Majid Ahadi

mad6@gatech.edu Atlanta, GA, Tel: 9702156144, (Available for summer internship)

Education:

- Georgia Institute of Technology PhD Degree, Electrical Engineering 2016 2020, GPA: 3.66
- Colorado State University Master's Degree, Electrical Engineering 2014 2016, GPA: 3.72
- K.N.Toosi University of Technology Bachelor's Degree, Electrical Engineering 2009- 2013, GPA: 3.6

Skills:

- Software: C/ C++, Python, MATLAB, JavaScript, Amazon Web Services, Microsoft Azure, VHDL, CUDA, OpenMP, Visualization, Linux.
- Machine Learning: Supervised/ unsupervised learning, Neural Networks, Online learning, Multi-armed Bandits, Bayesian optimization, etc.
- Hardware: Digital and analog circuit design, VLSI, Packaging, Signal processing, Signal and power integrity, Electromagnetics, Microwave circuits, RF circuits, Computer architecture, FPGA, Microprocessors, PCB design.
- Simulation: Device and circuit modeling, High speed simulation, Statistical analysis, ADS, Cadence, HSPICE, HFSS, etc.

Work Experiences:

-		
Research Assistance	Georgia Institute of Technology	2017 - present
• Member	NSF Center for Advanced Electronics	2016 - 2018
	through Machine Learning (CAEML)	
Software Engineering Intern	Cadence Design Systems	2017 (3 months)
Teacher Assistance	Georgia Institute of Technology	2016
Electrical Engineering Intern	Ansys, Inc.	2015 (7 months)
Research Assistant	Colorado State University	2014-2016
Electrical Engineer	Kianic Company	2013
Electrical Intern	ICAS laboratory	2012
Teacher Assistant	K.N.Toosi University	2011-2012
• Voluntary: Cultural mentor	Colorado State University	2015

Awards:

- 1st place Cadence Design Systems Hackathon (Chelmsford, MA), 2018
- Best Presentation Award in the Academic Track, CDNLIVE Cadence User Conference 2018
- Best poster award in EPEPS IEEE Conference, 2014
- 1st place, AVR microprocessors programming grand prize competition, 2009

List of Publications:

Conference Papers:

- M. Ahadi, M. Kabir, et al., "Non-Intrusive Pseudo Spectral Approach for Stochastic Macromodeling of EM Systems using Deterministic Full-wave Solvers", *IEEE Conference on Electrical Performance of Electronic Packaging and Systems*, October 2014
- A. K. Prasad, M. Ahadi, S. Roy "Polynomial Chaos Based Variability Analysis of Power Distribution Networks Using a 3D Topology of Multiconductor Transmission Lines", *IEEE Conference on Electrical Performance of Electronic Packaging and Systems*, October 2014
- M. Ahadi, M. Vempa, S. Roy "Efficient Multidimensional Statistical Modeling of High Speed Interconnects in SPICE via Stochastic Collocation using Stroud Cubature", *IEEE International Symposium on Electromagnetic Compatibility*, March 2015 (Invited paper to special session)
- M. Ahadi, M.Kabir, S. Roy, R. Khazaka "Fast Multidimensional Statistical Analysis of Microwave Networks via Stroud Cubature Approach", *IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization*, August 2015
- A. K. Prasad, M. Ahadi, B. S. Thakur, S. Roy "Accurate Polynomial Chaos Expansion for Variability Analysis using Optimal Design of Experiments", *IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization*, August 2015

- M. Ahadi, A. K. Prasad, S. Roy "Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits," *IEEE International Conference on Signal and Power Integrity*, 2016
- M. Ahadi, J. Hejase, W. Becker, M. Swaminathan "Development of Polynomial Chaos based Surrogate Models for Channel Simulation", *IEEE Conference on Electromagnetic Compatibility, Signal & Power Integrity EMC+SIPI*, July 2018
- M. Ahadi, H. Yu, J. Hejase, W. Becker, M. Swaminathan, "Polynomial Chaos modeling for jitter estimation in high-speed links", International Test Conference, October 2018
- M. Ahadi, J. Hejase, W. Becker, M. Swaminathan "Jitter and Eye Estimation in SerDes Channels using Modified Polynomial Chaos Surrogate Models", *IEEE Conference on Electrical Performance of Electronic Packaging and Systems*, October 2018
- M.Ahadi, A. Varma, K. Keshavan, M. Swaminathan, "Design Space Exploration with Polynomial Chaos Surrogate Models for Analyzing Large System Designs", *DesignCon 2019*, Jan. 2019
- M. Ahadi, J. Hejase, W. Becker, M. Swaminathan, "Eye Diagram and Jitter Estimation in SerDes Designs using Surrogate Models Generated with the Polynomial Chaos Theory", *DesignCon 2019*, Jan. 2019

Journal Papers

- M. Ahadi, S. Roy, "Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits", *IEEE transactions on Computer-Aided Design of Integrated Circuits and Systems*, 2015
- A.K.Prasad, M. Ahadi, S.Roy, "Multidimensional Uncertainty Quantification of Microwave/RF Networks using Linear Regression and Optimal Design of Experiments", *IEEE Transactions on Microwave Theory and Techniques*, 2016
- M. Ahadi, J. Hejase, W. Becker, M. Swaminathan, "Methods for Jitter and Eye Diagram Estimation in High-Speed Serial Channels Using Polynomial Chaos Surrogate Models", under review at *IEEE ACCESS*, Submitted in March 2019

Selected Projects:

- 2017 present: Quick analysis of SERDES channels using ML and numerical algorithms: Prediction of eye-diagram characteristics (Jitter, BER, etc.) for SERDES channels by generating surrogate models using polynomial chaos theory and ML.
- 2018: Design space exploration: An efficient method was developed for design space exploration and sensitivity analysis of a DDR4 topology using Polynomial Chaos theory during internship at Cadence.
- 2016: Capacitor optimization for power delivery networks: Using the genetic algorithm to place decoupling capacitors in printed circuit boards.
- 2015: Quality Assurance of Nexxim: Writing MATLAB scripts for daily accuracy check of ANSYS circuit solver (Nexxim) by comparing daily results with a predetermined baseline during internship at ANSYS.
- 2014- 2016: Stochastic Analysis of High Speed Circuits: Developing numerical approaches to achieve speedup in stochastic analysis and simulation of high speed circuits.
- 2013: Intelligent Audio System for smart homes: Industrial project, designing a convenient audio system to provide special functions in a smart home.
- 2012-2013: Spinal cord stimulation: Prototyping an implantable device, which can do electrical neural stimulation in order to do pain relief.
- 2012: Designing an AVR Microcontroller by VHDL: Design and simulation of ATmega32 on Spartan3 FPGA, including Memories, Registers, I/O Ports, USART and Timer.
- 2010-2013: An Application of DC-DC Converters to soccer player robots: A boost DC-DC converter which can charge a solenoid and move a shaft to kick the ball in soccer player robots.
- 2009-2013: Small Size Soccer Robotic league: One of the Robocup leagues, design and build of autonomous agents which are able to play soccer without human control using motion planning and AI.
- 2009: Snake game on analog oscilloscope: Building a snake game in three levels on XY mode of oscilloscope which could be controlled by an external hardware.
- 2008: Assistant robot for paraplegics: A mobile robot which could be controlled by visual head movements commands for paraplegic patients, using image processing and wireless communication.