Fusion transcript detection in rare genetic disease

Gavin Oliver
Principal Bioinformatician
Associate in Health Sciences Research
Assistant Professor of Biomedical Informatics
A working definition

• Fusion transcription involves the aberrant conjoining and expression of normally discrete genic material

• Therefore a fusion can be considered “Aberrantly conjoined and expressed genic material that exists separately under normal conditions”

• More simply: pieces of multiple genes are expressed as one

• Caused by a variety of abnormalities at the DNA level as well as (debatably) at the RNA level
Mechanisms of formation

A Translocations

Reference chromosome

Translocation

Reference genes

Fused genes
Mechanisms of formation

B Insertions

Reference chromosome

Inserted and deleted chromosome

Reference genes

Fusion genes
Mechanisms of formation

C Deletion

Reference chromosome

Deleted chromosome

Reference Genes

Fused gene

5’ 3’
Mechanisms of formation

D Tandem duplications

Reference chromosome

Aberrant chromosome

Reference genes

Fused gene

Reference genes
Mechanisms of formation

F Chromothripsy

Reference chromosome/genes

Catastrophic event (Chromosome shattering)

Rearranged chromosome/genes

Lost genomic regions
An oncogenic phenomenon?

Gene fusions in cancer
100 year timeline

- Philadelphia chromosome (CML)
- BCR-ABL1 (CML)
- t(9;22) (CML)
- t(15;17) (APL)
- t(11;22) (Ewing's sarcoma)
- PAX3-FKHR (alveolar rhabdomyosarcoma)
- AML1-X (AML)
- ATF-EWS (clear cell sarcoma)
- FUS-ERG (AML)
- PML-RARA (APL)
- CHOP-FUS (liposarcoma)
- MLL-X (MLL)
- FLI1-EWS (Ewing's sarcoma)
- ETV6-NTRK3 (Ph-like ALL)
- ERG-EWS (Ewing's sarcoma)
- SYT-SSX (synovial sarcoma)
- NPM-ALK (anaplastic lymphoma)
- PDGFb-TEL (CML)

Hematological
Soft tissue
An oncogenic phenomenon?

Gene fusions in cancer
100 year timeline

- CTNNB1-PLAG1 (salivary)
- HMGA2-NFIB (salivary)
- BRD4-NUT (midline)
- CRTC-MAML2 (salivary)
- TMPRSS2-ERG (prostate)
- SLC34A2-ROS EML4-ALK (lung)
- TMPRSS2-ETV1
- TMPRSS2-ETV4
- TMPRSS2-ETV5 (prostate)
- X-MASTx
- X-NOCTHx (breast)
- CD44-SLC1A2 (gastric)
- X-FGFRx (cholangio, breast, lung, prostate, thyroid, oral, bladder)
- FGFRx-X
- MYB-NFIB (ACC)
- LACTB2-NCOA2 (CRC)
- CLDN18-ARHGAP (gastric)
- X-SKIL (prostate)
- X-RSPO2 (prostate)
- X-PK3CA/B (prostate)

X- Multiple partner genes
x- Multiple isoforms of the same gene

Rare epithelial

Common epithelial
Mechanism of action

• Commonly
 – involve fusion of a downstream kinase
 – or transcription factor
 • with a more highly expressed upstream gene
 – leading to increased expression of the downstream gene or a functional component of it

• Protein formation dependent on in-frame translation
Mechanism of action

• Most reported gene fusions pertain to gain-of-function aberrations imparting neoplastic phenotypes

• Loss of function of tumor suppressors such as TP53 and PTEN have also been identified

• Fusion transcripts are recognized as having diagnostic, prognostic and therapeutic (druggable) relevance in oncology

• Detection of gene fusions is increasingly incorporated into the standard workflow for genomic characterization of tumors in both research and clinical settings
Fusions in inherited disease

- 18-40% unsolved cases are solved by exome sequencing
- RNA-Seq has recently been proposed as a supplementary diagnostic tool
- Cummings et al. achieved a 35% diagnostic increase by profiling aberrant splicing and allele specific expression
- Kremer et al. added gene expression quantification to the testing repertoire and demonstrated a 10% increase
- Isolated reports exist in the literature of fusion transcripts being detected in cases of brain malformation, intellectual disability, schizophrenia, ASD and more
- Fusion transcription had not been systematically profiled in inherited disease
Patient Cohort

- 47 patients
- Prior exome-sequencing
- 23 M, 24F
- Ages 9 months – 68 years (median 11)
- Diverse phenotypes
 - Neurological
 - Muscular
 - Gastrointestinal
 - Skeletal
 - Connective tissue disorders

Oliver et al. (2019) https://doi.org/10.1371/journal.pone.0223337
RNA-Seq in inherited disease

RNA-Seq in inherited disease

- Patient whole blood
- Illumina HiSeq 2500
- 200 million 100bp PE reads per sample
Fusions in inherited disease

• Fusion detection increased diagnosis of rare disease
 – Two cases confirmed solved
 • SCID
 • Multiple exostoses
 – 4.3% increase in diagnostic yield
 – Experimentally validated existence of fusion events in disease-relevant genes with potential phenotypic relevance in five additional cases
Software solution overview
Fusion transcripts

Gene A (Chromosome 1)

Gene B (Chromosome 21)
Fusion transcripts

Gene A (Chromosome 1)

Gene B (Chromosome 21)
Fusion transcripts

Gene A (Chromosome 1)

1 2 3 4 5 6 7

Gene B (Chromosome 21)

1 2 3 4

Fusion transcripts
Fusion calling challenges

• Complicated by the many false positive candidates resulting from:
 – alignment artifacts such as multi-mapping of reads owing to homologous (pseudogenes) and/or repetitive sequences
 – sequencing artifacts due to errors in library generation (particularly ligation and PCR artifacts) and sequencing

• Incorporating these considerations, and additional bioinformatics filters, various bioinformatics pipelines have been developed to help prioritize fusion candidates from next-generation sequencing (NGS) data

• “Read-through” transcription of neighboring genes occurs frequently in normal cells

• Common non-pathogenic fusion events between distal genes are known to exist due to distinct polymorphic haplotypes
Fusion calling challenges

• Numerous software solutions exist for fusion detection
 – e.g. STAR-Fusion, Tophat-Fusion, PRADA, Fusioncatcher

• Technical comparisons demonstrate limited overlap and no caller is fully inclusive
 – Partially because FPs are abundant & outputs require filtering
 – Filters are trained using *in-silico*, tumor or cell-line data & performance falters on alternative data types

• It is recommended to select a caller on the basis of the data being profiled however none are trained on inherited disease
Fusion calling challenges

- Any attempt to detect fusions in inherited disease thus requires:
 - Inherent sensitivity
 - A means of deprioritizing biologically and phenotypically unimportant fusion candidates
Filtering / Prioritization

Read support (basic)

- **TopHat Fusion** *(Kim & Salzberg 2011)*
 - Equally applicable to other callers

- Omitted all TopHat filtering steps (cancer cell-line derived)

- Employed a very minimal depth filter (2 reads)
Normal DB comparison

- Compared fusion candidates to a database of candidates from normal tissues
- Fusion calling on samples from GTEx, Illumina Human Bodymap, Mayo Clinic
- Approx. 800 samples, 30 tissues
- Any fusion candidates occurring in DB or more than one cohort sample were categorized as normal/recurrent
Phenotypic Prioritization

- Dual approach
 - Manual (Literature, OMIM, Genecards)
 - *In-silico*
 - **PCAN:** phenotype consensus analysis to support disease-gene association (Godard & Page, 2016)

- Generated phenotypically prioritized events for follow-up validation
BLAST categorization

- Fusion consensus sequences generated by TopHat Fusion used as input
 - Algorithm dependent

- Devised custom categorization pipeline based on BLASTn

- Categorization logic based on best alignments
Candidate Categorization

- Fusion consensus sequence
- BLASTn
- Human genome
- Human transcriptome

Potential novel transcript or intragenic fusion

Blood abundant products

Likely artefactual Potential immune diversity or homology artefact
Now let’s try it…

Questions