
Verification of Annotated Models from Executions

ABSTRACT
Simulations can help enhance confidence in system designs
but they provide almost no formal guarantees. In this pa-
per, we present a simulation-based verification framework
for embedded systems described by non-linear, switched sys-
tems. In our framework, users are required to annotate the
dynamics in each control mode of switched system by some-
thing we call a discrepancy function that formally measures
the nature trajectory convergence/divergence in the system.
Discrepancy functions generalize other measures of trajec-
tory convergence and divergence like Contraction Metrics
and Incremental Lyapunov functions. Exploiting such an-
notations, we present a sound and relatively complete verifi-
cation procedure for robustly safe/unsafe systems. We have
built a tool based on the framework that is integrated into
the popular Simulink/Stateflow modeling environment. Ex-
periments with our prototype tool shows that the approach
(a) outperforms other verification tools on standard linear
and non-linear benchmarks, (b) scales reasonably to larger
dimensional systems and to longer time horizons, and (c)
applies to models with diverging trajectories and unknown
parameters.

1. INTRODUCTION
Simulations play an important role in helping designers gain
confidence in the correctness of their systems, especially in
the context of embedded systems, where verification of de-
signs remains computationally challenging. However, while
simulations have proved to be valuable and scalable, they
provide almost no formal guarantees about the correctness
of designs. Recently, there have been some proposals [10,
15, 8, 6, 20, 12] to obtain formal correctness guarantees from
multiple simulation runs of system. In the context of embed-
ded systems, most of them consider continuous dynamical
models described by linear differential equations; see Sec-
tion 2 for a detailed discussion of these papers. In this paper,
we consider embedded systems described by a richer class
of switched, non-linear dynamical system models. These are
models with multiple control modes where different (non-

linear) physical laws govern the evolution of system state,
and a switching/control sequence determines which control
mode is visited at different times. Embedded systems with
time triggered behavioral changes can be naturally modeled
in this framework. We present a framework that formally
verifies the safety of such systems based on simulating sys-
tem designs or executing system implementations.

Our approach, relies on the inherent continuity in the behav-
iors of such a system — if two executions start close by, then
the distance between them at time t (< T) can be bounded.
However, obtaining such a relationship is computationally
intractable for general systems. We, therefore, require users
to provide annotations on the dynamics that allows us to com-
pute such a relationship. Our use of annotations is inspired
by the central role that concepts like loop invariants have
played in the verification of software.

We introduce a class of annotations that we call discrepancy
functions. We show that discrepancy function is a generaliza-
tion of other well known measures of trajectory convergence
and divergence such as contraction metric [17] and incremental
stability [2] in the control theory literature. Thus, the anno-
tations we require, might be naturally produced by a control
theorist during the design process. Moreover, there are pro-
posals to construct such measures automatically in the con-
trol theory literature, using sum-of-squares and convex opti-
mization tools [3]. In this paper, we also outline some auto-
mated techniques to generate discrepancy function annota-
tions for systems; our method is not guaranteed to succeed,
but we used them to analyze some of the examples we con-
sider in our experiments.

We then present an algorithm to verify the safety of a non-
linear switched system within bounded time, from simula-
tions using such annotations. Simulation traces or executions
of embedded systems observe and record the system state
only at discrete points in time. Thus, the gaps in the sam-
pled trace have to be filled in order to reason about the actual
trace. Second, the recorded states in the execution/simula-
tion might not be the actual states of the system due to er-
rors introduced from sensor quantizations and from numeri-
cal integrators used to generate the simulation trace. Our al-
gorithm accounts for these sources of error, and exploits the
annotations to overcome these challenges. We show that our
verification algorithm is sound and relatively complete. That
is, the answers of safety/unsafety of the system given by our
algorithm are correct, and if the system is either robustly safe

or unsafe, our algorithm is guaranteed to terminate; we say a
system is robustly safe, if all states in some envelope around
the system behaviors are safe. In the situation, when the sys-
tem is safe but not robustly safe, our algorithm might not
terminate.

We have built a prototype tool called Check-Execute-Compare
Engine (C2E2) that implements our approach. Our tool is in-
tegrated into the Simulink/Stateflow modeling framework,
which is widely popular among designers of embedded sys-
tems. The annotations for the examples we considered were
either obtained from the literature, or using our automated
approach. Our experimental analysis shows that the approach
successfully analyzes commonly arising non-linear systems,
and on standard benchmarks outperforms recent tools for
non-linear systems like Flow∗ [5] and Ariadne [4]. Our ex-
periments also demonstrate that the method scales to reason-
ably large dimensional systems and to longer time horizons.
One advantage of such a simulation based approach is that
it also allows us to verify executable systems where the sys-
tem models have unknown parameters. A traditional model
checker would fail to analyze such systems because of the
incompleteness of the system model.

2. RELATED WORK
Safety verification of dynamical and hybrid systems using
simulations has been studied in a handful of papers. In [10],
the authors construct a Metric Transition System (MTS) using
the simulations and then verify the transition system. The
approach is sound and is relatively complete only for linear
models. An incremental Lyapunov function-based approach
is used in [11] for constructing approximate bisimulations. In
contrast, our approach does not construct intermediate tran-
sition relations but directly checks bounded safety.

In [14], the authors give a bisimulation function for stable
systems, which is related to incremental Lyapunov functions
(see Section 4). Our discrepancy functions can be seen as
an extension of bisimulation functions which covers systems
with possibly divergent trajectories. Further, discrepancy func-
tions subsume other notions like contraction metrics, which
are not considered in [14]. Sensitivity analysis is the central
theme in the paper [8] and the authors provide verification
algorithms based on sensitivity. For nonlinear systems this
technique does not guarantee completeness and is also pos-
sibly unsound. Contraction metrics introduced in [17] gen-
eralizes the notion of sensitivity for nonlinear systems and
informally, it can be considered as a Lyapunov function for
sensitivity. In the current paper, we extend the notion of con-
traction metric, and hence, give a generalization of sound
and relatively complete analysis of sensitivity for nonlinear
systems. In a similar spirit to this paper, analysis using con-
trol theoretic annotations to Simulink models and code has
been also been explored recently in [13].

Other approaches which uses simulations for verifying prop-
erties of embedded systems are given in [15, 6, 20, 12]. Simulink-
Stateflow simulations are used in [15] for constructing sym-
bolic representation of sets of initial states that behave simi-
larly. Approaches [6, 20] use statistical techniques and heuris-
tics to give probabilistic guarantees about the system. In [9],
we developed an algorithm for analyzing distributed hybrid
systems where the traces are collected from agents with inac-

curately synchronized clocks. Here, the algorithm computes
states that are reachable by the model through executions
that are consistent with the simulation traces, and did not
take advantage of annotations.

3. PRELIMINARIES
For a vector x ∈ Rn, |x| denotes the `2 norm For x1, x2 ∈
Rn, |x1 − x2| is the Euclidean distance between the points.
Bδ(x1) ⊆ Rn denotes the closed ball of radius δ centered at
x1. For a set S ⊆ Rn, Bδ(S) = ∪x∈SBδ(x). A set S1 is a δ-
overapproximation of S2, if S2 ⊆ S1 ⊆ Bδ(S2). For a bounded
set S, a δ-cover of S is a finite collection of pointsX = {xi}mi=1

such that S ⊆
⋃m
i=1Bδ(xi). Its diameter diameter(S)

∆
=

supx1,x2∈S |x1 − x2|.

For an n × n matrix A ∈ Rn×n, the norm is defined as |A|
= maxx:|x|=1 abs(xTAx). A is positive semi-definite, written as
A � 0, if ∀x ∈ Rn, xTAx ≥ 0. It is positive definite, A � 0, if
the previous inequality is strict. It is negative (semi) definite if
−A is positive (semi) definite.

A continuous function f : Rn × R → R is smooth if all its
higher derivatives and partial derivatives exist and are also
continuous. It has a Lipschitz constant K ≥ 0 if for every
x1, x2 ∈ Rn, |f(x1) − f(x2)| ≤ K|x1 − x2|. A non-negative
function g : Rn → R is a class K function if g(x) ≥ 0 for
x 6= 0, g(0) = 0 and g(x) → 0 as x → 0. A class K function
g is called K∞ if g(x) → ∞ as x → ∞. For example, the
function f(y1, y2) = y21 belongs to class K but not to K∞. A
function g : Rn × R→ R is called a KL function, if and only
if (1) for each t ∈ R, gt(x)

∆
= g(x, t) is aK function and (2) for

each x ∈ Rn, gx(t)
∆
= g(x, t) → 0 as t → ∞ (see Appendix

of [16] for these standard definitions).

A matrix function M : Rn × R≥0 → Rm×m maps a state
x ∈ Rn and a time t to a matrix M(x, t). M is called an
uniform metric if ∀x ∈ Rn, ∀t > 0, M(x, t) is symmetric,
positive definite and ∀y ∈ Rm, ∃ v2, v1 such that 0 < v2 < v1,
v2(yT · y) ≤ yTM(x, t)y ≤ v1(yT · y). We will sometimes
consider uniform metrics which satisfy the above properties
over a subset of Rn × R.

3.1 Dynamical and Switched System Models
An n-dimensional nonlinear dynamical system is specified by a
differential equation:

ẋ = f(x, t), (1)

where the variable x takes values in Rn, t is a non-negative
real variable which models time, and f : Rn × R → Rn
is a continuous function. In this context points in Rn are
called states. A solution for Equation (1) is a function ξ :
Rn × R≥0 → Rn, such that for a given initial state x0 ∈ Rn,
the state of the system at time t is ξ(x0, t). A solution is also
called a trajectory. For the vector-valued function f(x, t) =

[f1(x, t) · · · fn(x, t)]T , the Jacobian matrix is denoted by ∂f
∂x

and it generalizes differentiation of scalar functions.

A switched system is specified by a set of differential equations
and a set of switching signals. Each switching signal defines
the time intervals over which particular differential equation
governs the evolution of the system. Let F = {fi}i∈I be a

collection of continuous functions indexed by a finite set I,
which specify the right hand side of the differential equa-
tions. A switching point p consists of (a) an element of I,
denoted by p.mode, and (b) a nonnegative real number de-
noted by p.time which defines the time up to which the sys-
tem evolves with dynamics ẋ = fp.mode(x, t). A sequence
of switching points σ = p0, p1, . . . , pk with p0.time = 0 and
strictly increasing switching times1 naturally defines a switch-
ing signal σ : [0, pk.time] → I as σ(t) = pi.mode if and only
if t is in the half-open interval [pi−1.time, pi.time). The ex-
ecution of a switching system given a switching signal σ =
p1, . . . , pk is defined as ξσ : Rn×R≥0 → Rn where ξσ(x0, 0) =

x0 and ∀t ∈ (pj−1.time, pj .time), ξ̇σ(x0, t) = fpj .mode (ξσ(x0, t), t−
pj−1.time) and ξσ(x0, pj .time) = limt→ pj .time−ξσ(x0, t).

We specify a set of switching signals by what we call a switch-
ing interval sequence which is a finite sequence of the form
ρ = q1, . . . , qk where each qi is of the form (qi.mode, qi.range)
with qi.mode ∈ I and qi.range is a closed interval over R≥0.
The ith element in the sequence is also denoted as ρ[i]. The
upper and lower bounds of the interval qi.range are denoted
as qi.ub and qi.lb respectively. A switching interval sequence
defines a set of switching signals sig(ρ) = {σ | σ = p0, . . . , pk,
p0.time = 0, ∀i ∈ 1 : k, pi.time ∈ qi.range}. We define a
refinement function over a switching interval sequence that
gives the finite set of all possible switching interval sequences
that are obtained by splitting each of the closed intervals into
two closed intervals of equal width. Formally, refine(ρ)

∆
= {

ρ1, . . . , ρm} such that
⋃
i=1:m sig(ρi) = sig(ρ) and ∀i = 1 :

m, ∀j = 1 : k, either ρi[j].lb = ρ[j].lb; ρi[j].ub = 1
2
(ρ[j].lb +

ρ[j].ub) or ρi[j].lb = 1
2
(ρ[j].lb + ρ[j].ub); ρi[j].ub = ρ[j].ub.

The set of executions corresponding to ρ is defined as, ξρ(x0, t)
= {ξσ(x0, t)|σ ∈ sig(ρ)}. The reachable set for a state x0 for a
switching signal σ at a given time t0 is given by {ξσ(x0, t0)}.
Thus, by extension reachable set for a switching interval se-
quence ρ at time t0 is

⋃
σ∈sig(ρ){ξσ(x0, t0)}. The notion ex-

tends naturally for a set of states and for interval durations.

DEFINITION 1. The system F , with a switching interval se-
quence ρ is ε-robustly safe upto Tbound , for a given initial state
x0, an unsafe set U ⊆ Rn, an ε ≥ 0 and a time bound Tbound if for
every t ∈ [0, Tbound], Bε(ξρ(x0, t)) ∩ U = ∅. It is robustly safe
if it is ε-robustly safe for some ε > 0. The definition is extended in
the natural way to a set of initial states Θ.

4. TRAJECTORY DISCREPANCY FUNCTION
The bounded safety verification algorithm proposed in Sec-
tion 6 exploits annotations that have to be provided with the
system model. We propose a type of annotation which gen-
eralizes several different types of proof certificates that are
used in the control theory literature for analyzing trajectories
of dynamical systems. We call this general class of annota-
tions discrepancy functions. Informally, a trajectory discrep-
ancy function gives an upper bound on the distance between
two trajectories as a function of the distance between their
initial states and the time elapsed. In the following subsec-
tions, we present three different ways to obtain discrepancy
functions with the help of a running example.
1In this paper we require strictly increasing switching times,
but in the general theory of switched systems the switching
times may be nondecreasing [16].

DEFINITION 2. A smooth function V : Rn × Rn → R≥0

is called a discrepancy function for the system (1) if and only
if there are functions α1, α2 ∈ K∞ and a uniformly continuous
function β : R2n × R → R≥0 with β(x1, x2, t) → 0 as |x1 −
x2| → 0 such that for any pair of states x1, x2 ∈ Rn:

x1 6= x2 ⇐⇒ V (x1, x2) > 0, (2)
α1(|x1 − x2|) ≤ V (x1, x2) ≤ α2(|x1 − x2|)and (3)
∀ t > 0. V (ξ(x1, t), ξ(x2, t)) ≤ β(x1, x2, t), (4)

A tuple (α1, α2, β) satisfying the above conditions is called a wit-
ness to the discrepancy function.

The complete annotation for the system (1) is a discrepancy
function and its witness. The function V (x1, x2) vanishes
to zero if and only if the first two arguments are identical.
The second condition states that the value of V (x1, x2) can
be upper and lower-bounded by functions of the `2 distance
between x1 and x2. These functions are used in algorithm
in Figure 1 for computing the tubes that are used in safety
verification. The final, and the more interesting, condition
requires that the function V applied to solutions of (1) at a
time t from a pair of initial states is upper bounded and con-
verges to 0 as the `2 norm of x1 − x2 converges to 0. We note
that Definition 2 can be restricted in a natural way to define
local discrepancy functions which satisfy the above proper-
ties over a given subset of Rn.

Remark : [Comparison of Discrepancy Function and Sensitivity
Analysis] Sensitivity sx for the system given in 1 is given by
the differential equation ṡx = ∂f

∂x
sx and the value of sensi-

tivity at time t for an initial state x0, denoted as sx0(t) is ob-
tained by solving this differential equation along the solution
of the system 1. It has observed in [8] that |sx0(t)| · ε is an
approximate estimate of |ξ(x, t)−ξ(x0, t)|where |x−x0| = ε.
However this estimate is neither an overapproximation, nor
an under-approximation. Compared to sensitivity analysis,
our approach requires that β(x0, x, t) gives an overapproxi-
mation of V (ξ(x0, t), ξ(x, t)).

In the remainder of this section, we observe that proof cer-
tificates routinely used in stability analysis of dynamical sys-
tems are in fact discrepancy functions. Proofs of the proposi-
tions appear in the Appendix.

4.1 Lipschitz dynamics
Consider a system (1) such that L is Lipschitz constant of
f(x, t). We observe that for such a system, the function |x1 −
x2| is a discrepancy function. Lipschitz constants can be com-
puted algorithmically for linear, polynomial, and certain classes
of trigonometric functions. For more general classes, empiri-
cal techniques can estimate it over closed subsets [23].

PROPOSITION 1. For system (1) with Lipschitz constant L ∈
R≥0 for the function f(x, t), V (x1, x2)

∆
= |x1 − x2| is a discrep-

ancy function with witness (α1, α2, β) where α1(|x1 − x2|) =
α2(|x1 − x2|) = |x1 − x2| and β(x1, x2, t) = eLt|x1 − x2|.

Example 1 A second order differential equation modeling
the dynamics of current in an RLC circuit is given by: d2i

dt2
+

R
L
di
dt

+ i
LC

= 0. For particular choice of the R, L, and C
parameters the system can be written as:(

ẋ

ẏ

)
=

(
0 1

− 1
LC

−R
L

)(
x

y

)
=

(
0 1

−2 −2

)(
x

y

)
. (5)

The system shows damped oscillations and eventually stabi-
lizes to the origin. Considering an operating region in the
state space of the system, say R = [−10, 10] × [−10, 10],
the Lipschitz constant over this interval can be computed

by maximizing |A1[x1,y1]
T−A1[x2,y2]

T |
|[x1−x2,y1−y2]T |

by over (x1, y1) and
(x2, y2) inR, whereA1 is the matrix in Equation (5). Thus, in
this case the Lipschitz constant is equal to the matrix norm
|A1|which can be computed using any algorithm for finding
eigenvalues ofA1. For this numerical example, we found the
Lipschitz constant to be L = 2.9208 using MATLAB. It fol-
lows that, the discrepancy function is given as V (x1, y1, x2, y2) =
|[x1 − x2, y1 − y2]T | and β(x1, y1, x2, y2, t) = e2.9208t|[x1 −
x2, y1 − y2]T |.

4.2 Contraction metrics
DEFINITION 3 (DEFINITION 2 FROM [17]). A uniform met-

ric M : Rn × R → Rn×n is called a contraction metric for the
system (1) if there exists a constant βM ∈ R≥0 such that

∂f

∂x

T

M(x, t) + M(x, t)
∂f

∂x
+ Ṁ(x, t) + βMM(x, t) � 0. (6)

THEOREM 2 (THEOREM 2 FROM [17]). For system (1) with
a contraction metric M, the distance between the trajectories changes
exponentially with time, i.e., ∃ k ≥ 1, γ > 0 such that, ∀x1, x2 ∈
Rn, δxT · δx ≤ kδxT0 · δx0e−γt, where δx0 = x1 − x2 and
δx = ξ(x1, t)− ξ(x2, t).

PROPOSITION 3. For system (1) with a contraction metric M,
V (x1, x2)

∆
= (x1 − x2)T (x1 − x2) is a discrepancy function with

witness (α1, α2, β) where α1(|x1 − x2|) = α2(|x1 − x2|) =
(|x1 − x2|)2 and β(x1, x2, t) = k(|x1 − x2|)2e−γt where k, γ
are from Theorem 2.

Example 2 Continuing with the system in Example 1, we

compute the Jacobian ∂f
∂x

=

(
0 1

−2 −2

)
and observe that

the matrix function M(x, t)
∆
=

(
2.5 0.5

0.5 0.75

)
is a uniform

metric. Evaluating the right hand side of equation (6) with
βM = 0.5, we obtain ∂f

∂x

T
M(x, t) + M(x, t) ∂f

∂x
+ Ṁ(x, t) +

βMM(x, t) =

(
−0.75 0.25

0.25 −1.625

)
≺ 0. Hence, M(x, t) is a

contraction metric for Example 1. From Theorem 2, we have
that ∃k ≥ 1, γ > 0, such that δxT δx ≤ kδxT0 δxe

−γt. From
Proposition 3, the function V (x1, y1, x2, y2) = (x1 − x2, y1 −
y2)T (x1 − x2, y1 − y2) is a discrepancy function with wit-
ness α1(|(x1, y1) − (x2, y2)|) = α2(|(x1, y1) − (x2, y2)|) =
((x1 − x2)2 + (y1 − y2)2) and β(x1, y1, x2, y2, t) = k((x1 −
x2, y1 − y2)T (x1 − x2, y1 − y2)e−γt.

4.3 Incremental Stability
Incremental stability is a notion used in control theory [2]
which formalizes the property that the Euclidean distance
between two trajectories is bounded by a KL function of the
distance between their initial states and time. This is stronger
than what is required in a discrepancy function which may
not converge to zero as time goes to infinity.

DEFINITION 4. The system (1) is incrementally stable if there
is a KL function β such that for any two initial states x1 and x2
in Rn, |ξ(x1, t)− ξ(x2, t)| ≤ β(|x1 − x2|, t).

THEOREM 4 (THEOREM 1 FROM [2]). If system (1) is in-
crementally stable then there exists a smooth function V : Rn ×
Rn → R≥0 and ∃α1, α2 ∈ K∞ and α ∈ K, such that for every
pair of states x1, x2 ∈ Rn

α1(|x1 − x2|) ≤ V (x1, x2) ≤ α2(|x1 − x2|), and (7)
V (ξ(x1, t), ξ(x2, t))− V (x1, x2) ≤∫ t

0

−α(|ξ(x1, τ)− ξ(x2, τ)|)dτ. (8)

The function V is called an incremental Lyapunov function.

PROPOSITION 5. For system (1) with incremental Lyapunov
function V , then a the function V is a discrepancy function with
witness (α1, α2, β) where α1 and α2 are from Equation 7 and
β(x1, x2, t) = V (x1, x2)+

∫ t
0
−α(|ξ(x1, τ)−ξ(x2, τ)|)dτ where

α is from Equation 8.

Example 3 Continuing with the system in Example 1, here
we start with a candidate quadratic incremental Lyapunov
function V ((x1, y1), (x2, y2))

∆
= (x1 − x2, y1 − y2)TP (x1 −

x2, y1 − y2), with α1
∆
= 0.375(x1 − x2)2 + 0.375(y1 − y2)2 +

0.5(x1−x2)(y1− y2), α2
∆
= 1.25(x1−x2)2 + 1.25(y1− y2)2 +

0.5(x1−x2)(y1−y2) and α ∆
= (x1−x2)2+(y1−y2)2, with P =(

1.25 0.25

0.25 0.375

)
. First we check that V is indeed an incremen-

tal Lyapunov function by computing V̇ ((x1, y1), (x2, y2)) which
turns out to be (x1 − x2, y1 − y2)T [ATP + PA](x1 − x2, y1 −
y2) = −α(x1, y1, x2, y2). Since α > 0 whenever (x1, y1) 6=
(x2, y2), (x1, y1) 6= (0, 0) and (x2, y2) 6= (0, 0). Integrating
both sides, we get V (ξ(x1, y1, t), ξ(x2, y2, t))− V (x1, y1, x2, y2)

≤
∫ t
0
−α(ξ(x1, y1, τ), ξ(x2, y2, τ)) dτ . Hence V is a discrep-

ancy function with witness (α1, α2, β) where β((x1, y1), (x2, y2), t)

= V ((x1, y1), (x2, y2)) +
∫ t
0
−α(ξ(x1, y1, t), ξ(x2, y2, t))dτ .

Example 4 Consider a two dimensional linear system: ẋ =
−x; ẏ = −y0

100
, with initial state (x0, y0). A trajectory of the

system is given by ξ((x0, y0), t) = [x0e
−t, y0

(1−t)
100

]. The sys-
tem converges to origin. In this example, the distance be-
tween two trajectories from different initial states decreases
linearly and not exponentially. It can be verified that the
function V ((x1, y1), (x2, y2)) = (x1−x2)2+(y1−y2)2 is an in-

cremental Lyapunov function. The Jacobian ∂f
∂x

is

(
−1 0

0 0

)

and hence a uniform metric M(x, t) that satisfies Definition 3
does not exist.

As seen in Example 4, incremental Lyapunov function exists
for systems which contraction metric does not exist. How-
ever, the guarantees given by contraction metric is that the
distance between trajectories decreases exponentially, which
is much stronger guarantee than what is obtained by incre-
mental stability. If the contraction metric is a constant, then
one can derive equivalence between contraction metric and
incremental stability. The common trait between contraction
metrics and incremental Lyapunov functions is that these tech-
niques are useful only for proving convergence of trajecto-
ries. This is not necessary for a discrepancy function. For
more details regarding these two concepts, an interested reader
is referred to [17, 2].

Our last example of this section illustrates that for unstable
systems over a bounded time horizon, we can still obtain dis-
crepancy functions, even though trajectories from neighbor-
ing states actually diverge with time.

Example 5 Consider the system ẋ = 1; ẏ = y0
100

, where
(x0, y0) is the initial state of the trajectory. The closed form
solution of the above system is given as x(t) = x0 + t, y(t) =
y0(1 + t

100
). For two trajectories starting from (x1, y1) and

(x2, y2), the distance between the trajectories after time t is

given as
√

(x1 − x2)2 + (1 + t
100

)2(y1 − y2)2. Observe that

the function V (x1, y1, x2, y2) =
√

(x1 − x2)2 + (y1 − y2)2 with
α1 = α2 =

√
(x1 − x2)2 + (y1 − y2)2 and β(x1, y1, x2, y2, t)

=
√

(x1 − x2)2 + (1 + t
100

)2(y1 − y2)2 satisfies all the required
conditions by Definition 2 and hence is a discrepancy func-
tion .

5. COMPUTING ANNOTATIONS
Our verification algorithm relies on annotations, namely the
discrepancy functions of the dynamical system and its wit-
ness. We expect the users to derive these annotations through
some means—possibly using existing control theoretic tech-
niques. In Section 4 we showed how knowledge about a sys-
tem in terms of Lipschitz constants, contraction metrics, and
incremental Lyapunov functions can be exploited for obtain-
ing annotations. In this section, we briefly discuss the related
but orthogonal issue of obtaining discrepancy functions for
both linear and nonlinear dynamical systems. The strategy
discussed here restricts the search to exponential discrepancy
functions which grow or shrink exponentially with time.

DEFINITION 5. For system (1) a discrepancy function of the
system V : Rn × Rn → R≥0 is said to be an exponential dis-
crepancy function if ∃γ ∈ R such that:

∂V (x1, x2)

∂x1
f(x1, t) +

∂V (x1, x2)

∂x2
f(x2, t) ≤ γV (x1, x2). (9)

Since V (ξ(x1, t), ξ(x2, t)) ≤ eγ1tV (x1, x2), it follows that V
satisfies Equation (4) with β(x1, x2, t) = eγ1tV (x1, x2). Thus
an exponential discrepancy function V is indeed a special
type of discrepancy function.

PROPOSITION 6. Consider a linear system ẋ = Ax. Suppose
two n × n matrices P and Q satisfy the (Lyapunov-like) equa-
tion ATP + PA = Q and P is positive definite and Q is ei-
ther positive definite or negative semi-definite. Then, V (x1, x2)

∆
=

(x1 − x2)TP (x1 − x2) is an exponential discrepancy function.

PROOF. The left hand side of Equation (9) evaluates to
(x1 − x2)TQ(x1 − x2). If Q is negative-semi definite, then
Equation (9) is trivially satisfied with γ = 0. If Q is negative
definite, then a value of γ < 0 is guaranteed to exist such that
(x1 − x2)TQ(x1 − x2) ≤ γ(x1 − x2)TP (x1 − x2). Otherwise
Q is positive definite, and since P is also positive definite, a
γ > 0 is guaranteed to exist, such that (x1−x2)TQ(x1−x2) ≤
γ(x1 − x2)TP (x1 − x2).

The hypothesis of Proposition 6 is satisfied by linear systems
that are Lyapunov stable, globally asymptotically stable (re-
fer to [16] for formal definitions) and for systems whose tra-
jectories diverge. For such linear systems, exponential dis-
crepancy functions can be computed completely automati-
cally.

The underlying principle for finding exponential discrepancy
functions for nonlinear systems is similar. The key step is
to identify classes of systems for which Equations (2), (3),
and (9) can be encoded and effectively solved as convex opti-
mization problems. We demonstrate the procedure for find-
ing quadratic discrepancy functions encoded as linear matrix
inequalities (LMIs) which are solved using existing software
tools such as the sum-of-squares toolbox [21]. Similar proce-
dures may be instantiated for finding polynomials discrep-
ancy functions of higher degree.

Consider that a candidate quadratic form V (x1, x2)
∆
= (x1 −

x2)TP (x1 − x2), where P is a n × n matrix. Plugging this
in Equation (9) we get: (f(x1, t) − f(x2, t))

TP (x1 − x2) +
(x1 − x2)TP (f(x1, t) − f(x2, t)) < γV (x1, x2). We denote
the left hand side of this expression by R(x1, x2, t) and pro-
ceed as follows: (1) Express the constraints V (x1, x2) > 0 and
R(x1, x2, t) ≤ 0 as LMIs and check feasibility. (2) If feasible,
then search for appropriate γ ≤ 0 such that R(x1, x2, t) ≤
γV (x1, x2), again encoding this as an LMI. (3) If the check in
step (1) is infeasible , then express the constraints V (x1, x2) >
0 andR(x1, x2, t) > 0 as LMIs and check feasibility. (4) If fea-
sible, then search for appropriate γ ≥ 0 such thatR(x1, x2, t) ≤
γV (x1, x2) encoding it as an LMI. (5) If step (3) returns infea-
sible , then the search for a quadratic discrepancy function
fails.

6. SAFETY VERIFICATION FROM DISCREP-
ANCY FUNCTIONS AND SIMULATIONS

In this section, we present an algorithm which uses simu-
lations and annotations for checking safety of switched sys-
tems. First, we define the notion of simulations we use, then
we present a subroutine for verification of dynamical sys-
tems (Section 6.2), and finally in Section 6.3 we use this sub-
routine in the algorithm for verification of switched models.

6.1 Simulation Traces for Dynamical Systems
Given the model of a dynamical system, an initial state x0
and a period of integration h > 0 (also called the sampling

period), a standard ODE solver approximates the values of
ξ(x0, 0), ξ(x0, h), ξ(x0, 2h), . . . by numerically integrating the
right hand side of the differential equation. In our algorithms
and implementations, we rely on a validated ODE solver
(for example VNODE-LP [19]), which computes a sequence
of regions R1, R2, . . . such that for each t ∈ [j · h, (j + 1) ·
h], ξ(x0, t) ∈ Rj . If the diameter of Ri is greater than the de-
sired simulation error bound ε, then we reduce the value of
h adaptively until the diameter becomes less than ε. Features
of such simulation traces are stated in the definition below.

DEFINITION 6. For given a dynamical system described by Equa-
tion (1), an initial state x0, a time bound T , error bound ε > 0,
and time step τ > 0, a (x0, T, ε, τ)-simulation trace is a finite
sequence ψ = (R0, t0), (R1, t1), . . . (Rk, tk) where R0 = {x0},
∀i > 0, Ri ⊆ Rn, ti ∈ R≥0 and

(1) ∀ i ∈ {0, 1, . . . k}, ti+1 − ti ≤ τ, t0 = 0, and tk = T ,

(2) ∀ i > 0, ∀t ∈ [ti−1, ti], ξ(x0, t) ∈ Ri, and

(3) ∀ i > 0, diameter(Ri) ≤ ε.

It follows that the union of the sequence of regions in a (x0, T, ε, τ)-
trace contains states of the dynamical system that can be reached
from x0 in T time. We will identify this union with the name
of the simulation trace ψ.

6.2 Simulation to Verification: Dynamical Sys-
tems

In this section, we will present an algorithm for checking
safety of a dynamical system using annotations. For the re-
mainder of this subsection, we fix a differential equation of
the form given in Equation (1), an annotation V for it, and a
witness (α1, α2, β) for that annotation. For any state x ∈ Rn,
we define BVδ (x)

∆
= {y | V (x, y) ≤ δ}. For a subset W ⊆ Rn

BVδ (W)
∆
= ∪x∈WBVδ (x). Bα1

δ (x) and Bα2
δ (x) are defined

analogously. It follows from Equation 3 of Definition 2 that
for any state x,

Bα2
δ (x) ⊆ BVδ (x) ⊆ Bα1

δ (x). (10)

We are ready to describe the algorithm in detail (see Fig-
ure 1). It takes the following inputs: (a) initial partitioning
parameter δ0, (b) the dynamical system model specified by
the function f , (c) Θ, which is an ω-approximation of the
bounded set of initial states, (d) U is an open set of unsafe
states, (e) an annotation V for f and its witness, and (f) Tbound
is a time bound. We claim that the algorithm returns “SAFE”
if all the executions starting from Θ are safe up to Tbound,
“UNSAFE” if ∃x0 ∈ Θ such that all executions starting from
B(ω+δ)(x0) are unsafe and, it returns “ω-TOO LARGE” oth-
erwise.

In line 4, δ-Partition(S) returns a δ-cover of S. As S = Θ
is bounded, δ-Partition(S) returns a finite cover. A simula-
tion trace ψ is obtained in line 8, which is a finite sequence
(R0, t0), (R1, t1), . . . (Rk, tk) described in Section 6.1. The tube
T constructed in line 9 is guaranteed to contain all the states
reachable within time Tbound from states in Bδ(x0) based on
the properties of β and the accuracy of the simulation. The

1: Input: δ0, 〈f,Θ, U〉, ω, V (x1, x2), (α1, α2, β), Tbound
2: S ← Θ; δ ← δ0;R← ∅
3: while S 6= ∅ do
4: X ← δ-Partition(S)
5: for x0 ∈ X do
6: ε← sup{β(y, x0, t) | y ∈ Bδ(x0), 0 ≤ t ≤ Tbound}
7: ε′ ← sup{β(y, x0, t)|y ∈ B(ω+δ)(x0), 0 ≤ t ≤

Tbound}
8: ψ ← simulate(x0, Tbound, ε, τ)
9: T ← BVε (ψ)

10: if T ∩ U = ∅ then
11: S ← S \Bδ(x0);R ← R∪ T
12: else if ∃i. BVε′ (Ri) ⊆ U then
13: return (UNSAFE,R, max{2ε+ ε′})
14: else if ∃i. Ri ⊆ U and BVε′ (Ri) * U then
15: return (ω-TOO LARGE,R, max{2ε+ ε′})
16: end if
17: end for
18: δ ← δ/2; τ ← τ/2
19: end while
20: return (SAFE,R, max{2ε+ ε′})

Figure 1: Algorithm 1: Safety verification of dynamical sys-
tems.

algorithm returns the result a tuple, where the first element
is either SAFE or UNSAFE or ω-TOO LARGE. The second
element is the collection of all the tubes computed in line 9
that are safe, denoted as R. The third element max{2ε + ε′}
is the maximum value of 2ε+ ε′ encountered during the ver-
ification of all safe tubes. This value gives the upper bound
on the approximation of the reachable set computed by the
union of tubes in line 9.

We establish the soundness and relative completeness of the
algorithm using a some intermediate propositions.

PROPOSITION 7. If x ∈ Bδ(x0) then ∀t ∈ [0, Tbound], ξ(x, t) ∈
BVε (ξ(x0, t)), where ε = sup{β(x, x0, t)|0 ≤ t ≤ Tbound, x ∈
Bδ(x0)}.

PROPOSITION 8. For x ∈ Bδ(x0), for any t ∈ [0, Tbound],
ξ(x, t) ∈ BVε (ψ), where ψ is the union of regions obtained from a
(x0, Tbound, ε, τ)-simulation trace.

THEOREM 9. Algorithm 1 is sound. That is, if it returns “SAFE”
then all the executions from Θ are safe, and when it returns “UN-
SAFE” there exists at least one execution from the initial set, that
is unsafe.

PROOF. Observe that from Proposition 8, the set of all states
reachable within time Tbound from some state in Bδ(x0) is
contained in the tube T computed in line 9. Thus, if T ∩U =
∅, then all executions from the set Bδ(x0) are safe, and so are
eliminated from consideration in future iterations (line 11).
Hence, if the algorithms exits the while loop because S = ∅,
we can conclude that the system is safe.

On the other hand, if there is some Ri in the simulation trace
ψ such that BVε′ (Ri) ⊆ U , then it means that ∃x0 ∈ Θ such

that all executions starting fromB(ω+δ)(x0) are unsafe. Since
Θ is an ω-approximation of the initial states, and x0 is an ele-
ment in δ-partitioning of Θ, it follows that there exists at least
one state from the set of initial states in B(ω+δ)(x0). Hence,
there exists at least one execution from the initial set that is
unsafe. Thus, the decision in line 13 is correct.

PROPOSITION 10. The collection of safe tubes R returned by
Algorithm 1 in line 20 is utmost max{2ε + ε′}-approximation of
the set of reachable states from the initial set of states.

THEOREM 11. For ω = 0, Algorithm 1 is a complete proce-
dure for robust safety verification of dynamical systems. That is, if
all the executions from Θ are robustly safe, then the it will termi-
nate and return “SAFE”. If any of the executions from Θ is unsafe,
then it will terminate and return “UNSAFE”.

PROOF. Suppose that all the executions from Θ are ε0-robustly
safe. From the proof of Theorem 9, we can conclude two
things. First, line 13 is never executed, since the system is
safe. Second, when a set of initial states in eliminated from
consideration (line 11), those states are safe. Now, since V ≤
α2, α2 ∈ K∞, ∃δ′ such that whenever |x− y| < δ′, V (x, y) <
ε0/4. Also, since β is uniformly continuous in x when t ∈
[0, Tbound], we have that ∃δ1, such that ∀y ∈ Bδ1(x), t ∈
[0, Tbound], we have |β(x, y, t)| < δ′. Thus ∃δ1 such that the
value of ε in line 6 is < ε0/4.

We also have that α1 ≤ V, α1 ∈ K∞, thus ∃δ′′ such that
α1(δ′′) < ε0/2. Thus BVδ′′(x) ⊂ Bε0/2(x). Let δ2 be the value
of δ in the algorithm such that the value of ε in line 6 is < δ′′.
If the δ in the algorithm reaches a value < min{δ1, δ2}, The
tubes computed in line 9 are

T = BVδ′′(ψ)

⊆ Bα1
δ′′ (ψ)

⊂ Bε0/2(Bε0/4(ξ(x0, t)))

⊂ B3ε0/4(ξ(x0, t))

Since the system is robustly safe, all the tubes would be safe
and hence the algorithm will terminate and prove that sys-
tem is safe.

Suppose 〈f,Θ, U〉 is unsafe. Since U is open, there is a initial
state y0, time t ≤ Tbound, and ε0 > 0, such thatBε0(ξ(y0, t)) ⊆
U . Now, since ξ(·) is continuous, there are τ0 and δ0 such
that for any x0 ∈ Bδ0(y0), there is an i such that |ξ(x0, iτ0)−
ξ(y0, t)| < ε0/4. Further, V (x0, y0, t) → 0 as |x0 − y0| → 0,
hence ∃δ1, such that for every x0 ∈ Bδ1(y0), β(x1, x2, t) <
ε0/4. Finally, since we can simulate with arbitrary precision,
and δ and τ are decreasing, we will eventually generate a
simulation trace, for which line 13 will be reached.

We remark that in the case when the dynamical system has
some execution from Θ that is safe but not robustly safe, Al-
gorithm 1 may not terminate. Also, note that relative com-
pleteness of the above algorithm is achieved if δ and τ can
be made arbitrarily small. However, even if we have finite
precision arithmetic, relative completeness is achieved if the
system is robustly safe with ε0 greater than the the granular-
ity of the precision.

1: Input: 〈F ,Θ, U〉, ρ, {Vi}, {(α1,i, α2,i, βi)}, Tbound, δ0
2: SwitchingSet← ρ; δ ← δ0
3: for all ρ ∈ SwitchingSet do
4: S ← Θ; ω ← 0;R← ∅
5: for all i = 1 : k, where ρ = q1, q2, . . . , qk do
6: (result,R, ω)← CheckDS(δ, 〈fρ[i].mode, S, U〉, ω, ρ[i].ub−

ρ[i− 1].lb,)
7: if result = SAFE then
8: S ← Project(R, [ρ[i].ub, ρ[i].lb])
9: else if result = UNSAFE then

10: return UNSAFE
11: else if result = ω-TOO LARGE then
12: SwitchingSet← SwitchingSet\{ρ} ∪ refine(ρ)
13: δ ← δ/2 ; GOTO Line 3
14: end if
15: end for
16: end for
17: return SAFE

Figure 2: Algorithm 2: Safety verification of switching sys-
tem for switching interval sequence ρ

6.3 Simulation to Verification: Switched Sys-
tems

In this section, we will present an algorithm for verifying
switched systems with respect to a set of switching signals
that uses Algorithm 1. As before, F = {fi}i∈I specifies a
collection of dynamical subsystems, ρ = q1, q2, . . . , qk spec-
ifies a collection of switching signals, Θ is a bounded set of
initial set of states, Tbound is the time bound, and an open un-
safe region U . Our algorithm will decide if an unsafe state is
reached within Tbound and it uses annotations discrepancy
function Vi(·) and witnesses (α1,i, α2,i, βi) for each of the
subsystems in I.

For each ` ∈ {1, . . . , k}, Algorithm 2 makes subroutine calls
to Algorithm 1 (subroutine CheckDS in line 6) which at-
tempts to verify that the dynamical system ẋ = fq`.mode(x, t)
is safe for the duration [q`−1.lb, q`.ub]. In the process, Algo-
rithm 1 also computes an ω-overapproximation of the reach-
able states during q`.range and this is used as ω-approximate
initial set for the dynamics fq`+1.mode. If Algorithm 2 fails to
prove safety or unsafety with respect to Θ and ρ, then it re-
fines the switching interval sequence ρ and the cover of the
initial set Θ. The algorithm is given in Figure 2.

The soundness of Algorithm 2 follows from soundness of Al-
gorithm 1 and Theorem 10.

THEOREM 12. The algorithm in Figure 2 is sound, i.e., when
it returns “SAFE” the system is safe, and when it returns “UN-
SAFE” the system is unsafe.

PROOF. The proof is based on Theorem 9 and Theorem 10.
From Theorem 10, we know that the order of approximation
computed by Algorithm 1 in the duration ρ[i].range is sound.
Observe that algorithm 2 returns “SAFE” only when all the
subroutine calls return “SAFE” and thus it follows from The-
orem 9 that the system is safe in each of the dynamical sys-
tems. Notice that algorithm 2 returns “UNSAFE” only when
at least one of the subroutine call returns “UNSAFE” and

thus, because of Theorem 10 and Theorem 9, it follows that
the system is indeed unsafe.

THEOREM 13. If the system 〈F ,Θ, U〉 with the set of switch-
ing signals sig(ρ) is robustly safe then the Algorithm 2 terminates
and returns “SAFE”. On the other hand, if the system is unsafe,
then algorithm will terminate and return “UNSAFE”

PROOF. If the system is safe, then it follows from Theo-
rem 9 that line 10 is never executed. Thus, the subroutine
call to verification of dynamical system would either return
“SAFE”, in which case, the algorithm continues, or it would
return “ω-TOO LARGE” in which case, we refine ρ and de-
crease value of δ. Thus, the value of 2ε + ε′ computed for
each of the modes decreases to zero. This ensures that ω → 0.
Since the system is robustly safe, each of the dynamical sys-
tems is also robustly safe, and thus ∃ω > 0 such that the each
of the dynamical systems would return “SAFE” and hence
the algorithm in Figure 2 would return “SAFE”.

If the system is unsafe, then it follows from Theorem 9 that
line 7 is never executed. Thus, the subroutine call would ei-
ther return “UNSAFE” in which case, the system is unsafe or
it would return “ω-TOO LARGE” in which case we refine ρ
and decrease value of δ. This ensures that ω → 0. Observe
that algorithm 1 would return unsafe only when the condi-
tion in line 12 is satisfied. Now since δ → 0, it implies that
ε→ 0 and ε′ → 0 and thus BVε′ (Ri) ⊆ U is satisfied for some
Ri. Hence the algorithm will return “UNSAFE”.

We remark that in the case where the system is safe, but not
robustly safe, then the above algorithm need not terminate.
Further, if the algorithm infers that the system is unsafe, then
we can generate a set of traces that correspond to the un-
safe behavior. We will conclude this section by pointing out
that we are making some computational assumptions about
the sets Θ, U , and of the functions V that ensure that all the
steps in the algorithms 1 and 2 are computable. We do not
explicitly state these assumptions to ensure that our discus-
sion in this paper highlights the key ideas without getting
bogged down by technicalities. On a similar note, one can
also use α1 and α2 in line 9, instead of V without losing
the soundness and completeness guarantees; however, since
these are bonded overapproximations, using them might af-
fect the number of iterations needed to prove safety.

Example 6 Continuing on Example 1, we now compare the
performance of the three discrepancy functions defined in
Section 4 for the verification procedure described in Figure 1.
We begin with the initial conditions as S = 3 ≤ x ≤ 5∧y = 0.
The unsafe state if given as 1 < t < 1.2 ∧ x > 3 and ini-
tial value of δ as 0.1. The number of executions required
for proving safety is 70, 10 and 10 if we use discrepancy
function as Lipschitz constant, contraction metric and incre-
mental Lyapunov function respectively. In comparison with
other annotations, Lipschitz constant requires more number
of simulations as it estimates that the distance between exe-
cutions would increase exponentially, which is a coarse over-
approximation. This shows that the time taken to verify a
system using simulations depends on the annotation pro-
vided by the user.

7. EXPERIMENTAL EVALUATION
For demonstrating the effectiveness of our annotation-based
verification Algorithm we have built a tool called Check-Execute-
Compare Engine (C2E2). Our tool is integrated into the Simulink
Stateflow (SLSF) modeling framework, which is popular among
designers of embedded systems. The system verified by C2E2
is described as a Simulink/Stateflow model, which is (auto-
matically) translated into a hybrid automaton according to
the semantics described in [18], and VNODE-LP was used to
generate simulators for each of the modes of the hybrid au-
tomaton. VNODE-LP integration engine that uses finite pre-
cision interval arithmetic and Taylor models for generating
simulations described in Section 6.1. The tool is developed in
C++ and uses GNU Linear Programing Kit (GLPK) to check
the distance of simulation traces from the unsafe set. Ob-
serve that the algorithm presented in Section 6 requires arbi-
trary precision arithmetic for relative completeness, however
in practice, we use finite precision arithmetic which requires
the robustness to be greater than the granularity of precision.
In practice we terminate if the partitioning reaches 10−7 and
terminate by saying that the system is not robust with respect
to sensitive perturbations.

Our evaluation has four parts: First, we verify a benchmark
suite consisting of natural linear and nonlinear dynamical
system models. Second, we verify several adaptive control
examples where the executable system has a reference model
with unknown parameters. Third, we evaluate scalability
by increasing the time horizon for verification and the num-
ber of dimensions of two parameterized models. Finally, we
study the effect of the initial partitioning.

7.1 Benchmarks and comparison with other
tools

We compare the performance of C2E2 against Flow∗ [5] and
Ariadne [4] using a benchmark suite consisting of linear and
nonlinear models. Ariadne uses faithful geometric represen-
tation of sets for computing reachable set and Flow∗ uses
Taylor Models. Results of comparing the performance with
Breach are discussed later in this section. In Table 7, we re-
port the time taken by Flow∗ and C2E2 for computing reach
set and checking safety with respect to the unsafe set, and the
time taken by Ariadne for computing the reachable states.
One limitation of Flow∗ is that we can only specify unsafe
sets as rectangles and not as arbitrary polyhedral constraints.
Flow∗ running time depends on the remainder error and the
order of the Taylor models used. For the results reported
here, we use adaptive orders for Taylor models, and set the
remainder error to a value such that increasing it by a fac-
tor of 2 would change the verification result from “SAFE”
to “UNKNOWN”. The parameters for Ariadne is set to the
same values as that for Flow∗. Table 7 show that C2E2 out-
performs the other tools in all examples, and in most cases it
is faster by at least an order of magnitude.

Breach [7] is another tool against which we evaluated C2E2 .
Breach is a toolbox developed in MATLAB with a GUI, mak-
ing a fair comparison difficult. We ran Breach on Vanderpol
coupled oscillator, Sinusoidal tracking, and tank examples,
and measured the “wall clock” running time. In all cases
C2E2 was faster; we don’t report these numbers because of
inaccuracies inherent in such numbers. Breach, like Flow∗,

Benchmark Vars. TH Refs. Sims. C2E2 (sec) Flow∗ (sec) Ariadne (sec)

Moore-Greitzer Jet Engine [3] 2 10 12 36 1.56 10.54 56.57

Brussellator 2 10 33 115 5.262 16.77 72.75

VanDerPol 2 10 5 17 0.75 8.93 98.36

Coupled VanDerPol [3] 4 10 10 62 1.43 90.96 270.61

Sinusoidal Tracking [22] 6 10 12 84 3.68 48.63 763.32

Linear Adaptive 3 10 8 16 0.47 NA NA

Nonlinear Adaptive 2 10 16 32 1.23 NA NA

NonLin. Adpt. + Disturbance 3 10 22 48 1.52 NA NA

Table 1: Experimental Results for benchmark examples. Vars: Number of Variables, TH: Time Horizon for Verification, Refs:
Number of Refinements, Sims: Total number of simulation traces required for proving safety.

does not allow polyhedral unsafe sets. Also Breach is neither
sound nor complete for nonlinear models, but inaccuracies in
the verification results for the examples were not observed.

For the adaptive control system, the n-tank system and the
nonlinear navigation system we computed the annotations,
and for all the other examples the annotations were obtained
from the papers [3, 22] in which the systems appeared.

7.2 Systems models with unknown parameters
One prominent advantage of our approach is that it supports
verification of executable systems where the reference model
has unknown parameters. An illustrative example is the lin-
ear plant: ẋ = 1; ẏ = θ + u, where θ is an unknown pa-
rameter and u is the control input designed to drive y to
zero. Following a standard adaptive control technique, a
new variable θ̂—an estimator for θ—is introduced giving the

new dynamics for y: ẋ = 1; ẏ = −σy + θ − θ̂; ˙̂
θ = γy

σ, γ > 0 are constants chosen by the designer. For the new
system, V ((x1, y1, θ̂1), (x2, y2, θ̂2))

∆
= 1

2
(x1 − x2)2 + γ

2
(y1 −

y2)2 + 1
2
(θ̂1 − θ̂2)2 is an incremental Lyapunov function V̇ =

−γσ(y1 − y2)2 < 0 is used as an annotation.

An example of a nonlinear system with unknown parame-
ters. Consider the system: ẋ = θx+ u where u is the control
input. Similar to the earlier example, we introduce θ̂ and
define the input u = −θ̂x − x such that the closed system

becomes: ẋ = (θ − θ̂)x − x; ˙̂
θ = x2 The Lyapunov function

1
2
x2 + 1

2
(θ − θ̂)2 establishes stability of the system. For ob-

taining the discrepancy function, we come up with a quartic
(fourth degree) discrepancy function . A modified version of
this example introduces unknown disturbance inputs. The
details of this are omitted owing to limited space.

7.3 Scalability with time horizon and contin-
uous dimensions

To check the scalability of the approach with time horizon,
we verified the VanDerPol and the Nonlinear Adaptive con-
trol benchmarks for time horizons 10, 20 and 40. The verifi-
cation times of the first were 0.741, 1.662 and 4.373 seconds
and for the latter were 1.245, 2.604 and 6.075 seconds re-
spectively. These numbers suggest that the verification time

scales roughly linearly with the time horizon for these stable
systems.

Table 3(a) shows the scaling of the verification times with the
number of continuous variables. We consider the a switched
variant of nonlinear version of the n interconnected tank sys-
tem of [1] and a switched nonlinear model with n/4 vehicles
and each vehicle having 4 continuous variables. For n-tank
the initial value of δ is large and this triggers several refine-
ments and for n-vehicles the initial value of δ is small and
this decrease (or eliminates) the need for refinements. There
are two key observations. First, as the number of refinements
increase, the size of the cover increases proportional to the
number of continuous variables in the system. This is evi-
dent in the case of n-tanks, where for the n = 12, 1 refine-
ment step required checking of 16 executions, whereas in the
case of n = 24, 4 refinement steps required 100 executions.
Second, as dimension increases, a smaller value of initial par-
titioning parameter δ increases the size of the cover exponen-
tially. This is evident in the case of n-vehicles, where adding
each new vehicle increased the number of simulations by a
factor of 2.

7.4 Dependence on Initial set partition
Table 3(b) shows the verification times for different δ-coverings
of the initial set. If the value of δ is too small, then C2E2
generates a large initial partitioning and hence increases the
number of simulations. On the other hand, if the initial δ
is too large, then C2E2 needs to perform many refinements,
and hence, takes more time. The value of optimum value of δ
clearly depends on that robustness of the system and the rel-
ative distance of simulations from unsafe set. Observe that
in Table 3(b), the partitioning with δ = 0.2 takes less time
for verification than δ = 0.5 and δ = 0.1. Searching for the
optimal value of δ is an interesting direction of future work.

8. CONCLUSIONS AND FUTURE WORK
In this paper we present a class of annotations for dynami-
cal systems which are a generalization of other existing well
studied notions of trajectory convergence and divergence stud-
ied in Control theory such as Lipschitz constant, Contraction
Metrics and Incremental Lyapunov functions. Further, we
showed that such annotations can also be obtained for sys-
tems that exhibit divergent behavior. Verification algorithm
for switching systems that exploit simulations and such an-

Benchmark Refs. Sims. Time

12-Tanks 1 16 2.744

18-Tanks 4 76 15.238

24-Tanks 4 100 22.126

30-Tanks 4 124 28.824

12-Vehicles 0 32 5.477

16-Vehicles 0 64 12.238

20-Vehicles 0 128 25.144

24-Vehicles 0 256 54.236
(a) Scalability of verification of for n-
Tank and n-vehicle systems.

Benchmark δ Refs. Sims. Time

Nonlin. Adpt. 0.5 16 32 1.01

Nonlin. Adpt. 0.2 9 20 0.91

Nonlin. Adpt. 0.05 5 13 0.58

Nonlin. Adpt. 0.01 0 26 1.32

VanDerPol 0.5 30 96 3.84

VanDerPol 0.2 5 17 0.75

VanDerPol 0.05 8 32 1.44

VanDerPol 0.01 0 120 5.87
(b) Dependence of running time on initial state
covers.

Figure 3: Scalability and Initial state covers. Refs: Number of refinements, Sims: Number of simulation traces, Time:
Running time of C2E2 in seconds.

notations was presented and was shown to be sound and rel-
atively complete. This is the first simulation-based verifica-
tion algorithm for nonlinear switched systems that is sound
and complete. We have developed a tool C2E2 that imple-
ments this algorithm and is integrated to the Simulink/State-
flow modeling framework. Preliminary experimental results
demonstrate the promise of this verification approach.

There are many interesting directions of future work. One of
the immediate directions is to investigate the techniques for
computing an optimal initial partitioning to reduce the veri-
fication time. Another interesting direction is automatic gen-
eration of these annotations by using techniques like Taylor
expansion and Lagrangian remainders. Also, existing works
in literature try to generate bisimulations from relations over
state space, it is worth investigating whether such bisumula-
tions can be generated from these annotations.

9. REFERENCES
[1] M. Althoff, O. Stursberg, and M. Buss. Reachability

analysis of nonlinear systems with uncertain
parameters using conservative linearization. In C.D.C.,
2008.

[2] D. Angeli. A lyapunov approach to incremental
stability properties. IEEE T. A. C., 2000.

[3] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine.
Stability and robustness analysis of nonlinear systems
via contraction metrics and sos programming.
Automatica, 2008.

[4] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari,
T. Villa, and A. Sangiovanni-Vincentelli. Ariadne: a
framework for reachability analysis of hybrid
automata. In M.T.N.S., 2006.

[5] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor
model flowpipe construction for non-linear hybrid
systems. In R.T.S.S., 2012.

[6] E. Clarke and P. Zuliani. Statistical model checking for
cyber-physical systems. In A.T.V.A. 2011.

[7] A. Donzé. Breach, a toolbox for verification and
parameter synthesis of hybrid systems. In C.A.V. 2010.

[8] A. Donzé and O. Maler. Systematic simulation using
sensitivity analysis. H.S.C.C, 2007.

[9] P. S. Duggirala, T. Johnson, A. Zimmerman, and
S. Mitra. Static and dynamic analysis of timed
distributed traces. In R.T.S.S., 2012.

[10] A. Girard. Verification using simulation. In H.S.C.C.,
2006.

[11] A. Girard, G. Pola, and P. Tabuada. Approximately
bisimilar symbolic models for incrementally stable
switched systems. IEEE T. A. C, 2010.

[12] Z. Huang and S. Mitra. Computing bounded reach sets
from sampled simulation traces. In H.S.C.C., 2012.

[13] R. Jobredeaux, T. Wang, and E. Feron. Autocoding
control software with proofs i: Annotation translation.
In D.A.S.C., 2011.

[14] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J.
Pappas. Robust test generation and coverage for hybrid
systems. In H.S.C.C., 2007.

[15] A. Kanade, R. Alur, F. Ivancic, S. Ramesh,
S. Sankaranarayanan, and K. Shashidhar. Generating
and analyzing symbolic traces of simulink/stateflow
models. In C. A. V. 2009.

[16] D. Liberzon. Switching in Systems and Control. 2003.
[17] W. Lohmiller and J. J. E. Slotine. On contraction

analysis for non-linear systems. Automatica, 1998.
[18] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A

step towards verification and synthesis from
simulink/stateflow models. In H.S.C.C, 2011.

[19] N. Nedialkov. Vnode-lp: Validated solutions for initial
value problem for odes. Technical report, 2006.

[20] T. Nghiem, S. Sankaranarayanan, G. Fainekos,
F. Ivancic, A. Gupta, and G. Pappas. Monte-carlo
techniques for falsification of temporal properties of
non-linear hybrid systems. In H.S.C.C, 2010.

[21] S. Prajna, A. Papachristodoulou, P. Seiler, and
P. Parrilo. Sostools: Sum of squares optimization
toolbox for matlab. 2004.

[22] B. Sharma and I. Kar. Design of asymptotically
convergent frequency estimator using contraction
theory. Automatic Control, IEEE Transactions on, 2008.

[23] G. Wood and B. Zhang. Estimation of the lipschitz
constant of a function. Journal of Global Optimization,
1996.

APPENDIX
Proofs from Section 4

PROOF. of Proposition 1: It is easy to check that the func-
tion V (x1, x2) = |x1 − x2| satisfies the first two conditions in
Definition 2 with α1(|x1 − x2|) = α2(|x1 − x2|) = |x1 − x2|.
We fix a pair of initial states x1, x2 ∈ Rn and will show that
for any t ∈ R≥0, V (ξ(x1, t), ξ(x2, t)) ≤ eLt|x1 − x2|. For this
we take the derivative of the function V with respect to t:

d

dt
(V (ξ(x1, t), ξ(x2, t))) =

d

dt
|ξ(x1, t)− ξ(x2, t)|

=
(ξ(x1, t)− ξ(x2, t))
|ξ(x1, t)− ξ(x2, t)|

(
d

dt
ξ(x1, t)−

d

dt
ξ(x2, t))

≤ (
d

dt
ξ(x1, t)−

d

dt
ξ(x2, t))

= (f(ξ(x1, t), t)− f(ξ(x2, t), t))

≤ L|ξ(x1, t)− ξ(x2, t)| = L V (ξ(x1, t), ξ(x2, t)).

We have that for any pair of initial states x1, x2, V̇ ≤ L V
which leads to the bound on V which grows exponentially
with time t:

V (ξ(x1, t), ξ(x2, t)) ≤ eLtV (ξ(x1, 0), ξ(x2, 0)) = eLt|x1−x2|.

Hence β(x1, x2, t) = eLtV (x1, x2).

PROOF. of Proposition 3: It is clear that the function V (x1, x2)
satisfies the first two conditions in Definition 2 with α1(|x1−
x2|) = α2(|x1 − x2|) = (|x1 − x2|)2 = (x1 − x2)T (x1 − x2).
From Theorem 2, we have that

∃k, γ > 0, ∀x1, x2 ∈ Rn, δxT δx ≤ kδxT0 δx0e−γt

where δx = ξ(x1, t) − ξ(x2, t) and δx0 = x1 − x2. Hence,
β(x1, x2, t) = k(x1 − x2)T (x1 − x2)e−γt.

PROOF. of Proposition 5: Equation (7) of Theorem 4 gives
α1 and α2 for Definition 2. Further, from Equation 8, we have
that

V (ξ(x1, t), ξ(x2, t)) ≤ V (x1, x2)

+

∫ t

0

−α(|ξ(x1, τ)− ξ(x2, τ)|)dτ, (11)

where α is the function obtained from Equation (8). It can
be observed that since α ∈ K, and V is a trajecory met-
ric with witness (α1, α2, β) where β(x1, x2, t) = V (x1, x2)

+
∫ t
0
−α(|ξ(x1, τ)− ξ(x2, τ)|)dτ .

Proofs from Section 6

PROOF. of Proposition 7: From Definition 2, we know
that V (ξ(x, t), ξ(x0, t)) ≤ β(x, x0, t) ≤ ε. Hence ξ(x, t) ∈
Bε(ξ(x0, t)).

PROOF. of Proposition 8: Since ψ is a (x0, Tbound, ε, τ)-
simulation trace, from Definition 6, we have that ξ(x0, t) ∈
ρ. From Proposition 7, we have that ∀x ∈ Bδ(x0), ξ(x, t) ∈
BVε (ξ(x0, t)) and hence ξ(x, t) ∈ BVε (ψ).

PROOF. of Proposition 10: Let the set of initial states be
I . Observe that Θ is an ω-approximation of the initial set of

(a) 2D representation of reachable set by C2E2.

(b) 2D representation of reachable set by Flow∗.

Figure 4: Graphical representation of reachable set for
Moore Greitzer Jet Engine

states I ⊆ ∪x∈XBω+δ(x). Thus, the ε′ bloating of the sim-
ulations, i.e. ∪x∈XBVε′ (ψ) contains all the set of reachable
states from I . Further, since the tubes in line 9 are BVε (ψ)
and the width of each of the region in ψ is utmost ε, we can
conclude that the collection of tubes is utmost max{2ε+ ε′}-
approximation of the reachable set of states from I .

Plotting the Set of Reachable States by Flow∗ and C2E2

We now show the 2D representation of the set of reachable
states plotted by Flow∗ and C2E2 . We consider two of the
benchmark examples Brussellator and Moore Greitzer Jet En-
gine.

(a) 2D representation of reachable set by C2E2.

(b) 2D representation of reachable set by Flow∗.

Figure 5: Graphical representation of reachable set for
Brussellator

	Introduction
	Related Work
	Preliminaries
	Dynamical and Switched System Models

	Trajectory Discrepancy Function
	Lipschitz dynamics
	Contraction metrics
	Incremental Stability

	Computing Annotations
	Safety Verification from Discrepancy Functions and Simulations
	Simulation Traces for Dynamical Systems
	Simulation to Verification: Dynamical Systems
	Simulation to Verification: Switched Systems

	Experimental Evaluation
	Benchmarks and comparison with other tools
	Systems models with unknown parameters
	Scalability with time horizon and continuous dimensions
	Dependence on Initial set partition

	Conclusions and Future Work
	References

