2699626 3583588 32.73

7 825191 3285196 4110387 30.56

8 463341 3995967 4459308 17.16

miniasm

N50 4Mb
Time: 1.5s (1 CPU)

1x coverage!

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/N. Loman, ASM Microbe 2017

2017Oxford Nanopore



2022Oxford Nanopore

Note that accuracy is based on comparion to human data!



Pacific Biosciences
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https://www.sciencedirect.com/science/article/pii/S1672022915001345?via%3Dihub



PacBio 
Continuous Long 
Read Sequencing
(aka PacBio CLR)
Optimized for length

25-50kb long reads

90% accuracy

Yields of ~125Gb+ per SMRT cell

Need ~50-90x coverage

Needs error correction, polishing

1-2 SMRT cells per human sample
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PacBio Circular 
Consensus 
Sequencing 
(aka PacBio HiFi)
Optimized for accuracy

10-15kb long reads

99% accuracy

Yields of ~25Gb per SMRT cell

Need ~25-50x coverage

No error correction/polishing required

~2-3 SMRT cells per human sample
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Illumina Infinity
Announced early 2022: ”… we are 
developing a novel, high performance 
long read assay, code named 'Infinity' 
that will accelerate access to the 
remaining ~5% of genic regions that 
are challenging to map”

◦ Contiguous reads up to 10 kb

◦ ~10x the throughput compared to 
traditional long read technologies

◦ 90% less DNA input compared to 
current Long Read methods

◦ Fully automatable workflow

Early access 2H of 2022

Very little known about this one 
so far
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Illumina Infinity announcement

https://www.illumina.com/science/genomics-research/articles/infinity-high-performance-long-read-assay.html


‘Long Reads’
Advantages

◦ Reads can be very long (1kb – 100kb)

◦ Relatively even coverage of the genome

◦ (PacBio HiFi) Highly accurate (99%)

◦ (Oxford) real-time sequencing

◦ (Oxford) portable

Disadvantages

◦ Expensive compared to Illumina short reads

◦ Need very high quality, high MW DNA samples

◦ Least expensive options are error-prone

◦ Depending on technology, can have systematic errors (homopolymer issues), but getting better
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Basic Steps for Genome Assembly
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Steps

1. Basic DNA sequence cleanup and evaluation (pre-assembly)

2. Contig building

3. Scaffolding 

4. Post-assembly processing and analyses
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Basic cleanup and evaluation

◦ Is the DNA sequence high quality?  

◦ Does it need to be trimmed?

◦ Evaluate libraries for read ‘coverage’

◦ Any additional sequence preparation steps

26



DNA Quality (FASTQC)
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Good!
Bad, 
need to
Trim heavily

Illumina Data

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Adapters

28https://www.bioinformatics.babraham.ac.uk/projects/fastqc/



Other pre-assembly steps
Depending on the assembler and technology you use, you may want to:

◦ Join paired-end reads

◦ Assess reads for contaminants

◦ Error correction of reads (e.g. fix sequencing errors)
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Starting the assembly
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Contig building
Greedy assembly

Seed and extend

Overlap graph

de Bruijn graphs

String graphs

..etc etc

… all essentially doing similar things, 

but taking different ‘shortcuts’ based on

needs 
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Contigs

Contiguous, unambiguous 
stretches of assembled DNA 
sequence

Contigs ends correspond to

◦ Real ends (for linear DNA 
molecules)

◦ Dead ends (missing 
sequence)

◦ Decision points (forks in the 
road)

34





Graph
Review: A structure where objects are related to one another somehow

Nodes/Vertices = objects (sequence)

Edges = relationship (overlap)

36

Compeau et al, Nature Biotech, 29(11), 2011; https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

Simple?
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http://armbrustlab.ocean.washington.edu/seastar

Erm…



In essence…
For each unconnected graph:

◦ Find a path which visits each node 
once

◦ This is referred to as a 
Hamiltonian path/cycle

◦ Form consensus sequences from 
paths

◦ use all the overlap alignments 

◦ each of these collapsed paths is 
a contig

39



Overlap Layout 
Consensus
Assembly
Used for longer read data

Sanger 

Newer variants for PacBio and Oxford 
Nanopore

40

By Estevezj - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=23264166
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For each unconnected 
graph, at least one per 
replicon in original 
sample

Find a path which 
visits each node once

Form consensus 
Sequences from 
paths

Contig



OLC assembly steps
Calculate overlays
◦ Can use BLAST-like methods, but finding common strings (k-mers) more 

efficient

Assemble layout graph, try to simplify graph and remove nodes (reads) – find 
Hamiltonian path

Generate consensus from the alignments between reads (overlays)



Some OLC-based assemblers
Canu – is a fork of the Celera Assembler designed for high-noise single-molecule 
sequencing (PacBio, Oxford Nanopore)

HiCanu – PacBio HiFi assembler

Newbler, a.k.a. GS de novo Assembler - designed for 454 sequences, but works 
with Sanger reads

Hifiasm – a hybrid diploid assembler



De Bruijn
graph 
assemblers

Developed to deal with high-
throughput highly accurate 
short-read data

Uses shotgun data (generally 
paired-end fragments of 
300-500nt) 
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Shredded Book Reconstruction 

• Dickens accidentally shreds the first printing of A Tale of Two Cities 

– Text printed on 5 long spools 

• How can he reconstruct the text? 

– 5 copies x 138, 656 words / 5 words per fragment = 138k fragments 

– The short fragments from every copy are mixed together 

– Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

M. Schatz, Feb 2015 Course, JHU 45



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 

reconstruction ambiguous 

• It was the best of times, it was the [worst/age] 

 

Model the assembly problem as a graph problem 

46M. Schatz, Feb 2015 Course, JHU



de Bruijn Graph Construction 

• Dk = (V,E) 
• V = All length-k subfragments (k < l) 

• E = Directed edges between consecutive subfragments 
• Nodes overlap by k-1 words 

• Locally constructed graph reveals the global sequence structure 
• Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 

Pevzner, Tang, Waterman, 2001 

M. Schatz, Feb 2015 Course, JHU 47



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 

the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 

try to simplify the graph as 

much as possible 

M. Schatz, Feb 2015 Course, JHU 48



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 

the age of wisdom, it was the After graph construction, 

try to simplify the graph as 

much as possible 

49M. Schatz, Feb 2015 Course, JHU



The full tale 
… it was the best of times it was the worst of times … 

… it was the age of wisdom it was the age of foolishness … 

… it was the epoch of belief it was the epoch of incredulity … 

… it was the season of light it was the season of darkness … 

… it was the spring of hope it was the winder of despair … 

it was the winter of despair 

worst 

best 

of times 

epoch of 

belief 

incredulity 

spring of hope 

foolishness 

wisdom 

light 

darkness 

age of 

season of 

50M. Schatz, Feb 2015 Course, JHU



De Bruijn graphs - concept

M. Schatz, Feb 2015 Course, JHU



Scaffolding
◦ Now, you have a huge pile of contigs but you want to make them larger.   How?

◦ Add context!

◦ Link together contigs using other genomic information

◦ Infer contigs position on the genome relative to one another

52



PacBio/ONT long-reads

10-100 kb+

Linking Contigs 
via DNA Seq

Illumina sequencing

Paired-end reads

Mate pair reads
>5kb fragment

<500bp fragment

Linked reads

>50kb fragments

HiC (Chromosome Conformation Capture)

Wikipedia

https://en.wikipedia.org/wiki/Chromosome_conformation_capture


Contigs to scaffolds
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Contigs

Paired-end read

Scaffold Gap Gap

Mate-pair read

T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Long reads

55T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


HiC
Chromosome Conformation 
Technology
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https://dovetailgenomics.com/omni-c/

Wikipedia

https://en.wikipedia.org/wiki/Chromosome_conformation_capture


Optical 
Mapping
Using high resolution single-molecule 
restriction mapping combined with 
fluorescent dyes and fluorescence 
microscopy to produce a genomic map
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Starting a new assembly project
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Planning a genome sequencing project?
BUDGET!!!
◦ Technological costs 
◦ Computational costs
◦ Person costs (time)!

Biology!
◦ Size: how large and/or complex is my genome?
◦ Ploidy: number of sets of chromosomes of the genome?
◦ Multinucleated: can cells have more than one nucleus?
◦ Repetitive: How much of the genome is repetitive? Repeat size distribution?
◦ Heterozygosity: Is my genome highly heterozygous? Inbred (homozygous)?
◦ Public data: Is a good quality genome of a related species available?
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How large is my 
genome?
The size and complexity of the genome 
can be estimated from the ploidy of the 
organism and the DNA content per cell

This will affect:

◦ How many reads will be required to 
attain sufficient coverage (typically 
10x to 100x, depending on read 
length)

◦ What sequencing technology to use 
(short vs. long reads)

◦ What computational resources will 
be needed (generally amount of 
memory needed and length of time 
resources will be used)
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Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/



Genome size/complexity
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By Abizar at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19537795



Heterozygosity
Heterozygous – Locus-specific; diploid 
organism has two different alleles at 
the same locus. 

Heterozygosity is a metric used to 
denote the probability an individual 
will be heterozygous at a given allele.  

Higher heterozygosity == more 
diverse == harder to assemble

Unfortunately, assemblies are 
represented (for now) as haploid.  So 
this is a major problem!
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Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/



Heterozygosity
• Short reads - initial assembly has 

mix of homozygous and 
heterozygous regions

64T. Seemann

Unphased haploid assembly
Haplotypes are separate contigs (haplotigs)

Phased diploid assembly

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Ploidy
Number of sets of chromosomes in a 
cell (N)

◦ Bacteria – 1N

◦ Vertebrates – 2N (human, mouse, 
rat)

◦ Amphibians – 2N to 12N

◦ Plants – 2N to ???  (wheat is 6N)

65

Root knot nematode: http://qb.cshl.edu/genomescope/genomescope2.0/



Repetitive 
sequences
Most common source of assembly 
errors

If sequencing technology produces 
reads > repeat size, impact is much 
smaller

Most common solution: generate 
reads or mate pairs with spacing > 
largest known repeat
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Root knot nematode: http://qb.cshl.edu/genomescope/genomescope2.0/



67T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


Assembling repeats

68T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


69T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf
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Long reads

71T. Seemann

https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf


72
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Genome(s) from related species
Preferably of good quality, with large reliable scaffolds

Help verifying the completeness of the assembly

Can themselves be improved in some cases

Help guiding the assembly of the target species
◦ But to be used with caution – can cause errors when genome architecture is different!  

◦ Large-scale genomic rearrangement in particular is a problem

74



Typical sequencing strategies
Small genomes (bacteria, fungal)

◦ If you can can get HMW DNA!

◦ PacBio HiFi

◦ Oxford Nanopore sequences at 40-50x coverage, 'polish’ with hybrid correction (using Illumina data) and assembly 
using Unicycler, Canu, Flye

◦ This may be changing with newer flow cells (R10.4.1 + ’kit14’, as of May 2022)

◦ 2 x 300bp overlapping paired-end reads from Illumina MiSeq works okay but will get fragments

Larger genomes
◦ If you can afford it and can get HMW DNA

◦ PacBio HiFi

◦ HiC for scaffolding
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T2T strategy

But we are not too far from this!

• Human assemblies

• HMW DNA preps

• 50x PacBio HiFi reads or higher

• 15-30x Oxford ultralong reads 
(>100kb)

• This is also in flux!

• $$$$$$$$$$

77
Time, May 2022

Science, 
March 2022



Assembly strategies and algorithms
For long reads (>500 nt), Overlap/Layout/Consensus (OLC) algorithms work best.  

◦ Examples: hifiasm (PacBio HiFi only), Canu, Redbean, Flye, Shasta

◦ Hifiasm is generally recommended for PacBio HiFi data

For short reads, De Bruijn graph-based assemblers are most widely used
◦ Examples: MEGAHIT, SPAdes

Key points:
◦ There is no simple solution, best to try different assemblers and strategies

◦ Use simple metrics to gauge quality of assembly

◦ The field is rapidly evolving, like the sequencing technology

NEXT YEAR THIS PRESENTATION WILL CHANGE AGAIN!

78



Assessing your assembly

79



How good is my assembly?
How much total sequence is in the assembly relative to estimated genome size?

How many pieces, and what is their size distribution?

Are the contigs assembled correctly?

Are the scaffolds connected in the right order / orientation?

How were the repeats handled?

Are all the genes I expected in the assembly?

80



N50: the most common measure of 
assembly quality

81

N50 = length of the shortest 
contig in a set making up 
50% of the total assembly 
length (Larger is better)

NG50 = length of the 
shortest contig in a set 
making up 50% of the 
estimated genome size

NG50 is generally better



N50 concerns
Optimizing for N50

◦ Encourages mis-assemblies!

◦ Encourages ‘gaming’ the stats

An aggressive assembler may over-join:

◦ 1,1,3,5,8,12,20 (previous)

◦ 1,1,3,5,20,20 (now)

◦ 1+1+3+5+20+20 = 50 (unchanged)

N50 is the “halfway sum” (still 25)

◦ 1+1+3+5+20= 30 (≥ 25) so N50 is 20 (was 12)

You can also filter contigs below a certain (arbitrary) size, which lowers overall assembly size 
(and increases N50)

82



Comparative analysis
Compare against

◦ A close reference genome

◦ Results from another assembler

◦ Self-comparison

◦ Versions of the same assembly

Whole genome alignment

◦ MUMmer

◦ Lastz

Generates an alignment and a dot plot

83



Dot Plot
• How can we visualize whole genome alignments?

• With an alignment dot plot

– N x M matrix

• Let i = position in genome A

• Let j = position in genome B

• Fill cell (i,j) if Ai shows similarity to Bj

T

G

C

A

A C C T

– A perfect alignment between A and B would completely fill  

the positive diagonal

From M. Schatz and A. Phillipy : Alignment and Assembly Lecture 



A

B

A

B

Translocation Inversion Insertion

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

From M. Schatz and A. Phillipy : Alignment and Assembly Lecture 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf
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BUSCO: conserved gene sets

88

BUSCO: From Evgeny Zdobnov’s group,
University of Geneva

Coverage is indicative of quality
and completeness of assembly



QUAST

QUality ASsessment Tool
◦ Small (bacterial, fungal) and large 

(eukaryotic) genomes
◦ Metagenomes 
◦ Icarus for contig alignment 

visualization

Can compare multiple assemblies 
against one another

Compare against a known (or close) 
reference

Optional: Predict genes or include 
annotations (checks for odd issues 
like frameshifts)

Generates a summary HTML report

89



Even the best genomes are not perfect

90



Genome graphs

91



Genome graphs
With the release of the latest human genome reference, there is more pressure to represent more 
data with a genome.

Current representations are mainly haploid (one copy)

Newer representations are genome graphs, where variant information is retained (e.g. 
heterozygosity)

Tools are still catching up, but many new assemblers (e.g. hifiasm) generate a diploid assembly now

92Novak et al, bioRxiv: https://doi.org/10.1101/101378 10x Genomics



Genome graphs

One interesting application of 
graphs: trio assembly

Short- and long-read 
sequencing

Advantage:

Better assembly

Phased variants

Structural variants!

93Koren et al, Nature Biotech. 2018, Oct 22

https://pubmed.ncbi.nlm.nih.gov/30346939/


Genome Annotation

94



Methods for genome annotation
Ab initio
◦ i.e. based on sequence alone
◦ INFERNAL/rFAM (RNA genes), miRBase (miRNAs), RepeatMasker (repeat families), 

many gene prediction algorithms (e.g. AUGUSTUS, Glimmer, GeneMark, …)

Evidence-based
◦ Transcriptome data for the target organism (the more the better)
◦ Proteins of interest
◦ Align trx/protein sequences to assembly, generate gene models

Combined approaches
◦ Most common



General steps for biological annotation
1. Predict gene models using ab initio-based tools

◦ May require considerable tuning and a bootstrapping step

2. Using closely-related protein/transcripts, BLAST against assembly to find locations

3. Find potential splice junctions of BLAST hits

4. Combine all evidence and make consensus gene (and possibly transcript/isoform) 
predictions, with annotation metrics for confidence of matches

◦ Can include UTR regions if RNA-Seq is included

5. Assess completeness of annotation (run BUSCO, but on proteins/transcripts)

6. Run InterProScan of predicted proteins against databases of protein domains (Pfam, Prosite, 
HAMAP, PANTHER, …)



MAKER, integration framework for 
genome annotation

MAKER runs many software tools on 
the assembled genome and collates 
the outputs

See http://gmod.org/wiki/MAKER

http://gmod.org/wiki/MAKER


Example Pipelines
Bacterial
◦ Prokka (bacterial/archaeal/viral)
◦ NCBI Prokaryotic Genome Annotation Pipeline (PGAP)
◦ Joint Genome Institute – IMG/ER (Integrated Microbial Genome Expert Review)

◦ Online only

Eukaryotic
◦ NCBI – RefSeq pipeline

◦ Have to submit to NCBI (and make public) to use

◦ Requires RNA-Seq

◦ MAKER
◦ Braker2
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◦ Thank you!
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