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Overview

o What is a genome assembly?

o Sequencing technologies (2022)

o General steps in a genome assembly
o Planning an assembly project

> Assembly assessment

o Annotation



ldeal World!

| wouldn’t need to give this talk!

Human DNA

»

Sample

AGTCTAGGATTCGCTACAGAT
TCAGGCTCTGAAGCTAGATCG
CTATGCTATGATCTAGATCTC
GAGATTCGTATAAGTCTAGGA
TTCGCTATAGATTCAGGCTCT
GATATAT

T. Seemann

ISequencer™

46 complete,
haplotype-
resolved,
chromosome
sequences


https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf
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DNA is collected from the biological sample, fragmented, and
sequenced.

Output from the sequencer consists of many millions/billions of
(possibly short) unordered DNA fragments from random positions in
the genome.

_ _ . CGCATACCGT...
Fragments are compared with each other in some way to discover

how they overlap.

(d)

The overlap relationships are captured in a large assembly graph ST ST SIS SHLI NS S35 S5 0L P S5 SN S5 S b

The graph is refined to correct errors and simplify

Finally, additional information such as mates, markers and other long-
range information can be used to order and orient the initial assembly
(contigs) into large scaffolds

Schatz et al. Genome Biology 2012 13:243



http://genomebiology.com/2012/13/4/243/figure/F1

Let’s Do a Genome Assembly!

o Sequence a sample, and have the computer do the rest?

> How do you find overlaps between sequences (when you have millions to billions of
them)?

o You compare them all (overlapping pieces)

o You find shorter perfectly overlapping segments
o Faster but has a lot of assumptions!!!

> How do you store all this information?

> How long does it take?



Resource needs

Technology dependent!
Memory + CPU

Short reads (billions of
reads)

Sequencing costs - $$
Compute costs - $$555$

l‘.'.

BEHOLD, | GAN ASSEMBLE

ANYTHING <HITS ENTER>
requires significant ‘cleanup’ '

Long error-prone reads
Sequencing costs - S55$
Compute costs - $$55$

Results — better quality, but
can’t easily phase

Long accurate reads

Sequencing costs - $5555S
Compute costs - SSS

Results — (partly) phased
diploid assembly***

e
1

*** _ doesn’t help much if you have higher imgfiip.com | i
ploidy! (though this will likely change)




Results

> You spent your entire grant on getting sequence data and buy a monster multi-
core high-memory server

> You assemble your genome with your favorite genome assembly tool
> You waited a week to a month and you now have results!

o Wait, why do | have a million scaffolds? And why is my server on fire?!?

Biology
e
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Current Sequencing Technologies




IHlumina

Millions to billions of short but highly accurate reads (>99.9%)
Can be paired-end (sequence ends of fragments)

Advantages
Highly accurate (~99.9%)
Relatively even coverage of the genome
Well-vetted technology
Most cost-effective, as low as $10 per billion bases
(Generally) robust to sample issues

Disadvantages
Requires high depth for many applications (50x + for assembly)
Sequence length (100-150nt reads) problematic for repeats
Maximum fragment length (<800bp) is an issue

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Cost per Raw Megabase of DNA Sequence

Cost per Human Genome




DNA fragments Primers

Illumina

https://www.atdbio.com/content/58/N DNA strands are attached
ext-generation-sequencing

Ends are attached to surface

to cell surface at one end by complimentary primers

Denaturation forms two Repetition forms clusters
separate DNA fragments of identical strands

Enzymes create double strands

12
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Long reads’

Pacific Oxford
Biosciences Nanopore
(PacBio)
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Oxford Nanopore
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Mean: 5473bp

/

Nanopore Readlengths

2016-2017

Oxford Nanopore Sequencing at CSHL
30 runs, 267k reads, 122x total coverage
Between 11 and 73k reads per run!

Mean flow cell: 50 Mbp in 2 days

Max flow cell: 446Mbp in 2 days

41x over 10kbp

8x over 20kb

Max: 146,992bp

N




Oxford Nanopore

Whale watching: E. coli 2017

400,000,000 - Total bases:
5,014,576,373 (5Gb)
Number of reads:

g coooooom 150,604

S N50: 63,747

é 200,000,000 - Mean: 33,296.44

3 Accuracy: 80-85%
100,000,000 -

0 300,000 600,000 900,000
Read length (template strand)

N. Loman, ASM Microbe 2017 http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/



Oxford Nanopore

2017

E. coli: genome assembly in 8 reads

1 to 4,641,652 (4.6 Mbp) H ‘

oo | Longth | safstart | nafand | o)

876991
696402
799047
642071
826662
883962
825191
463341

0o N oo U A W N P

N. Loman, ASM Microbe 2017

4398844
470003

1137438
1759431
2106227
2699626
3285196
3995967

634183

1166405
1936485
2401502
2932889
3583588
4110387
4459308

1x coverage!

32.48
25.79
29.59
23.78
30.61
32.73
30.56
17.16

miniasm

N50 4Mb
Time: 1.5s (1 CPU)

http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/



Oxford Nanopore 2022
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https://www.sciencedirect.com/science/article/pii/$S1672022915001345?via%3Dihub

Pacific Biosciences




PacBio
Continuous Long
Read Sequencing

(aka PacBio CLR)

Optimized for length
25-50kb long reads

90% accuracy

Yields of ~125Gb+ per SMRT cell

Need ~50-90x coverage
Needs error correction, polishing

1-2 SMRT cells per human sample

Start with high-quality
double stranded DNA

Ligate SMRTbell
adapters and size select

Anneal primers and
bind DNA polymerase

Circularized DNA
is sequenced in a
single pass

The polymerase reads
are trimmed of adapters
to yield subread

During assembly,
consensus is called from
multiple molecules
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PacBio Circular
Consensus
Sequencing
(aka PacBio HiFi)

Optimized for accuracy
10-15kb long reads

99% accuracy

Yields of ~25Gb per SMRT cell

Need ~25-50x coverage

No error correction/polishing required

~2-3 SMRT cells per human sample

Start with high-quality
double stranded DNA

Ligate SMRTbell
adapters and size select

Anneal primers and
bind DNA polymerase

--------------
s,
s,

et PR PR PR PR PR PP PR EEE P TR
s,
s,

Circularized DNA
is sequenced in
repeated passes

The polymerase reads
are trimmed of adapters
to yield subreads

Consensus is called
from subreads
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HiFi READ
(>99% accuracy)
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Illumina Infinity

Announced early 2022: ”... we are
developing a novel, high performance
long read assay, code named 'Infinity’
that will accelerate access to the
remaining ~5% of genic regions that
are challenging to map”

Contiguous reads up to 10 kb

~10x the throughput compared to
traditional long read technologies

90% less DNA input compared to
current Long Read methods

Fully automatable workflow

Early access 2H of 2022

Very little known about this one
so far

lllumina

On-Market

—f - @GN

sim-8- - - - - - L I R A LRI I BN T X TR

lllumina Infinity announcement

22
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https://www.illumina.com/science/genomics-research/articles/infinity-high-performance-long-read-assay.html

‘Long Reads’

Advantages
o Reads can be very long (1kb — 100kb)

o Relatively even coverage of the genome
o (PacBio HiFi) Highly accurate (99%)

o (Oxford) real-time sequencing

o (Oxford) portable

Disadvantages
o Expensive compared to lllumina short reads

o Need very high quality, high MW DNA samples
o Least expensive options are error-prone
o Depending on technology, can have systematic errors (homopolymer issues), but getting better



Basic Steps for Genome Assembly




Steps

1. Basic DNA sequence cleanup and evaluation (pre-assembly)
2. Contig building
3. Scaffolding

4. Post-assembly processing and analyses



Basic cleanup and evaluation

o |s the DNA sequence high quality?
c Does it need to be trimmed?
o Evaluate libraries for read ‘coverage’

o Any additional sequence preparation steps



DNA Quality (FASTQC

Illumina Data

Quality scores across all bases {llumina 1.5 encoding}

Quality scores across all bases (llumina 1.5 encoding)
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Adapters

@Overrepresented sequences

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT 8122 Illumina Paired End PCR Primer 2 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAG 5086 5.086 Illumina Paired End PCR Primer 2 (97% over 36bp)
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC 1085 1.085 Illumina Single End PCR Primer 1 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGAAG 508 0.508 Illumina Paired End PCR Primer 2 (97% over 36bp)
AATTATACGGCGACCACCGAGATCTACACTCTTTCCCTAC 242 0.242 Illumina Single End PCR Primer 1 (97% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAAGATCGGAA 235 0.23500000000000001 Illumina Paired End Adapter 2 (96% over 31bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCGAGATCGGAAGA 228 0.22799999999999998 Illumina Paired End Adapter 2 (96% over 28bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACG 205 0.20500000000000002 Illumina Paired End PCR Primer 2 (97% over 36bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGATCGGAA 183 0.183 Illumina Paired End Adapter 2 (100% over 32bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGTCGGAAG 183 0.183 Illumina Paired End Adapter 2 (100% over 32bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAACT 164 0.164 Illumina Paired End PCR Primer 2 (97% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGTCT 129 0.129 Illumina Paired End PCR Primer 2 (97% over 40bp)
AATTATACTTCTACCACCTATATCTACACTCTTTCCCTAC 123 0.123 No Hit

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACT 122 0.122 Illumina Paired End PCR Primer 2 (97% over 36bp)

CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGC 113 0.11299999999999999 Illumina Paired End PCR Primer 2 (96% over 25bp)




Other pre-assembly steps

Depending on the assembler and technology you use, you may want to:

GenomeScope Profile

(e} JOin paired_end reads len:559,804,355bp uniq:62% het:1.95% kcov:42.7 err:0.731% dup:1.96
o Assess reads for contaminants 3 -- eaks
o Error correction of reads (e.g. fix sequencing errors) £ s |

% _ “ ’l""l"lllm,....... T inm

° 200

Coverage



Starting the assembly




Contig building
Greedy assembly E, @Q @

Seed and extend

Overlap graph
de Bruijn graphs
String graphs
..etc etc

... all essentially doing similar things,
but taking different ‘shortcuts’ based on

needs



Contigs

Contiguous, unambiguous
stretches of assembled DNA

sequence
Contig 1
Contigs ends correspond to Ce—
o Real ends (for linear DNA Na——
molecules) '
o Dead ends (missing =
seguence) Contig 2 Contig 3
o Decision points (forks in the
road)



Assembly recipe

Find all overlaps between reads
— hmm, sounds like a lot of work...

Build a graph

— a picture of read connections

« Simplify the graph

— sequencing errors will mess it up a lot

» Traverse the graph
— trace a sensible path to produce a consensus




Graph

Review: A structure where objects are related to one another somehow

Nodes/Vertices = objects (sequence)

Edges = relationship (overlap)

a v b v
N A » CGTGCAA ATGI(IECIZGI'II'
S GGCGTGC
[ |
........ > ATGGCGT CGTCISCIAI/IA
Q Short-read TGCAATG
sequencing 5 LILd
< 5 ®) CAATGGC

CAATGGC RN

ATGGCGT
Genome: ATGGCGTGCAATGGCGT

Compeau et al, Nature Biotech, 29(11), 2011; https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)



Simple?

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size
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Erm...

http://armbrustlab.ocean.washington.edu/seastar




INn essence...

For each unconnected graph:

Find a path which visits each node
once

This is referred to as a
Hamiltonian path/cycle

Form consensus sequences from
paths

use all the overlap alignments

each of these collapsed paths is
a contig




Overlap Layout
Consensus
Assembly

Used for longer read data

Sanger

Newer variants for PacBio and Oxford
Nanopore

(1) Reaction mixture

* Primer and DMA template - DNA polymerase

= ddNTPs with flourochromes - dNTPs (dATP, dCTP, dGTP, and dTTP)

9|IIIIIIIIIIJLIIIIIE.-

Tamplata

ddNTPs
diTTP -
dECTP
dEATP -
dECTP -

@ Primer elongation
and chaln termination

G pp———
&

[ o e e o e e e a5

{5 e e s i e e e

R 2 e
5|ll||||||l||||'|'3J

X O B o e e
=l o e LI i e e e e e e
2 S e e

Lazar

By Estevezj - Own work, CC BY-SA 3.0,

3 Caplllary gel electrophoresis
separation of DNA fragments

o
l Ecapuuryga

@) Laser detectlon of flourochromes
and computational sequence analysis

https://commons.wikimedia.org/w/index.php?curid=23264166 40



For each unconnected
graph, at least one per
replicon in original
sample

Find a path which
visits each node once

Form consensus
Sequences from
paths




OLC assembly steps

Calculate overlays
o Can use BLAST-like methods, but finding common strings (k-mers) more
efficient

Assemble layout graph, try to simplify graph and remove nodes (reads) — find
Hamiltonian path

Generate consensus from the alignments between reads (overlays)



Some OLC-based assemblers

Canu — is a fork of the Celera Assembler designed for high-noise single-molecule
sequencing (PacBio, Oxford Nanopore)

HiCanu — PacBio HiFi assembler

Newbler, a.k.a. GS de novo Assembler - designed for 454 sequences, but works
with Sanger reads

Hifiasm — a hybrid diploid assembler



De Bruijn
graph
assemblers

Developed to deal with high-
throughput highly accurate
short-read data

Uses shotgun data (generally
paired-end fragments of
300-500nt)

Figure 6B: Paired-End Sequencing

| T | | D) | ] |
Genomic DMNA

l Fragment (200-500 bp)

Z1=N

l Ligate Adaptors

SP2  AZ
I Generate Clusters

l Sequence First End

)
;_QEE

Regenerate Clusters and
Sequence Paired End

. A E‘

DNA to Data || Sample Prep
FEEE | ~7 days :

1 1 3fix2 bp roads
1 11 inc. sampla prop

-

A\ 3 hours
hands-on

Adapters containing attachment sequences (A1 & AZ) and seguencing
primer sites (SP1 & S5P2) are ligated onto DNA fragments (e.g., genomic
DMA). The resulting library of single molecules is attached to a flow cell.
Each end of every template is read sequentially.

44



Shredded Book Reconstruction

* Dickens accidentally shreds the first printing of A Tale of Two Cities

— Text printed on 5 long spools

It wa4 thevhesthef bgstinfeiniesyas whae woerstorsbbfitimesjtimas tlibe| hgeebinkiddomititvemshe dbe agfoofiftolsdwmess, |..

It wag flhevhesth

U

beftimficaniswasathe th¢ worst of times, it was the e aderdf ddadoimwits |thevagetbf fagt sifiesishness,

It wa4 ﬂhw%*sbﬁsds bEsimésjritewait wahdlveonstrof tifnasecit, 4|twas the age of wisdom, 1* wamatsh thegagef dbolidbeliskness, |...

It wa4 t thasbdst bEtinoésjntes, iawdbheveonsiref tiftames, it was the age of wivsdsdonit, iasath thegags #Méh@iésbness,

It | Wak thesbdst bﬁd;imésinueﬁ,\iﬂawaheﬂwmmtref gf times, it was the age qf ofiwdsdomst, tasahehegq afgfoolisboledsness, |...

* How can he reconstruct the text?
— 5 copies x 138,656 words / 5 words per fragment = |38k fragments
— The short fragments from every copy are mixed together

— Some fragments are identical




It was the best of

=] @reedy Reconstruction

best of times, it was

it was the age of

it was the age of It was the best of

it was the worst of was the best of times,

of times, it was the the best of times, it

of times, it was the best of times, it was

of wisdom, it was the of times, it was the
the age of wisdom, it of times, it was the

the best of times, it

the worst of times, it

times, it was the age

times, it was the worst The repeated sequence make the correct
was the age of wisdom, reconstruction ambiguous
was the age of foolishness, * It was the best of times, it was the [worst/age]

was the best of times,

was the worst of times,

wisdom, it was the age Model the assembly problem as a graph problem

worst of times, it was




de Bruijn Graph Construction

D, = (VEE)

* V =All length-k subfragments (k <)

* E = Directed edges between consecutive subfragments
* Nodes overlap by k-1 words

Original Fragment Directed Edge

| It was the best of | | It was the best |—>| was the best of

Locally constructed graph reveals the global sequence structure
* Overlaps between sequences implicitly computed

de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001




de Bruijn Graph Assembly

| It was the best |

Y
| was the best of |
™~
| the best of times, |
N it was the worst |
| best of times, it | ™SS

| was the worst of |

v ~ :
| the worst of times, |

| of times, it was |

™~

| times, it was the

™~

| worst of times, it l—

it was the age

the age of foolishness |—>

the age of wisdom, |

After graph construction,
try to simplify the graph as
much as possible

was the age of

| age of wisdom, it |

| of wisdom, it was |

S

| wisdom, it was the |




de Bruijn Graph Assembly

It was the best of times, it

| it was the worst of times, it

of times, it was the |

the age of foolishness l——)
it was the age of

After graph construction, the age of wisdom, it was the |
try to simplify the graph as
much as possible




The full tale

. it was the best of times it was the worst of times ...
. it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
. it was the season of light it was the season of darkness ...

... it was the spring of hope it was the winder of despair ...

foolishness

| I

it was the #| winter of despair |

v

L){ spring of hope

incredulity

season of

darkness




De Bruijn graphs - concept

® de Bruijn graph
® k-dimensional graph over four symbols {A, C, G, T}
® vertex: k-mer -- a string of k nucleotides

® edge: (k+1)-mer

=4 ACGT




Scaffolding

> Now, you have a huge pile of contigs but you want to make them larger. How?

o Add context!

o Link together contigs using other genomic information

o |Infer contigs position on the genome relative to one another




lllumina sequencing

Paired-end reads =~ =] <>000pfragment

>bkb fragment

Mate pair reads = === | ]
. - . >50kb fragments
Lmkmg COﬂtIgS Linked reads  EEHE-= e

via DNA Seq

HiC (Chromosome Conformation Capture)

crosslink digest crosslinked ligation reverse
chromatin chromatin / crosslinking
w0 cX
Ve 1 M

< ‘A‘.\F ! I H
S I i

6

Wikipedia

PacBio/ONT long-reads
10-100 kb+ |



https://en.wikipedia.org/wiki/Chromosome_conformation_capture

Contigs to scaffolds

Mate-pair read.. Paired-gnd read

®e
®e
.

Cont'i.gs
— — —
Scaffold Gap Gap


https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf

Long reads

Repeat copy 1 Repeat copy 2

long
reads



https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf

Chromosome Conformation
Technology

Omni-C™ |ibraries start
with endogenous chromatin.

Crosslinking (red lines) the
chromatin creates a stabilized
nucleosome (blue circles) scaffold.

Non-specific endonuclease digests
the cross-linked chromatin.

Proximity ligation with a biotin
(green dots) tagged bridge between
DNA ends (black lines) creates
chimeric molecules (ex.1and 2).

The crosslinks are reversed.

DNA is purified and enriched
for ligation-containting chimeric molecules.

Libraries sequenced as pair-end short reads.

56


https://en.wikipedia.org/wiki/Chromosome_conformation_capture

q —— 1T r I  §
@ g
1. Cells are . : 4. Each DNA molecule is stained with a
I\/l a p p I n g lysed to retrieve ZD.'\ISAngIelgenlomlc 3. Restriction fluorescent dye. An optical map of single-
genomic DNA oy enzymes are molecules are derived by measuring the

are placed onto a

added to cut the

fluorescent intensity.

Using high resolution single-molecule microfluidic

DNA molecules at
specific positions l

restriction mapping combined with device
fluorescent dyes and fluorescence
microscopy to produce a genomic map

[ I I T T I 11 I - T I

CCr——
Cer——
== C I T
—— [ [ T
T — g
I (e
[—

5. Overlapping of the multiple single-molecule maps gives us the consensus genomic optical map
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Starting a new assembly project




Planning a genome sequencing project?

BUDGET!!!

o Technological costs

o Computational costs
o Person costs (time)!

Biology!

o Size: how large and/or complex is my genome?

o Ploidy: number of sets of chromosomes of the genome?

o Multinucleated: can cells have more than one nucleus?

> Repetitive: How much of the genome is repetitive? Repeat size distribution?
o Heterozygosity: Is my genome highly heterozygous? Inbred (homozygous)?
o Public data: Is a good quality genome of a related species available?



GenomeScope Profile
len:559,804,355bp u |q 62% het:1.95% kcov:42.7 err:0.731% dup:1.96

r\' T T T T
? | | : '
. 2 : ! ! ——— observed
How large is m | | | imose
g y , | | unique sequence
(o] I I
o | | | —— errors
genomE? % | | i i — = kmer-peaks
i I : I
The size and complexity of the genome © | : : :
can be estimated from the ploidy of the > I i : : :
organism and the DNA content per cell S © : , : :
35 . ! : :
This will affect: 8 9 i ; : :
How many reads will be required to - o ‘ ! ; !
attain sufficient coverage (typically ~ : : : |
10x to 100x, depending on read : : \ |
length) % i | ; | |
What sequencing technology to use S : :
(short vs. long reads) |’ I“ | i |||| : :
: : o ! ! . |
What computational resources will =) : : ||"”|||||Ill|pn.. ......... T
be needed (generally amount of oy . ! . l
memory needed and length of time < ! ! '
resources will be used) 0 50 100 150 200

Coverage

Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/
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Genome size/complexity

Mycoplasma . in bp
Gram positive bacteria -
Gram negative bacteria .

Fungi / Moulds
Algae

Worms
Crustaceans _

Echinoderms

Insects _

Mollusks
Birds .

Bony fish

Cartilaginous fish

Reptiles

Amphibian - .
Flowering Plants [

10 107 108 10

-
L |
Mammals .
9 10 10 10 1

By Abizar at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19537795




GenomeSeepe Profile
len:559,804,355bp uniq:62% het:1.95% kcov:42.7 err:0.731% dup:1.96

r\' T T T T
o I I I |
+ - I I I
2 : ! ! ~—— observed
| ! ! = full model
© , | | unique sequence
. = | | | == errors
Heterozygosity 8 ; | [ - wmerpeats
| I I I
Heterozygous — Locus-specific; diploid 9 ; l l l
organism has two different alleles at 3 i ! i i i
the same locus. c © | . : |
3 I I I I
D' I 1
Heterozygosity is a metric used to Ij_'f S ! ! i i
denote the probability an individual o : : ; :
will be heterozygous at a given allele. & ; ; I I
Higher heterozygosity == more % i i i
diverse == harder to assemble N ‘ ‘ ! ! !
Unfortunately, assemblies are o ||’ |“ ; : ||||||"” i
represented (for now) as haploid. So T 4 | : |||||II|||1.... --------- T
this is a major problem! S i L = ' | ' |
0 50 100 150 200

Coverage

Oyster: http://qb.cshl.edu/genomescope/genomescope2.0/

63




Heterozygosity

Short reads - initial assembly has
mix of homozygous and
heterozygous regions

Unphased haploid assembly
Haplotypes are separate contigs (haplotigs)

Phased diploid assembly

diploid

short reads

I
I —— 4 pieces

long reads

2 haplotypes
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https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf

GenomeScope Profile

] observed
. full model
P I O I d y 8 errors

=) kmer-peaks
S ] ;
Number of sets of chromosomes in a =
cell (N) | i
Bacteria — 1N ‘Z" |
o 9 i
Vertebrates — 2N (human, mouse, 2 8 | |
rat) L 8 !
LL © ]
Amphibians — 2N to 12N i
Plants — 2N to ??? (wheat is 6N) !
o :
o | I
o |
o 1
N |
o I

| T T T | ' T
0 200 400 600 800 1000
Coverage

Root knot nematode: http://gb.cshl.edu/genomescope/genomescope2.0/
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GenomeScope Profile

len:89,522,919bp uniq:61.9%

aaa:93.9% aab: abcr0:935%
kcov:151 err:0.743% dup:4.09 k:p1 p:3

\,._/

observed
full model
errors
kmer-peaks

Repetitive
seguences

Most common source of assembly
errors

1000000
|

If sequencing technology produces

reads > repeat size, impact is much
smaller

Frequency
600000

Most common solution: generate -
reads or mate pairs with spacing >
largest known repeat

0 200000

0 200 400 600 800 1000

Coverage

Root knot nematode: http://gb.cshl.edu/genomescope/genomescope2.0/
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What is a repeat?

A segment of DNA
which occurs more than once
in the genome sequence

* Very common
— Transposons (self replicating genes)
— Satellites (repetitive adjacent patterns)
— Gene duplications (paralogs)



https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf

Assembling repeats

Repeat copy 1 Repeat copy 2

—_— = % — gy oy B e Ny B v f [ 4 contigs

Collapsed repeat consensus



https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf

Repeat mis-assembly
collapsed tandem 1 excision
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https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf




Long reads

Repeat copy 1 Repeat copy 2

long
reads



https://vicbioinformatics.com/documents/Assembling%20NGS%20data%20-%20Torsten%20Seemann%20-%20IMB%20-%203%20Jul%202012.pdf
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Genome(s) from related species

Preferably of good quality, with large reliable scaffolds

Help verifying the completeness of the assembly
Can themselves be improved in some cases

Help guiding the assembly of the target species
o But to be used with caution — can cause errors when genome architecture is different!

o Large-scale genomic rearrangement in particular is a problem




Typical sequencing strategies

Small genomes (bacteria, fungal)
° |f you can can get HMW DNA!
> PacBio HiFi

o Oxford Nanopore sequences at 40-50x coverage, 'polish’ with hybrid correction (using lllumina data) and assembly
using Unicycler, Canu, Flye

o This may be changing with newer flow cells (R10.4.1 + ’kit14’, as of May 2022)
o 2 x 300bp overlapping paired-end reads from Illumina MiSeq works okay but will get fragments

Larger genomes
o If you can afford it and can get HMW DNA
o PacBio HiFi
o HiC for scaffolding



HOME » SCIENCE » VOL. 376, NO. 6588 > THE COMPLETE SEQUENCE OF A HUMAN GENOME

SPECIAL ISSUE RESEARCH ARTICLE =~ HUMAN GENOMICS f ¥ in © & =

The complete sequence of a human genome

SERGEY MURK . SERGEY KOREN . ARAMNG RHIE , MIKKD RAUTIAINEN , ANDREY \ BIIKADIE CALLA MIKHEEMED, MITCHELL B VOLLGER ,HICOLAS ALTE

MOSE 8. LEV URALSKY {8, [...] ADAM M. PHILLIFPY +91 authors Authors Info & Affiliations

SCIENCE - 31 Mar 2022 - Vol 376 |s5s5ue 6588 - pp44-53 - DOL 10.1126/science.abj&987

TZT St rategy Science, = TIME

Human assemblies MarCh 2022 < THE 100 MOST INFLUENTIAL PEOPLE OF 2022

HMW DNA preps : : : e
Michael Schatz, Karen Miga, Evan Eichler, and Adam Phillippy

50x PacBio HiFi reads or higher

15-30x Oxford ultralong reads
(>100kb)

This is also in flux!

SSSS55555%5

Time, May 2022
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Assembly strategies and algorithms

For long reads (>500 nt), Overlap/Layout/Consensus (OLC) algorithms work best.
o Examples: hifiasm (PacBio HiFi only), Canu, Redbean, Flye, Shasta
o Hifiasm is generally recommended for PacBio HiFi data

For short reads, De Bruijn graph-based assemblers are most widely used
o Examples: MEGAHIT, SPAdes

Key points:
° There is no simple solution, best to try different assemblers and strategies
o Use simple metrics to gauge quality of assembly
o The field is rapidly evolving, like the sequencing technology

NEXT YEAR THIS PRESENTATION WILL CHANGE AGAIN!



Assessing your assembly




How good is my assembly?

How much total sequence is in the assembly relative to estimated genome size?

How many pieces, and what is their size distribution?

Are the contigs assembled correctly?

Are the scaffolds connected in the right order / orientation?
How were the repeats handled?

Are all the genes | expected in the assembly?



N50: the most common measure of
assembly quality

N50 = length of the shortest
contig in a set making up Do teagt
50% of the total assembly
length (Larger is better)

NG50 = length of the
shortest contig in a set
making up 50% of the
estimated genome size

NG5O0 is generally better



What, Me Worry?

N50 concerns

Optimizing for N50
o Encourages mis-assemblies!

° Encourages ‘gaming’ the stats

An aggressive assembler may over-join:
° 1,1,3,5,8,12,20 (previous)
° 1,1,3,5,20,20 (now)
o 1+143+5+20+20 = 50 (unchanged)

N50 is the “halfway sum” (still 25)
o 1+143+5+20= 30 (> 25) so N50 is 20 (was 12)

You can also filter contigs below a certain (arbitrary) size, which lowers overall assembly size
(and increases N50)



Comparative analysis

Compare against
o A close reference genome

o Results from another assembler
o Self-comparison
o Versions of the same assembly

Whole genome alignment
o MUMmer

o Lastz

Generates an alignment and a dot plot



Dot Plot

* How can we visualize whole genome alignments?
* With an alighment dot plot

— N x M matrix

* Leti = position in gecnome A

* Letj = position in genome B
* Fill cell (i) if A;shows similarity to B,

— A perfect alignment between A and B would completely fill
the positive diagonal



~

~

s

~

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf



http://mummer.sourceforge.net/manual/AlignmentTypes.pdf
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BUSCO: conserved gene sets

BUSCO Assessment Results

. Complete (C) and single-copy (S) . Complete (C) and duplicated (D)
Fragmented (F) . Missing (M)

BUSCO: From Evgeny Zdobnov’s group,

eyermes ‘ _
2 _canuAsm (@

Coverage is indicative of quality
spadesAsm C

and completeness of assembly

32 uniAsm

I
20 40 60 80 100
%BUSCOs

@ —
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Even the best genomes are not perfect

nature

Explore content v  Journal information v  Publish withus v Subscribe

nature » news > article

NEWSC| 04 June 2021

A complete human genome
sequence is close: how scientists
filled in the gaps

Researchers added 200 million DNA base pairs and 115 protein-coding genes — but they've
yet to entirely sequence the Y chromosome.




Genome graphs




Genome graphs

With the release of the latest human genome reference, there is more pressure to represent more
data with a genome.

Current representations are mainly haploid (one copy)

Newer representations are genome graphs, where variant information is retained (e.g.
heterozygosity)

Tools are still catching up, but many new assemblers (e.g. hifiasm) generate a diploid assembly now

<D [acD Hl ' aD many Mb scaffold

Figure 1: Example sequence graphs. Each node holds a string of bases. An edge can TR Legbubble S egRbubble g egabubble
connect, at each of its ends, to a base on either the left (5°, blue) or the right (3', yellow) side multi-Mb F

of the node. When reading through a thread to form a DNA sequence, a valid walk must leave phase blocks

each node via the opposite side from that through which it was entered; a node’s sequence is

read as reverse-complemented if the node is entered on the 3’ side. One thread that this

graph spells out (reading from the left side of the leftmost sequence to the right side of the >

rightmost sequence, along the nodes drawn in the middle) is the sequence
“GATTACACATTAG". Straying from this path, there are three variants available: a
substitution of “G” for “T”, a deletion of a “C”, and an inversion of “ATTA”. If all of these
detours are taken, the sequence produced is "GAGTAACTAATG". All 8 possible threads from
the leading G to the trailing G are allowed.

micro structure
* hubbles, often at indeterminate poly-A
* short gaps, often at poly-A

Novak et al, bioRxiv: https://doi.org/10.1101/101378 10x Genomics




Genome graphs

One interesting application of
graphs: trio assembly

Short- and long-read
sequencing

Advantage:
Better assembly

Phased variants
Structural variants!

' ' Angus Sire Brahman Dam
(1
I " “
{

F1 cross

o

b
Parental Colored
k-mers assembly graph
¢ Read binning ~.. ./

4 N\

Unassigned

Paternal assembly

Maternal assembly

Paternal haplotype

Maternal haplotype

Koren et al, Nature Biotech. 2018, Oct 22 93



https://pubmed.ncbi.nlm.nih.gov/30346939/

Genome Annotation




Methods for genome annotation

Ab initio
o i.e. based on sequence alone

o INFERNAL/rFAM (RNA genes), miRBase (miRNAs), RepeatMasker (repeat families),
many gene prediction algorithms (e.g. AUGUSTUS, Glimmer, GeneMark, ...)

Evidence-based
> Transcriptome data for the target organism (the more the better)

o Proteins of interest
o Align trx/protein sequences to assembly, generate gene models

Combined approaches
> Most common



General steps for biological annotation

1. Predict gene models using ab initio-based tools
° May require considerable tuning and a bootstrapping step

2. Using closely-related protein/transcripts, BLAST against assembly to find locations
3. Find potential splice junctions of BLAST hits

4. Combine all evidence and make consensus gene (and possibly transcript/isoform)
predictions, with annotation metrics for confidence of matches

o Can include UTR regions if RNA-Seq is included
5. Assess completeness of annotation (run BUSCO, but on proteins/transcripts)

6. Run InterProScan of predicted proteins against databases of protein domains (Pfam, Prosite,
HAMAP, PANTHER, ...)



MAKER, integration framework for
genome annotation

MAKER runs many software tools on
the assembled genome and collates

the outputs
See http//ngd Org/W|k|/|\/IAKER - ‘-’“0‘3’3‘”;“0" I~ e Spae T8 ]

gl || S Sl caiee | oamiEne i oomE— g | | | S

0,950t ) 0.95¥0 ‘ 0.562N0 0.4 . 036NG ) 0,950

C—3 SNAP ab-initio Gene Prediction E== EST Alignment - BLASTN
C—J EST Alignment - EXONERATE BN Repeats
= Protein Alignment - EXONERATE mmm MAKER gene annotation

=3 Protein Alignment - BLASTX


http://gmod.org/wiki/MAKER

Example Pipelines

Bacterial
> Prokka (bacterial/archaeal/viral)

o NCBI Prokaryotic Genome Annotation Pipeline (PGAP)

o Joint Genome Institute — IMG/ER (Integrated Microbial Genome Expert Review)
° Online only

Eukaryotic
o NCBI — RefSeq pipeline
o Have to submit to NCBI (and make public) to use
> Requires RNA-Seq
o MAKER

o Braker2
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