Self-Assembly of Repetitive Segment and Random Segment Polymer Architectures

Hao Yu, Falon C. Kalutantrige, Lehan Yao, Charles M. Schroeder, Qian Chen,* and Jeffrey S. Moore*

Cite This: ACS Macro Lett. 2022, 11, 1366−1372

Access Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: Recent advances in chemical synthesis have created new methodologies for synthesizing sequence-controlled synthetic polymers, but rational design of monomer sequence for desired properties remains challenging. In this work, we synthesize periodic polymers with repetitive segments using a sequence-controlled ring-opening metathesis polymerization (ROMP) method, which draws inspiration from proteins containing repetitive sequence motifs. The repetitive segment architecture is shown to dramatically affect the self-assembly behavior of these materials. Our results show that polymers with identical repetitive sequences assemble into uniform spherical nanoparticles after thermal annealing, whereas copolymers with random placement of segments with different sequences exhibit disordered assemblies without a well-defined morphology. Overall, these results bring a new understanding to the role of periodic repetitive sequences in polymer assembly.

The synthetic toolbox for controlling monomer sequences in non-natural polymers has recently expanded, enabling new opportunities to prepare synthetic materials with a high level of structural and functional diversity. Unlike small molecules, the primary monomer sequence in synthetic macromolecules leads to complex chemical assembly landscapes that are dictated by multiple inter- and intrachain interactions. Despite recent advances, the ability to rationally design monomer sequences to control macromolecular assembly remains a key challenge in the field due to limited knowledge on sequence−structure−property relationships in synthetic polymers.

The link between sequence, structure, and function in proteins over evolutionary history provides a strategy to identify predictable sequence−property relationships in synthetic polymers. A budding theory in the field of molecular evolution posits that nature took advantage of ancestral proto-peptides and evolved them into various protein domains with structural complexity and desired functionality. Protein tandem repeats are a ubiquitous class of proto-peptide structural motifs in proteomes and occur in at least 14% of all proteins. Moreover, tandem repeats with short repetitive units are more frequently observed than other repeat motifs. For example, crystalline aggregates are formed by regions with 1 or 2 residue long repeats, and fibrous structures are stabilized by interchain interactions with 3 to 7 residue repeats. In addition, utilizing and incorporating repetitive amino acid sequences form the basis of the consensus protein design strategy, which leverages monomer-level engineering of the tandem peptide repeats to produce structurally defined scaffolds and to mediate protein−protein interactions.

Motivated by the success of using tandem peptide repeats in rational protein design, we hypothesized that, by engineering repetitive segments of peptide sequences into the polymer backbone and leveraging the polymer’s conformational flexibility, the resulting sequence-controlled periodic polymers (SCPPs) will exhibit unique self-assembled morphologies that can be tuned by adjusting the monomer sequence of the repetitive segments. In this work, we demonstrate the synthesis of SCPPs containing different repetitive peptide sequences and the role of repetitive segment versus random segment polymer architecture in solution self-assembly. We find that the synthesized SCPPs predominantly assemble into spherical particles in aqueous solution, whereas copolymers with random placement of different sequence segments generate disordered aggregates under the same conditions. Analysis using transmission electron microscopy (TEM) further indicates that the average particle size and assembly type are tuned through the peptide sequence of the repetitive segment. Broadly, the strategy used in this work is highly customizable and can be expanded to design and engineer new synthetic architectures.

Received: August 22, 2022
Accepted: November 16, 2022
Published: November 22, 2022
polymeric materials by leveraging the diverse scope of available monomers.

To prepare polymers containing the desired repetitive sequence motifs, we used a tandem ring-opening metathesis polymerization (ROMP) method reported by Gutekunst and Hawker (Figure 1a). In this polymerization process, the Grubbs catalyst is highly reactive toward terminal alkynes and generates an initial carbene complex, which is subsequently transferred to open the adjacent cyclic olefin and form a propagating species. Due to this replay-type metathesis polymerization, a well-defined head-to-tail directionality and connectivity is achieved, thereby enabling incorporation of segments with sequence directionality. Overall, this synthetic approach involves two steps: (1) preparation of the cyclic olefin monomer embedded with sequence-defined segments and (2) polymerization of the cyclic monomer using tandem ROMP.

In this work, we chose alanine (A), β-alanine (B), glycine (G), and hydroxyacetic acid (H) for sequence construction (Figure 1b). The alternating Gly-Ala motif is a well-known complementary sequence for the formation of antiparallel β-sheets in silk proteins and is widely used to control hierarchical structures in synthetic materials. We hypothesized that incorporating this motif into the polymer backbone in a periodic manner would lead to the formation of compact assemblies in aqueous solution. Moreover, glycine (G) and β-
alanine (B) are the conformationally flexible α- and β-amino acids. Prior work has shown that sequence variation of these two amino acids can alter the solution folding behavior of tetrapeptides. Finally, hydroxyacetic acid (H) was inserted into the repetitive sequence due to its structural character and solubility. Hydroxyacetic acid is a structural analogue of glycine (G) and β-alanine (B) but does not form complementary H-bonding with an amide bond. In this way, hydroxyacetic acid is used to tune the assembled structure while circumventing potential poor solubility of the peptide-containing polymers. Here, we specifically chose non-charged building blocks to avoid electrostatic interactions which bring additional interactions to the energetic landscape for self-assembly. We therefore anticipate that the hydrophobic interactions and the complementary H-bonding interactions are the main driving forces for self-assembly in our designed SCPPs.

A series of macrocyclic monomers were first prepared using an amide coupling reaction and intramolecular cyclization (Figure 1c). Our initial attempts to directly couple oligopeptides to the sulfonamide precursor 4 revealed a low yield (<10%) (Supporting Information, Scheme S1). We therefore first coupled a single amino acid to the precursor 4 to yield an intermediate (for example, G-NH₂ in Figure 1c), followed by subsequently coupling desired oligopeptides to the intermediate. Using this approach, we built the desired sequence and synthesized six different macrocyclic monomers with defined segment sequences (synthetic details in the Supporting Information, Figures S1-S64).

Using the tandem ROMP method, we prepared a series of SCPPs with the desired segment sequence motifs (Figure 1d). In all cases, polymerization was performed with a monomer to initiator ratio (M/I) of 50:1 in the presence of an additional ligand, 3,5-dichloropyridine. Following polymerization, the ruthenium catalyst (G3) was removed using a thiol-functionalized resin (Quadrasil MP) before further characterization. The purified polymers were characterized by NMR, GPC, MALDI-TOF, DSC, TGA, and FT-IR (additional discussions in the Supporting Information under section S5). The characterization data are summarized in Table 1. The prepared polymers show moderate solubility in DMF and a mixture of DCM/MeOH (9:1), except for poly(GGG). Attempts at characterizing the polymers using circular dichroism (CD) spectroscopy were unsuccessful because the targeted waveslength range (200–220 nm) was obscured by the strong solvent background of DMF or DCM. In general, the polymers exhibit control of polydispersity and olefin stereoselectivity, which is consistent with prior reports. The polymers' NMR spectra are well-resolved due to the good regioselectivity using the tandem ROMP method (Figure 2a and Supporting Information, Figures S65–S76). MALDI-TOF mass spectrometry further confirmed a mass difference corresponding to the mass of the repeat unit (Figure 2b and Supporting Information, Figures S77–S80).

The structures of synthesized SCPPs were analyzed using 2D ¹H−¹H COSY and NOESY NMR (Figure 2c and Supporting Information, Figures S81–S90). We identified the proton signals in the E/Z isomers of the acyclic alkene (H), and determined the E/Z ratio accordingly. Protons in each peptide segment were also identified using COSY NMR, confirming the polymer's primary structure. In addition, we used 2D ¹H−¹H NOESY NMR experiments to study the polymer conformation in solution. Interestingly, our results show that the s-trans conformation is dominant between the cyclic and acyclic alkenes (Figure 3). As implied by the crystal structure (Figure 1c), we conjecture that it is sterically favorable that the addition of active Ru carbene to the terminal alkyne occurs on the lateral side that faces away from the macrocycle, which favors an s-trans diene conformation during chain propagation and subsequently leads to a dominant s-trans conformation in the polymer backbone.

To investigate the role of repetitive segment versus random segment architecture, we further prepared the copolymer (poly([GAG]-ran-(GAG)-ran-(BGH)-ran-(BGH)]). This random segment copolymer was synthesized by copolymerizing four cyclic monomers (BGH, GAG, BGH, and GAG) in a 1:1:1:1 molar ratio using the same conditions as for SCPPs synthesis (Figure 4a). We hypothesized that the heterogeneity induced by randomly linked sequence segments would interrupt the complementary hydrogen-bonding between tandem repeats and consequently lead to a disordered self-assembled morphology. By comparing the self-assembly behaviors between the random segment copolymer and SCPPs, we aimed to understand how sequence precision affects self-assembly.

To investigate the self-assembly behavior of the synthesized SCPPs in solution, we began by screening for a suitable solvent system using dynamic light scattering (DLS). Mixtures of DMF and water in DMF/water volumetric ratios of 4:6, 3:7, 2:8, and 1:9 were chosen, with water acting as a poor solvent to drive the assembly (Supporting Information, Figures S95–S96). The prepared polymer solutions (0.1 mg/mL) were heated to 70 °C for 30 min and slowly cooled to room temperature to facilitate self-assembly. DLS results indicate that the 20% DMF/water solvent system leads to the formation of the most compact nanostructures, whereas the hydrodynamic diameter of SCPPs ranging from 50 to 75 nm. We next used TEM to study the details of the self-assembled morphologies (Figure 4b and Supporting Information, Figures S97–S102). Interestingly, we found that SCPPs predominantly assemble into spherical nanoparticles, whereas the copolymer with random segments shows disordered aggregates under the same conditions. This key observation supports our hypothesis that polymers with controlled monomer sequences exhibit more ordered self-assembled morphologies relative to its random analogues, which can be attributed to the uniformity of sequence segments along the polymer backbone. Prior work

### Table 1. Summary of Material Characterization for the Prepared SCPPs

<table>
<thead>
<tr>
<th>Entry</th>
<th>M_{w,\text{GAG}} (kDa)</th>
<th>\delta</th>
<th>M_{w,\text{NMR}} (kDa)</th>
<th>E/Z ratio</th>
<th>\text{T}_{c} (°C)</th>
<th>\text{T}_{d} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly(GAG)</td>
<td>22.3</td>
<td>1.23</td>
<td>16.7</td>
<td>3.2:1</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>poly(GAH)</td>
<td>18.2</td>
<td>1.13</td>
<td>22.8</td>
<td>3.0:1</td>
<td>73</td>
<td>260</td>
</tr>
<tr>
<td>poly(BGH)</td>
<td>18.0</td>
<td>1.08</td>
<td>14.3</td>
<td>5.0:1</td>
<td>73</td>
<td>250</td>
</tr>
<tr>
<td>poly(BGAH)</td>
<td>11.6</td>
<td>1.27</td>
<td>16.4</td>
<td>4.5:1</td>
<td>95</td>
<td>270</td>
</tr>
<tr>
<td>poly(AAA)</td>
<td>21.2</td>
<td>1.29</td>
<td>15.6</td>
<td>3.8:1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>poly([GAG]-ran-(GAG)-ran-(BGH)-ran-(BGH)]</td>
<td>15.0</td>
<td>1.13</td>
<td>14.8</td>
<td>3.5:1</td>
<td>90</td>
<td>252</td>
</tr>
</tbody>
</table>

*Prepared with monomer/initiator ratio = 50:1. Polymer poly(GGG) exhibits poor solubility and precipitated from solution during polymerization. Determined using DMF GPC equipped with a light scattering detector. Determined by end group analysis using ¹H NMR. Cis/trans isomers were identified by 2D COSY NMR, and the ratio was calculated using ¹H NMR.*
on AB-type copolymers has shown that polymers with segmented monomer distributions tend to fold into globular protein-like structures compared to analogues with random sequences. The findings presented in this work further show that the homogeneity of peptide segments favors a uniform self-assembly profile.

To further study the self-assembly profile of SCPPs, a custom MATLAB program using a circular Hough transform was written to analyze the particle size distributions measured by TEM (Supporting Information, Figures S103–S106). Our results show that the diameter of the observed particles is generally larger than 10 nm, suggesting multi-chain assemblies. Spherical particles formed by poly(BGH), poly(GAH), and poly(GAH) exhibit a narrow size distribution in the range of 10–20 nm, whereas poly(BGAH) accesses a broad range of particle sizes from 10 to 70 nm. Compared to our DLS results, the statistically averaged particle size measured by TEM is generally smaller. We attribute this difference to the facts that (1) the number-averaged hydrodynamic diameter (\(H_d\)) from DLS was calculated over all particle assemblies, including both single particles and particle clusters, consequently leading to a larger average particle size, and (2) the samples in TEM, although preserved in the presence of staining agents, are measured in a vacuum. In contrast, the image analysis program enables us to identify individual particles in particle clusters and to calculate particle diameters accordingly, subsequently giving the statistical distribution of particle sizes.

Detailed self-assembled structure types observed in our TEM experiments were further sorted into four categories: single particle, dimer particle, satellite assembly (small particles distributed around one large particle), or particle chain aggregate (multiple nanoparticles linked into strings) (Supporting Information, Figure S107). For the synthesized SCPPs, we only observed the formation of isotropic sphere particles, generally smaller. We attribute this difference to the facts that (1) the number-averaged hydrodynamic diameter (\(H_d\)) from DLS was calculated over all particle assemblies, including both single particles and particle clusters, consequently leading to a larger average particle size, and (2) the samples in TEM, although preserved in the presence of staining agents, are measured in a vacuum. In contrast, the image analysis program enables us to identify individual particles in particle clusters and to calculate particle diameters accordingly, subsequently giving the statistical distribution of particle sizes.

Detailed self-assembled structure types observed in our TEM experiments were further sorted into four categories: single particle, dimer particle, satellite assembly (small particles distributed around one large particle), or particle chain aggregate (multiple nanoparticles linked into strings) (Supporting Information, Figure S107). For the synthesized SCPPs, we only observed the formation of isotropic sphere particles,
while anisotropic assembled structures such as worm and cylinder were not observed. To gain a better understanding of the role of sequence precision, additional control experiments using samples containing mixed sequence-controlled polymers (poly(GAG), poly(GAH), poly(BGH), and poly(BGAH) in 1:1:1:1 weight ratio) were performed. Interestingly, our results show that the samples containing four mixed SCPPs also assemble into spherical nanoparticles (Supporting Information, Figures S108 and S109), further supporting our findings that sequence precision at the monomer level contributes to ordered polymer assembly.

The model SCPPs presented in this work are constructed with nonpolar, uncharged amino acids, and the sulfonamide linker between the repetitive sequences further increases the overall hydrophobicity compared with natural proteins. We therefore select a water/DMF binary solvent to promote the assembly of our model SCPPs and reason that the solvophobic interactions are the predominant driving forces. We conjecture that the solvophobic interactions also contribute to similar spherical assemblies across the sequence variations presented in this work. Nevertheless, it is important to note that cosolvents can also affect the polymer assembly. Prior work on polymers containing amphiphilic peptides has shown that the polarity of the cosolvent affects polymer chain assembly.32−34 The effect of solvent on polymer assembly, however, remains largely underexplored in the field of sequence-controlled polymers. We envision that future investigation on how solvent affects the assembly of amphiphilic SCPPs will enhance our understanding of sequence−structure−property relationships in synthetic polymers.

In this work, the synthesis of SCPPs containing peptide repeats is described together with investigations on their self-assembly properties. A series of SCPPs was found to self-assemble into uniform spherical nanoparticles. The results for sequence-controlled repetitive polymers are in stark contrast with those for their random analog, which forms only disordered aggregates without defined morphologies under the same conditions. These observations demonstrate the important role of sequence precision in self-assembly of synthetic polymers. The design strategy used in this work combines a sequence-controlled polymerization method with the inspiration of repeat sequences commonly observed in protein structures. We anticipate that this strategy will provide a model system to elucidate the sequence−structure−property relationships in synthetic polymers. The methodology described here can be further expanded to incorporate amphiphilic repetitive sequences into synthetic polymers, which will provide opportunities for designing new biomimetic materials. Future work will focus on studying the self-assembly mechanism and leveraging computational modeling to gain a deeper understanding of the SCPPs’ chain alignments during the assembly process.

■ ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmacrolett.2c00495.

General methods, synthetic details, NMR spectra and MALDI-TOF results, single-crystal X-ray crystallographic analysis, polymer characterizations, and TEM analysis (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Charles M. Schroeder − Department of Chemical and Biomolecular Engineering, Department of Chemistry, Department of Materials Science and Engineering, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States; orcid.org/0000-0001-6023-2274; Email: cms@illinois.edu
Qian Chen − Department of Chemical and Biomolecular Engineering, Department of Chemistry, Department of Materials Science and Engineering, and Beckman Institute for Advanced Science and Technology, University of Illinois at...
Urbana—Champaign, Urbana, Illinois 61801, United States; orcid.org/0000-0002-1968-441X; Email: qchen20@illinois.edu

Jeffrey S. Moore — Department of Chemistry, Department of Materials Science and Engineering, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States; orcid.org/0000-0001-5841-6269; Email: jsmoore@illinois.edu

Authors

Hao Yu — Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States

Falon C. Kalutanirige — Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States

Lehan Yao — Department of Materials Science and Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsmacrolett.2c00495

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0020203. H.Y. thanks Dr. William Neary and Dr. Xiuli Mao for helpful discussions and assistance on MALDI-TOF experiments. The Bruker UltraFlXtreme MALDI-TOF mass spectrometer in the UIUC School of Chemical Sciences Mass Spectrometry Lab was purchased in part with a grant from the National Center for Research Resources, National Institutes of Health (S10 RR027109 A).

REFERENCES


---

#### Recommended by ACS

**Backbone Polarity Tunes Sticker Clustering in Hydrogen-Bonded Supramolecular Polymer Networks**

Mostafa Ahmadi, Sebastian Seiffert, *et al.*

JUNE 24, 2022

MACROMOLECULES

**One-Dimensional Helical Aggregates Organized from Achiral Imine-Based Polymers**

Guofeng Liu, Yanli Zhao, *et al.*

MARCH 21, 2022

ACS MATERIALS LETTERS

**Harmonizing Topological Features of Self-Assembled Fibers by Rosette-Mediated Random Supramolecular Copolymerization and Self-Sorting of Monomers by Phot...**

Sho Takahashi and Shiki Yagai

JULY 14, 2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

**The Length of Molecular Tethers Can Be Used to Control the Structure and Electronic Properties of Stapled Supramolecular Polymers**

Victor Paulino, Jean-Hubert Olivier, *et al.*

JULY 12, 2022

CHEMISTRY OF MATERIALS

---

Get More Suggestions >