
C H U C H U FA N , B O L U N Q I , PA R A S A R A S . D U G -

G I R A L A , S AYA N M I T R A , M A H E S H V I S W A N AT H A N

C 2 E 2 U S E R ’ S G U I D E

U N I V E R S I T Y O F I L L I N O I S AT U R B A N A - C H A M PA I G N

Copyright © 2016 Chuchu Fan, Bolun Qi, Parasara S. Duggirala, Sayan Mitra, Mahesh Viswanathan

Compiled on November 16, 2016

Contents

1 Acknowledgements 5

2 Introduction 7

3 Installation 9

4 Getting Started 11

A Required Libraries 19

Bibliography 21

1
Acknowledgements

Yu Meng ◦ Matthew Potok◦ Suket Karnawat ◦ Zhenqi Huang ◦
Taylor Johnson ◦ Karthikeyan Manamcheri Sukumar ◦ Le Wang ◦
Department of Computer Science and Department of Electrical and
Computer Engineering at the University of Illinois at Urbana Cham-
paign ◦ Coordinated Science Laboratory ◦ The National Science
Foundation ◦ Air Force’s Office of Scientific Research.

2
Introduction

C2E2 is a tool for verifying bounded-time invariant properties of
StateflowTM models. It supports models with nonlinear dynamics,
discrete transitions, and sets of initial states. The invariant properties
have to be specified by conjunctions of linear inequalities. Internally,
C2E2 implements the simulation-based verification algorithms de-
scribed in the sequence of publications Fan et al. [2016], Fan and
Mitra [2015], Duggirala et al. [2013, 2014], Sukumar and Mitra [2011].
The new version of C2E2 uses an on-the-fly discrepancy computation
algorithm Fan and Mitra [2015] to automatically generate neighbor-
hoods that conservatively contain all the behaviors of neighboring tra-
jectories. In a nutshell, C2E2 parses and transforms the StateflowTM

model to a mathematical representation, it generates faithful numeri-
cal simulations of this model using a validated numerical simulator,
it then bloats these simulations using on-the-fly discrepancy computa-
tion to construct over-approximations of the bounded time reachable
set, and it iteratively refines these over-approximations to prove the
invariant or announce candidate counterexamples.

C2E2 has a GUI for loading and editing of StateflowTM models
and properties, launching the verifier, and for plotting 2D sections of
the reach set computed by the verifier. It saves the properties and the
models in an internal HyXML format. The reach tubes computed for
verification are stored in a machine-readable format.

3
Installation

We have tested the installation scripts on Linux/Ubuntu (ver 14.04, 64

bit). Currently we do not support any other operating systems.
Installing C2E2 should be straightforward.

• Download the latest distribution of C2E2 distribution from: http:
//publish.illinois.edu/c2e2-tool/download/.

• Unzip the files in a local directory, say /C2E2/.

• Go into /C2E2/ and run sudo ./installRequirements. This
should install all the packages needed and may take a while
(up to 40 mins).

• If the above step succeeds then run ./installC2E2 to install the
program. This process may also take a while for first time in-
stallers (up to 10 mins).

• Run ./runC2E2 and C2E2’s graphical user interface (GUI) should
appear and you should be ready to load models.

• If any of the above steps fail then you can try to install the pack-
aged listed in the file installRequirements separately.

• If any of the above steps fail, you have the second option to install
the a VMware Workstation image of a 64 bit Ubuntu 14.04.10

which has the newest version of C2E2 already correctly installed.
(password: ubuntu)

• We provide a sequence of examples in form of .hyxml and .mdl

files in the Examples folder. The user can modify the models (e.g.
dynamics, invariant, guards etc.) easily in the .hyxml files.

Note: please do not use the old example files from the website
since the .hyxml file format has changed.

Note: Look into work-dir/warnings for a more detailed log of
errors.

http://publish.illinois.edu/c2e2-tool/download/
http://publish.illinois.edu/c2e2-tool/download/

4
Getting Started

In this chapter, we give a quick tour of some features of C2E2 using a
couple of examples that are distributed as part of the package.

4.1 Opening a Model

In the c2e2 folder, type command ./runC2E2 to launch C2E2 and you
should be able to see the front end of the tool as Figure 4.1. Once
C2E2 is launched, go ahead and open one of the examples from
the File menu (or use Ctrl + O). All examples are stored in the
Examples folder inside c2e2 folder. For this tutorial, we will use the
model of an adaptive cruise control system (see the example webpage
1) which is stored as TotalMotion40s.hyxml. For the description of 1 https://publish.illinois.edu/c2e2-

tool/example/adaptive-cruise-control/other examples, please refer to the examples webpage 2.
2 https://publish.illinois.edu/c2e2-
tool/example/

Figure 4.1: Frond end of C2E2 when
launched

Upon opening the file , the C2E2 window should look like Fig-
ure 4.2.

The left hand side of this window shows the parse tree of the model
and the right hand side is the verification pane. You can expand the
tree to see the variables, dynamics, transitions and modes of the
automaton by clicking on the arrows left. In the near future, you
will be able to edit the items in the parse tree. For now, this is a
convenient representation of the model.

If you want to use the default settings, please skip this section and
go to Section 4.2 directly.

The coordinate transformation step K for nonlinear models has
been set to 2000 by default at the top right corner of the verification
pane. This value is important since the inappropriate K value will
influence the final result. The user can change the K value to see
different outputs.

12 c2e2 user’s guide

Figure 4.2: Left: Model parse tree. Right:
Verification pane.

• Simulators
Current version of C2E2 supports Odeint constant time step sim-
ulator, Odeint adaptive time step simulator and CAPD simulator.
The default simulator is Odeint constant time step simulator, and
it is been compiled when you opening the model. You can change
the simulator by selecting different simulator from the simulator
drop down menu as shown in Figure 4.3. Note that the CAPD
simulator may not work for several models due to the integra-
tion method used in the CAPD library. For example, the CAPD
simulator for cardiacComposition.hyxml, Powertrain.hyxml,
helicopter.hyxml will fail simulating.

Figure 4.3: Simulator drop down menu
• Refinement strategy

When the initial set needs refinement, C2E2 provides different re-
finement strategies. The default refinement strategy will refine the
dimensions within the unsafe set for four times, then iteratively
refine the dimension with the largest uncertainty size. C2E2 also
supports user defined strategy, which can be found at Section 4.3.2.
To select the strategy, please use the drop down menu on GUI as
shown in Figure 4.4.

Figure 4.4: Refinement drop down
menu

4.2 Properties

getting started 13

The right bottom corner of the main window is the property pane.
This is where you can add, edit, copy properties and launch the
verifier or simulator. Currently C2E2 verifies bounded time linear
invariant properties from linear bounded initial sets. Such properties are
specified by the time bound (T), the initial set and the unsafe set. The
Time horizon parameter listed at the top of the verification pane is the
time bound. Currently C2E2 requires both the initial and the unsafe
sets to be described by a conjunction of linear inequalities involving
the model variables. The models in the Examples folder have already
has a couple of sample properties. Here we will walk you through
the steps involved in creating a new property like in Figure 4.5.

1. Click New in the property pane. This opens an empty new Property

box on the Right panel in the middle for editing.

2. Enter a name for the property at the top, say VxLB1, in the first
textbox.

3. Enter a linear predicate on the variables to specify the initial set or
the starting states in the Initial set textbox. Currently, the syntax
for specifying the initial set is as follows:
〈 mode-name 〉 : 〈 (linear-inequality &&)+ 〉.
For example, for the above model:
SlowDown: sx>=-15.0 && sx<=-14.95 && vx>=3.25 && vx<=3.3 &&
ax==0 && vy==0 && omega==0 && sy==0

is a valid expression for specifying the set of initial states.

4. Enter the unsafe set in the Unsafe set textbox. Currently, the
syntax for specifying the unsafe set is a &&-separated sequence of
linear inequalities:
vx<=2.1

5. Press Add.

Figure 4.5: Dialog box for adding
properties checks the syntax of the
initial and unsafe sets.

If all the expressions are syntactically acceptable then there will
be little green checks next to the textboxes and you will be able
to save the property. Otherwise there will be a cross next to the
textbox. Both the unsafe set and the initial set should be described
by a collection of linear inequalities and in addition the initial set
should be bounded.

Once the property is added the name of the property appears in
the property pane. You may add several properties in the same way.
You may also make copies of existing properties to save yourself
some typing and edit them. The added properties can be saved with
the model. See section 4.5.

14 c2e2 user’s guide

4.3 Verifying

Once you have created a model and added a property (see Sec-
tion 4.2) you can launch the verification engine by selecting the
property and then clicking the Verify button.

C2E2 is sound which means that you can trust the Safe/Unsafe
answer proclaimed by it. In principle, C2E2 is also complete for
robust properties Duggirala et al. [2013]. That is, if the model satisfies
the property robustly3, and if the numerical precision supported 3 Robustness: the requirement that the

actual reachable set of the model does
not skim the boundary of the unsafe
set.

by the algorithm is adequate then C2E2 should terminate with a
Safe/Unsafe proclamation. In practice, the time it takes to verify is
sensitive to the time horizon (T), the initial partition. You may want
to first run the verification with small values of T and initial set with
small size.

The reachable set over-approximation computed by C2E2 is stored
in the /work-dir/<Property name>. You can also check the log file
at /work-dir/log to check the progress of the verification. Once
the verification is done, the result (Safe/Unsafe/Unknown) will
show up at the Result column (as in Figure 4.6). Note that if you see
verification result as Unknown, it is because of the following reason:

1. The system is neither robustly safe nor robustly unsafe Duggirala
et al. [2013].

2. Reachable set computed bloats up and thus the number of refine-
ments needed is too large. Please go back and check the model
dynamic and properties, or simulate first to see whether the sys-
tem trajectories bloats up.

Figure 4.6: One or more properties can
be selected by checking the boxes to the
left of the property name. The Verify

button launches the verification engine
to verify one property at a time.

4.3.1 Simulation

C2E2 also allows users to generate pure simulation traces from initial
sets. Once you have created a model and added a property (see
Section 4.2) you can launch the simulation engine by selecting the
property and then clicking the Simulate button. C2E2 will select
several states from initial set and generate simulation traces from
those initial states. Note the Safe/Unsafe result shown in this case
only stands for the safety of the simulation traces instead of all the
reachable states from the initial set.

4.3.2 User defined refinement strategy

C2E2 supports user defined refinement strategy (see Section 4.1).
You can select USER DEFINE STRATEGY from the drop down

getting started 15

menu as shown in Figure 4.4. In this case, you need to write down
your strategy in a file named refineorder.txt and store it in the
/work-dir folder. The file should be look like Figure 4.7. In each line,
you should write down the index of the variables, the order of which
is the same as the variables that are shown in the front end GUI. That
is, "2“ means the second variable shown in the Variables list in the
front end. Indexes that are larger than the dimension of system will
be ignored automatically. C2E2 will refine the initial set according to
the order written in refineorder.txt iteratively. For example, if use
the refinement strategy as in Figure 4.7, the dimension corresponding
to the second variable will be refined three times, then the dimension
corresponding to the first variable will be refined once, then go back
to the first line of refineorder.txt if the verification process has not
terminated.

Figure 4.7: The user defined refine
strategy file

4.3.3 Change Verified Properties

Once a property is verified the status of the property will change to
Verified, and the result Safe/Unsafe/Unknown will appear next to it.
C2E2 will also launch a plotter panel for each verified property with
the name 〈property name〉 plot (see Section 4.4). You can also open a
corresponding plotter panel by double clicking the verified property.
Once the result has shown up, if you change any of the parameters
associated with the property, say the initial set or unsafe set, then
the status of the property will change to Verified*. This (*) indicates
that the property and parameters verified is outdated and you can
launch the verifier again.

4.4 Plotting

Once the verification of a property is complete, C2E2 will also launch
a plotter panel for each verified property with the name 〈property
name〉 plot. Double click on the properties can also open a new tab as
the plotting panel for the property. This is the plotting window for
this property: it enables us to plot various projections of the reach set
that has been computed in verifying the property.

The plot window has two parts. The left pane shows all the plots
icons and the right pane is used to create new plots. The steps for
creating new plots (as in Figure 4.9) is similar to that for creating
properties:

1. Click New right bottom corner of the window. This enables editing
a new plot. Note here we are slightly abusing the name by calling

16 c2e2 user’s guide

Figure 4.8: The plotting tab for property
1 without any plots.

different plots different properties.

2. Enter a name for the plot, say Vy, in Property name textbox at the
right top of the panel.

3. The Plot name textbox is an option to give the plots the title
names.

4. Select the x-axis and y-axis variables below the property name,
and add more y-axis variable if needed. You can plot a state
variable with respect to time (for example, x vs. t) or two state
variables (x vx. y). You can also plot multiple state variables with
respect to time (x and y vs. t).

5. Click the Plot button.

Figure 4.9: Add Plot dialog box.

C2E2 can currently create two dimensional plots as Figure 4.10. As
before, you can add more plots or copy/remove/plot multiple plots.

As the program plots the reach sets, you will see icons appear on
the left hand side of the window with a preview of what the plot
looks like as well as the plot name below it. You can expand the plot
by double clicking on these icons. All generated figures of the plot
are stored in the work-dir/plotresult folder.

You can navigate to the first window and other opened plot win-
dows by clicking on the tabs along the upper portion of the window.
You can save the model as well as the properties you have created in
an .hyxml file.

Figure 4.10: A plot of a reach tube of
one variable with respect to time.

getting started 17

4.4.1 Plots with multiple variables and modes

If plotting multiple variables on the y-axis, the reach tube of each
variable will be shown in different colors with labels. For example,
in Figure 4.11 the x-axis is time and the y-axis shows the reach tubes
of two variables ω and vx which are shown in blue and green respec-
tively. The axis for vx is labeled by green and that of ω is labeled by
blue.

Figure 4.11: A plot of a reach tube of
two variables with respect to time.

4.5 Loading and Saving

Currently C2E2 provides very basic functionality for loading and
saving models and properties. You can save a model and its prop-
erties from the file menu. The saved file is in the .hyxml format as
shown below Sukumar and Mitra [2011]. Once saved, a model and
the properties in the .hyxml file can be loaded from the file menu.

Changes made to the model in the C2E2 front end are not saved
but only the edited properties are saved. However, you can edit the
.hyxml file using a text editor to change the model and the proper-
ties. The reach sets computed during verification are stored in the
working directory /work-dir/ but currently they cannot be loaded.

4.6 Format of HyXML

Currently, C2E2 only accepts models of a certain form. The model
can be defined in the HyXML file format - many examples of this
can be found in the Examples/ directory. Multiple attributes must be
defined for it to be a valid model. The attributes marked by * must be
defined but are not used currently.

• The root layer should be <hyxml type="Model"> ending with
</hyxml>

• automaton with name

– variable

* name

* scope→ LOCAL_DATA, INPUT_DATA, OUTPUT_DATA

* type*→ Real, Integer

– mode (unique id’s, consecutive order - 0 to n)

* id

* initial→ True, False

18 c2e2 user’s guide

* name

* dai→ An equation of the form v_dot = algebraic formula if
v is a local variable, else v_out = algebraic formula if v is an
output variable

* invariant→ Equation must be linear and use only local
variables (Use < for <, etc)

– transition

* source, destination→ IDs of modes

* id*→ id of transition

* guard→ Equation must be linear and use only local vari-
ables (Use < for <, etc)

* action (optional)→ Can only use local variables and must be
of the form v = linear formula

• composition→ automata should be a semicolon separated list of
automata names you are composing

• property

– unsafeSet→ Conjunction of linear inequalities

– initialSet→ <mode_name>: Conjunction of linear inequalities

– name→ verification/simulation data can be found at wd/Reach-
Set<name>

– type*

– parameters

* timestep→ Only used in ODE_FIXED and CAPD

* timehorizon→ Length of time you want to simulate for

* Kvalue

A
Required Libraries

The following is a complete list of packages needed for installing
C2E2.

1. GNU Linear Programming Kit along with Python bindings,
GLPK and PyGLPK (http://www.gnu.org/software/glpk/)
(http://tfinley.net/software/pyglpk/)

2. GNU parser generator, Bison (http://www.gnu.org/software/bison/)

3. The Fast Lexical Analyzer, Flex (http://flex.sourceforge.net/)

4. Python (http://www.python.org/)

5. Python parsing libraries, Python-PLY (http://code.google.com/p/ply/)

6. GTK libraries for Python (http://www.pygtk.org/)

7. Plotting libraries for Python, Matplotlib (http://matplotlib.org/)

8. Packing configurations library (http://www.freedesktop.org/wiki/Software/pkg-
config/)

9. GNU Autoconf (http://www.gnu.org/software/autoconf/)

10. Python xml library, lxml (http://lxml.de/installation.html)

11. Parma Polyhedron Library (http://bugseng.com/products/ppl/)

12. Python Sympy library (http://www.sympy.org/en/index.html)

13. Boost libraries (http://www.boost.org)

14. Python Numpy library (http://www.numpy.org/)

15. Python SciPy library (https://www.scipy.org/)

16. Python Pillow library (https://python-pillow.org/)

17. Python3 GnuPlot library (https://github.com/oblalex/gnuplot.py-
py3k)

Bibliography

Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan.
Verification of annotated models from executions. In EMSOFT, pages
1–10, 2013.

Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh
Viswanathan, and César Muñoz. Temporal precedence check-
ing for switched models and its application to a parallel landing
protocol. In FM 2014: Formal Methods - 19th International Sympo-
sium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of Lecture
Notes in Computer Science, pages 215–229. Springer, 2014. ISBN
978-3-319-06409-3.

Chuchu Fan and Sayan Mitra. Bounded verification with on-the-fly
discrepancy computation. 13th International Symposium on Automated
Technology for Verification and Analysis, AVTA’15, Shanghai, China,
2015.

Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and
Parasara Sridhar Duggirala. Automatic reachability analysis for
nonlinear hybrid models with c2e2. In International Conference on
Computer Aided Verification, pages 531–538. Springer, 2016.

Karthik Manamcheri Sukumar and Sayan Mitra. A step towards
verification and synthesis from simulink/stateflow models. In Tools
paper in Hybrid Systems: Computation and Control (HSCC 2011), 2011.

	Acknowledgements
	Introduction
	Installation
	Getting Started
	Opening a Model
	Properties
	Verifying
	Plotting
	Loading and Saving
	Format of HyXML

	Required Libraries
	Bibliography

