
Bounded Verification with On-the-Fly Discrepancy
Computation ?

Chuchu Fan and Sayan Mitra

{cfan10,mitras}@illinois.edu
Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign.

Abstract. Simulation-based verification algorithms can provide formal safety
guarantees for nonlinear and hybrid systems. The previous algorithms rely on
user provided model annotations called discrepancy function, which are crucial
for computing reachtubes from simulations. In this paper, we eliminate this re-
quirement by presenting an algorithm for computing piecewise exponential dis-
crepancy functions. The algorithm relies on computing local convergence or di-
vergence rates of trajectories along a simulation using a coarse over-approximation
of the reach set and bounding the maximal eigenvalue of the Jacobian over this
over-approximation. The resulting discrepancy function preserves the soundness
and the relative completeness of the verification algorithm. We also provide a
coordinate transformation method to improve the local estimates for the conver-
gence or divergence rates in practical examples. We extend the method to get
the input-to-state discrepancy of nonlinear dynamical systems which can be used
for compositional analysis. Our experiments show that the approach is effective in
terms of running time for several benchmark problems, scales reasonably to larger
dimensional systems, and compares favorably with respect to available tools for
nonlinear models.

1 Introduction

Verifying and falsifying nonlinear, switched, and hybrid system models using numerical
simulations have been studied in detail [11,20,4,17,9]. The bounded time safety verifi-
cation problem for a given model is parameterized by a time bound, a set of initial states,
and a set of unsafe states and it requires one to decide if there exists a behavior of the
model that reaches any unsafe set from any initial state. The simulation-based procedure
for this problem first generates a set of numerical approximations of the behaviors from
a finite sampling of the initial states. Next, by bloating these simulations by an appro-
priately large factor it computes an over-approximation of the reachable states from the
initial set. If this over-approximation proves safety or produces a counter-example, then
the algorithm decides, otherwise, it draws more samples of initial states and repeats the
earlier steps to compute a more precise over-approximation. With post-processing of the
reachtube over-approximations this basic procedure can be utilized to verify termporal
precedence [12] and richer classes of properties [7].

? The results presented here came about from work supported and funded by the National Sci-
ence Foundation (NSF CSR 1016791) and the Air Force Office of Scientific Research (AFOSR
YIP FA9550-12-1-0336).

In order to make this type of procedure sound, the bloating factor should be chosen
to be large. Specifically, it should be large enough to make each bloated simulation an
over approximation of the reachable states of the system not only from the sampled
initial state, but also from a large enough neighborhood of that state so that the union of
these neighborhoods cover the entire set of initial states. On the other hand, to make the
procedure complete, or at least relatively complete modulo the precision of the machine,
it should be possible to make the error due to bloating arbitrarily small for any point in
time. These two opposing requirements are captured in the definition of a discrepancy
function of [11]: For an n-dimensional dynamical system, it is any function β : R2n ×
R≥0 → R≥0, such that (a) it gives an upper-bound on the distance between any two
trajectories ξ(x, t) and ξ′(x, t) of the system |ξ(x, t) − ξ(x′, t)| ≤ β(x, x′, t), and (b)
it vanishes as x approaches x′. Simply using the Lipschitz constant of the dynamic
function gives one such bound, but it grows exponentially with time even for some
incrementally stable models [2].

In [11], it is observed that the notion of a contraction metric [23] gives a much
tighter bound and it provided heuristics for finding them for some classes of polynomial
systems. Sensitivity analysis approaches give strict error bounds for linear systems [9],
but for nonlinear models the bounds are less clear. We present a more detailed overview
of related work in Section 2. This paper fills this gap by providing a subroutine that
computes a local version of the discrepancy function which turns out to be adequate
and effective for sound and relatively complete simulation-based verification of more
general nonlinear systems. This subroutine, ComputeLDF , itself uses a Lipschitz con-
stant and the Jacobian of the dynamic function (the right hand side of the differential
equation) and simulations of the system. The Lispchitz constant is used to construct a
coarse, one-step over-approximation of the reach set of the system along a simulation.
Then it computes an upper bound on the maximum eigenvalue of the symmetric part
of the Jacobian over this over approximation, using a theorem from matrix perturbation
theory. This gives an exponential bound on the distance between two trajectories, but
roughly, the exponent is the best it can be as it is close to the maximum eigenvalue of
the linear approximation of the system in the neighborhood. A key advantage of this
scheme is that it is not necessary for the underlying system to have any special proper-
ties (such as incremental stability). In practice, ComputeLDF has been used success-
fully in [10,13], [21] to find bloating factors for safety verification of powertrain control
model proposed by Toyota Research group as a challenge problem, and the model of a
neural circuit in a multicellular organism.

In this paper, we also propose two practical extensions of this approach. First, we
show that a linear coordinate transformation can bring about exponential improvements
in the estimated distance. Secondly, we propose a technique for computing input-to-
state discrepancy functions for analyzing composed systems and systems with bounded
nondeterministic inputs. We report the results from a number of experiments performed
with a prototype implementation of this approach applied to safety verification.

2 Related Work

Most existing techniques for formal verification rely on performing reachability anal-
ysis, which is a way of computing an overapproximation of the set of states that the
system can reach over a given time horizon [15]. In [1] the authors provide an ap-
proach by linearizing the nonlinear system locally, and bounding the linearization error

by Lagrange remainders. In [6], Taylor model is employed to analyze nonlinear hy-
brid systems. A pervasive challenge in such techniques is that the analysis can be too
conservative, and faces the curse of dimensionality.

Simulation based verification has been studied in several papers recently [9,1,7,22].
Sensitivity analysis [9,7] is a technique to systematically simulate arbitrary continuous
systems and nonlinear systems with inputs. The novelty of their approach consist in the
use of the sensitivity matrix : a matrix that captures the sensitivity of the system to its
initial condition x0. This is then used to give an upper bound on the distance between
two system trajectories. In [18] the authors present a convenient implementation of
sensitivity analysis in the Simulink software. However, this approach cannot formally
prove safety, as a quadratic error term is ignored when computing this upper bound. In
[22], the authors provide methods to overapproximate the distance between trajectories;
however, these methods are mainly applicable to affine and polynomial systems. In
contrast, in Section 4 and Section 5 we have provided a strict over-approximation of
Lipschitz continuous systems with respect to uncertainty in the initial conditions and
uncertainty in the input signals.

The idea of discrepancy function can be seen as a generalization of the incremental
stability [2]. An incremental Lyapunov function-based approach is used in [17]. The
authors construct a finite symbolic model that is approximately bisimilar to the original
switched system. Also in [27], incremental Lyapunov is used to compute finite sound
abstractions of control systems without stability assumption. In this paper, our approach
bypasses the incremental stability requirement by focusing on the bounded time verifi-
cation, and we address on computing a good distance between trajectories.

Contraction in [23] is defined as the region in which the eigenvalues of the symmet-
ric part of the Jacobian is uniformly negative. Contraction metrics introduced in [23]
is also used in [11] to perform sound and relative complete analysis of nonlinear sys-
tems. We extend this idea of contraction by proving that given a region S, the maximum
eigenvalue of the symmetric part of the Jacobian matrix over compact set S provides an
exponential bound on the distance between any two trajectories in S.

3 Background

For a vector x ∈ Rn, ‖x‖ is the l2-norm of x and xi denotes its ith component. For
δ ≥ 0, Bδ(x) = {x′ ∈ Rn | ||x′ − x|| ≤ δ}. For a set S ⊆ Rn, Bδ(S) = ∪x∈SBδ(x).
Let S⊕Bδ(0) represents the Minkowski sum of S and Bδ(0). Therefore, S⊕Bδ(0) =
Bδ(S). For sets S1, S2 ⊆ Rn, hull(S1, S2) is their convex hull. The diameter of a
compact set S is dia(S) = supx1,x2∈S ‖x1 − x2‖.

A continuous function f : Rn → R is smooth if all its higher derivatives and partial
derivatives exist and are also continuous. It has a Lipschitz constant L ≥ 0 if for every
x, x′ ∈ Rn, ||f(x) − f(x′)|| ≤ L||x − x′||. A function f : R≥0 → R≥0 is a class K
function if it is continuous, strictly increasing, and f(0) = 0.

Given a differentiable vector-valued function f : Rn × R≥0 → Rn, the Jacobian
Jf of f is the matrix-valued function of all the first-order partial derivatives of f . Let
fi, i = 1 . . . n : Rn → R≥0 be the scalar components of f . The Jacobian of f is:
(Jf (x))ij = ∂fi(x)

∂xj
. The symmetric part of the Jacobian of f matrix is defined as

1
2 (Jf (x) + Jf

T (x)).

For an n × n matrix A, ‖A‖ represents the l2-norm of A: ‖A‖ =
√
λmax(AHA).

AH is the conjugated transpose of A, and λmax(A) is the largest eigenvalue of matrix
A. When A is a real matrix, we write it as AT . If ∀x ∈ Rn, xTAx ≤ 0, then we say A
is negative-semidefinite, and write A � 0. We write A � B if A−B � 0.

Safety Verification Problem. Consider an autonomous dynamical system:
ẋ = f(x), (1)

where f : Rn → Rn is a Lipschitz continuous function. A solution or a trajectory of
the system is a function ξ : Rn × R≥0 → Rn such that for any initial point x0 ∈ Rn
and at any time t ≥ 0, ξ(x0, t) satisfies the differential equation (1).

The bounded-time safety verification problem is parameterized by: (a) an n-
dimensional dynamical system, that is, the function f defining the right hand side of its
differential equation, (b) a compact setΘ ⊆ Rn of initial states, (c) an open set U ⊆ Rn
of unsafe states, and (d) a time bound T > 0. A state x in Rn is reachable fromΘ within
a time interval [t1, t2] if there exists an initial state x0 ∈ Θ and a time t ∈ [t1, t2] such
that x = ξ(x0, t). The set of all reachable states in the interval [t1, t2] is denoted by
Reach(Θ, [t1, t2]). If t1 = 0 then we write Reach(t2) when set Θ is clear from the
context. Given a bounded-time safety verification problem, we would like to design
algorithms for deciding if any reachable state is safe, that is, if Reach(T) ∩ U = ∅. If
there exists some ε > 0 such thatBε(Reach(T))∩U = ∅, we say the system is robustly
safe. A sequence of papers [11,12,9] presented algorithms for solving this problem for
a broad class of nonlinear dynamical, switched, and hybrid systems. In the remainder
of this section, we present an overview of this approach. (Algorithm 1).

Simulations, Reachtubes and Annotations. The algorithm uses simulation oracles
that give sampled numerical simulations of the system from individual initial states.

Definition 1. A (x0, τ, ε, T)-simulation of the system described in Equation (1) is a
sequence of time-stamped sets (R0, t0), (R1, t1) . . . , (Rn, tn) satisfying:

(1) Each Ri is a compact set in Rn with dia(Ri) ≤ ε.
(2) The last time tn = T and for each i, 0 < ti − ti−1 ≤ τ , where the parameter τ is

called the sampling period.
(3) For each ti, the trajectory from x0 at ti is in Ri, i.e., ξ(x0, ti) ∈ Ri, and for any

t ∈ [ti−1, ti], the solution ξ(x0, t) ∈ hull(Ri−1, Ri).
Simulation engines generate a sequence of states and error bounds using numerical
integration. Libraries like CAPD [5] and VNODE-LP [24] compute such simulations
for a wide range of nonlinear dynamical system models and the Ri’s are represented by
some data structure like hyperrectangles.

Closely related to simulations are reachtubes. For a set of statesD ⊆ Rn, a (D, τ, T)-
reachtube of (1) is a sequence of time-stamped sets (R0, 0), (R1, t1) . . . , (Rn, tn) sat-
isfying:

(1) Each Ri ⊆ Rn is a compact set of states.
(2) The last time tn = T and for each i, 0 ≤ ti − ti−1 ≤ τ .
(3) For any x0 ∈ D, and any time t ∈ [ti−1, ti], the solution ξ(x0, t) ∈ Ri.

A reachtube is analogous to a simulation from a set of states, but they are much
harder to compute. In fact, an algorithm for computing exact reachtubes readily solves
the safety verification problem.

The algorithms in [11,19] require the user to decorate the model with annotations
called discrepancy functions for computing reachtubes.

Definition 2. A continuous function β : Rn × Rn × R≥0 → R≥0 is a discrepancy
function of the system in Equation (1) if

(1) for any x, x′ ∈ Rn, and any time t > 0, ‖ξ(x, t)− ξ(x′, t)‖ ≤ β(x, x′, t), and
(2) for any t, as x→ x′, β(., ., t)→ 0,
(3) ∀ε > 0,∀x, x′ ∈ Rn,∃δ such that for any time t, ‖x− x′‖ < δ ⇒ β(x, x′, t) < ε.

If the function β meets the two conditions for any pair of states x, x′ in a compact
setK instead of Rn in both condition (1) and (3), then it is called aK-local discrepancy
function.

The annotation β gives an upper bound on the distance between two neighboring
trajectories as a function of their initial states and time. Unlike incremental stability
conditions [2], the second condition on β does not require the trajectories to converge
as time goes to infinity, but only as the initial states converge. Obviously, if the function
f has a Lipschitz constant L, then β(x, x′, t) = ||x − x′||eLt meets the above crite-
ria. In [11,19] other heuristics have been proposed for finding discrepancy functions.
As will be clear from the following discussion, the quality of the discrepancy func-
tion strongly influences the performance of the simulation-based verification algorithm.
[11,19,20] need user provided discrepancy and simulation engines to give verification of
bounded time safety and temporal precedence properties. In this paper, we will present
approaches for computing local discrepancy functions that unburdens the user from
finding these annotations.

3.1 Verification Algorithm

The simulation-based verification algorithm is shown in Algorithm 1. It takes as input
some finite description of the parameters of a safety verification problem, namely, the
function f , the initial setΘ, the unsafe set U, and the time bound T . It has two main data
stuctures: The first, C returned by function Partition , is a collection of triples 〈θ, δ, ε〉
such that the union of all the δ-balls around the θ’s completely cover the initial set Θ.
The second data structureR incrementally gets the bounded-time reachtube from Θ.

Initially, C has a singleton cover 〈θ0, δ0, ε0〉 such that δ0 = dia(Θ), Θ ⊆ Bδ0(θ0),
and ε0 is a small constant for simulation precision.

In the while-loop, this verification algorithm iteratively refines the cover of Θ and
for each 〈θ, δ, ε〉 in C, computes over-approximations of the reachtube from Bδ(θ). The
higher-level structure of the algorithm is familiar: if the reachtube fromBδ(θ) proves to
be safe, i.e., disjoint from U, then the corresponding triple is removed from C (Line 10).
If part of the simulation from θ overlaps with U, then the system is declared to be unsafe
(Line 12). Otherwise, a finer cover of Bδ(θ) is created, and the corresponding triples
with finer parameters are added to C.

Here we discuss the reachtubes computed from discrepancy and simulations. For
each 〈θ, δ, ε〉 in C, a (θ, τ, ε, T)-simulation ψ, which is a sequence of {(Ri, ti)}, is gen-
erated. Note that ψ contains the trajectory from θ, ξ(θ, t), t ∈ [0, T]. Then we bloat
each Ri by some factor (Line 7) such that the resulting sequence contains the reach-
tube from Bδ(θ). It is shown that this bloated simulation is guaranteed to be an over-
approximation of Reach(Bδ(θ), T) and the union of these bloated simulations is an
over-approximation of Reach(Θ, T). Therefore, the algorithm is sound. Furthermore,
the second property of β ensures that the reach set over-approximations become tighter
and tighter as we make δ smaller and smaller. Finally it will return “SAFE” for robustly

Algorithm 1: Verification Algorithm
Input: Θ,U, T

1 δ ← dia(Θ); ε← ε0; C ← ∅;R← ∅; // epsilon0 is a small constant
2 C ← 〈Partition(Θ, δ), δ, ε〉
3 while C 6= ∅ do
4 foreach (θ, δ, ε) ∈ C do
5 ψ = {(Ri, ti)}ki=1 ← Simulate(θ, τ, ε, T)
6 β ← ComputeLDF (ψ, Jf , Lf , δ, ε)
7 D← ψ ⊕ β
8 if D ∩ U = ∅ then
9 C ← C\{(θ, δ, ε)}

10 R← R∪D
11 else if ∃k,Rk ⊆ U then
12 return (UNSAFE,R)
13 else
14 C ← C\{(θ, δ, ε)}
15 C ← C ∪ Partition(Θ ∩Bδ(θ), (δ12 , . . . ,

δN
2
), ε

2
)

16 return (SAFE,R)

safe reachtubes or find a counter example and return “UNSAFE”. For user defined dis-
crepancy function, the factor is obtained by maximizing β(θ, θ̃, t) over θ̃ ∈ Bδ(θ) and
t ∈ [ti−1, ti]. Indeed this is the approach taken in the algorithm presented in [11]. In
this paper, we will analyze in detail the ComputeLDF subroutine which computes a
local version of discrepancy function automatically. The following results from [11]
state two key properties of the algorithm. Although in [11] β was defined globally, it is
easy to check that the local version still satisfies them.

Theorem 1. Algorithm 1 is sound, i.e., if it returns “SAFE” then the system is safe;
when it returns “UNSAFE” there exists at least one execution from Θ that is unsafe.
It is relatively complete, i.e., if the system is robustly safe, it will terminate and return
“SAFE”. If any executions from Θ is unsafe, it will terminate and return “UNSAFE”.

4 Local discrepancy function

In this section, we present the ComputeLDF algorithm and its analysis. This algorithm
computes a special type of local discrepancy in terms of time-varying exponential func-
tions that bound from above the distance between two trajectories starting from a com-
pact neighborhood. Roughly speaking, it computes the rate of trajectory convergence
or divergence for an interval of time instances.

Definition 3. Consider a compact set C ⊆ Rn and a sequence of time points 0 = t0 <
t1 < t2 < . . . < tk = T . For ∀x1, x2 ∈ C, ∀t ∈ [0, T], a piecewise exponential
discrepancy function β : C × C × [0, T]→ R≥0 is defined as:

β(x1, x2, t) =

{
‖x1 − x2‖, if t = t0,

β(x1, x2, ti−1)e
b[i](t−ti−1), if t ∈ (ti−1, ti],

(2)

Algorithm 2: Algorithm ComputeLDF .
Input: ψ = {(Ri, ti)}ki=1,Jf ,Lf ,δ, ε

1 ∆← δ,b← zeros(k)
2 for i = 1:k do
3 τ ← ti − ti−1

4 d← (∆+ ε)eLf τ

5 S← hull(Ri−1, Ri)⊕Bd(0)
6 J← Jf (center(S))

7 λ← max(eig(J + JT)/2)

8 error← upper x∈S‖(Jf (x) + JTf (x))− (J + JT)‖
9 b[i]← λ + error/2

10 ∆← (∆+ ε)eb[i]τ

11 return b

where b[1], . . . , b[k] are real constants.

From the definition, we can immediately get that β(x1, x2, t) =
||x1 − x2||eb[i](t−ti−1)+

∑i−1
j=1 b[j](tj−tj−1), i = 1, . . . , k, where ti−1 is the largest time

point in the sequence before t.

4.1 ComputeLDF Algorithm

Algorithm 2 shows the pseudocode for ComputeLDF used in Line 6 of the verification
algorithm. ComputeLDF takes as input a parameter δ, an error bound for simulation
ε, the Lipschitz constant Lf , the Jacobian matrix Jf of function f , and a (θ, τ, ε, T)-
simulation ψ = {(Ri, ti)}, i = 0, 1, . . . , k. It computes a piecewise exponential lo-
cal discrepancy function (LDF) for the compact set Bδ(R0) and for the time points
t0, . . . , tk. and returns it as an array of exponential coefficients b.

The algorithm starts with the initial set Bδ(R0) and with ∆ = δ. In each iteration
of the for-loop it computes exponent b[i] corresponding to the time interval [ti−1, ti].
In the ith iteration, ∆ is updated so that B∆(Ri−1) is an over-approximation of the
reachable states from Bδ(R0) at ti−1 (Lemma 5). In Lines 4-5, a set S is computed by
bloating the convex hull hull(Ri−1, Ri) by a factor of d = (∆ + ε)eLf (ti−ti−1). The
set S will later be proved to be a (coarse) over-approximation of the reachtube from
B∆(Ri−1) over the time interval [ti−1, ti] (Lemma 1). In Lines 6-9 an upper bound
on the maximum eigenvalue of the symmetric part of the Jacobian over the set S, is
computed as b[i] (Lemma 3). Then ∆ is updated as (∆ + ε)eb[i](ti−ti−1) for the next
iteration.

4.2 Analysis of ComputeLDF

In this section, we will prove that ComputeLDF (ψ, Jf , Lf , δ, ε) returns a piecewise
exponential LDF of the system in Equation (1), for the compact neighborhood Bδ(R0),
and the sequence of the time points in the simulation ψ. We establish some lemmas
to prove the main theorem. The complete proof of the lemmas can be found in the
technical report [14]. First, we show in Lemma 1 that in the ith iteration of the loop,
the computed S is an over-approximation of the set of states that can be reached by the
system from B∆(Ri−1) over the time interval [ti−1, ti].

Lemma 1. In the ith iteration of ComputeLDF , Reach(B∆(Ri−1), [ti−1, ti]) ⊆ S.

Lemma 1 shows that using Lipschitz constant and Gronwall’s inequality we can get an
one step over-approximation of the reachtube.

Next, using the generalized mean value theorem (Lemma 2), we get that in the
ith iteration, the computed b[i] in Line 9 is the exponential divergence (if positive) or
convergence (negative) rate of the distance between any two trajectories starting from
B∆(Ri−1) over time [ti−1, ti].

Lemma 2. For any continuously differentiable vector-valued function f : Rn → Rn,
and x, r ∈ Rn, f(x + r) − f(x) =

(∫ 1

0
Jf (x+ sr)ds

)
· r, where the integral is

component-wise.

Next, we will use a well-known theorem that gives bounds on eigenvalues of per-
turbed symmetric matrices, the proof of which uses the Courant-Fischer minimax the-
orem.

Theorem 2. If A and E are n× n symmetric matrices, then
λn(E) ≤ λk(A+ E)− λk(A) ≤ λ1(E),

where λi(·) is the ith largest eigenvalue of a matrix.

Corollary 1. If A and E are n× n symmetric matrices, then
|λk(A+ E)− λk(A)| ≤ ‖E‖. (3)

Since A is symmetric, ‖A‖ =
√
λmax(ATA) = max(|λ(A)|). From Theorem 2, we

have |λk(A + E) − λk(A)| ≤ max{|λn(E)|, |λ1(E)|} = ‖E‖. If E(x) is a matrix-
valued function: Rn → Rn×n maps a state x ∈ Rn to a matrix E(x), and every com-
ponent of E(x), eij(x) : Rn → R is continuous over some compact closed set S, then
we can get an upper bound of ‖E(x)‖ over S by compute the upper bound of the abso-
lute value of each term eij(x), |eij(x)| over S. Let upperx∈S(|eij(x)|) be denoted by

ẽij , then we know ∀x ∈ S, ‖E(x)‖ ≤
√∑n

i=1

∑n
j=1 ẽ

2
ij . Because we assume the sys-

tem to be Lipschitz continuous, the upper bound of the symmetric part of the Jacobian
matrix in Line 8 always exists. Using Corollary 1, we next show in Lemma 3 that b[i]
calculated in Line 9 bounds the eigenvalues of the symmetric part of Jacobian matrix
over S.

Lemma 3. In the ith iteration, for ∀x ∈ S : JTf (x) + Jf (x) � 2b[i]I .

Proof. Let S be the set computed in Line 5 and J be the Jacobian evaluated at the center
s0 of S. Consider any point x ∈ S. We define the perturbation matrix E(x) ≡ JTf (x)+
Jf (x)−(JT+J). Since JTf (x)+Jf (x) and JT+J are symmetric matrices, Corollary 1
implies that λmax(JTf (x) + Jf (x)) − λmax(J

T + J) ≤ ||E(x)||. The error term
computed in Line 8 is the upperbound on ||E(x)||. Therefore, λmax(JTf (x)+Jf (x)) ≤
λmax(J

T + J) + error. In Line 9 set b[i] equals to λmax((JT + J)/2) + error/2.
Thus, λmax(JTf (x) + Jf (x)) ≤ 2b[i], which immediately indicates that ∀x ∈ S :

JTf (x) + Jf (x) � 2b[i]I .

By Lemma 2 and Lemma 3, we can prove as in Lemma 4 that b[i] calculated in
Line 9 is the exponential rate of divergence or convergence of two trajectories starting
from B∆(Ri−1) over the interval [ti−1, ti].

Lemma 4. In the ith iteration, for any two states x1, x2 ∈ B∆(Ri−1) at time ti−1, and
any time t ∈ [ti−1, ti], ‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖eb[i](t−ti−1).

This lemma can be deduced using Lemma 2.
Up to this point all the lemmas were statements about a single iteration of the for

-loop, next we show that in the ith iteration of the loop, B∆(Ri) used in Lemma 1 and
4 is the reach set from Bδ(R0) at time ti.

Lemma 5. For ∀i = 1, . . . , k,Reach(Bδ(R0), [ti, ti]) ⊆ B∆i
(Ri), and

Reach(B∆i−1
(Ri−1), [ti−1, ti]) ⊆ hull(Ri−1, Ri) ⊕ B∆′i(0), where ∆i is ∆ after

Line 10 is executed in the ith iteration, and ∆′i = max{∆i, ∆i−1 + ε}.

Proof. The lemma is proved by induction on i. First, we know that when i = 1,
Reach(Bδ(R0), [t0, t0]) = Bδ(R0) = B∆0

(R0). Then we will prove that
Reach(Bδ(R0), [t0, t1]) ⊆ hull(R0, R1)⊕Bmax{∆1,∆0+ε}(0),

using Lemma 4.
Assuming that the lemma holds for i = m−1, we have Reach(Bδ(R0), [tm−1, tm−1]) ⊆

B∆m−1
(Rm−1). And we will prove that the lemma holds for i = m as well.

∪ki=1{hull(Ri−1, Ri)⊕B∆′i(0)} contains the (Bδ(R0), τ, T)-reachtube of the sys-
tem. Line 7 of Algorithm 1 is computed in this way. Now we are ready to prove the
main theorem.

Theorem 3. The items in array b computed by ComputeLDF are the coefficients of a
Bδ(R0)-local piecewise exponential discrepancy function (Definition 3).

Proof. First of all consider any time t ∈ [t0, t1] and any two states: x1, x2 ∈ Bδ(R0).
By Lemma 4, ‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖eb[1](t−t0). Then consider t ∈ [t1, t2].
By Lemma 5 we know at time t1, ξ(x1, t1) and ξ(x2, t1) are all contained in B∆1(R1),
so we can use Lemma 4 such that for any time t ∈ [t1, t2], ‖ξ(x1, t) − ξ(x2, t)‖ ≤
‖ξ(x1, t1)− ξ(x2, t1)‖eb[2](t−t1) ≤ ‖x1 − x2‖eb[2](t−t1)+b[1](t1−t0).

The procedure above can be performed iteratively as follows. For any time t ∈
[ti−1, ti], by lemma 5 we know at time ti−1, ξ(x1, ti−1) and ξ(x2, ti−1) are all con-
tained in B∆i−1

(Ri−1). By Lemma 4 it follows that
‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖ξ(x1, ti−1)− ξ(x2, ti−1)‖eb[i](t−ti−1)

≤ ‖x1 − x2‖eb[i](t−ti−1)+
∑i−1

j=1 b[j](tj−tj−1).
Next we will prove that
β(x1, x2, t) ≡ ‖x1 − x2‖eb[i](t−ti−1)+

∑i−1
j=1 b[j](tj−tj−1) is a valid LDF.

In Lines 6-9, because J is a real matrix, the maximum eigenvalue λ of (JT + J)/2
is bounded. Assume that each component of E(x) = JTf (x) + Jf (x) − JT − J is
continuous over the closed set S, then we can find the upper bound of ‖E(x)‖, so
the “error” term is also bounded. Therefore, each b[i] is bounded. So ∀t ∈ [ti−1, ti],
i = 1, . . . , k, ∃N <∞, such that eb[i](t−ti−1)+

∑i−1
j=1 b[j](tj−tj−1) is bounded byN from

the above.
As x1 → x2, obviously,

‖x1 − x2‖eb[i](t−ti−1)+
∑i−1

j=1 b[j](tj−tj−1) → 0.
And for any ε > 0, ∃δ = ε/N > 0, such that ∀x1, x2 ∈ Bδ(R0) and ‖x1 − x2‖ < δ, it
follows

‖x1 − x2‖eb[i](t−ti−1)+
∑i−1

j=1 b[j](tj−tj−1) < ε/N ·N = ε.

So β(x1, x2, t) = ‖x1−x2‖eb[i](t−ti−1)+
∑i−1

j=1 b[j](tj−tj−1) is aBδ(R0)-local piecewise
discrepancy function and the array b contains the corresponding coefficients.

4.3 Coordinate transformation

In this section, we will discuss the issue that the upper bound of the symmetric part
of the Jacobian computed inLines 6-9 may introduce loss in precision. We propose a a
strategy to reduce this loss by first performing a coordinate transformation. Consider a
simple linear system:

ẋ = [0 3;−1 0]x, (4)

which has eigenvalues ±
√
3i and thus its trajectories oscillate. The symmetric part of

the Jacobian is [0 1; 1 0] with eigenvalues ±1, which gives the exponentially grow-
ing discrepancy with b = 1. In what follows, we will see that a tighter bound can be
obtained by first taking a linear transformation of x. The following is a coordinate trans-
formed version of Lemma 4. The coordinate transformation matrix P can be any n× n
real invertible matrix, and the condition number of P is ‖P‖‖P−1‖.

Lemma 6. In ith iteration of the loop, for any x1, x2 ∈ B∆(Ri−1), and any t ∈
[ti−1, ti],

‖ξ(x1, t)− ξ(x2, t)‖ ≤ K‖x1 − x2‖eλ̃max(S)(t−ti−1),

where λ̃max(S) is the upper bound of 1
2 (J̃f

T
(x) + J̃f (x)) over the set S, J̃f (x) =

PJf (x)P
−1, and K is the condition number of P .

The proof of Lemma 6 is similar to the proof of Lemma 4 considering the coordinate
transformation. This shows that the distance can be bounded in the same way for the
transformed system with a (possibly much smaller) λ̃max(S) but with an additional
multiplicative cost of cond(P).

To choose the coordinate transformation matrix, one approach that produces good
empirical results is making the Jacobian matrix at the center point a real Jordan form.
Let S be the set computed in Line 5 and J is the Jacobian evaluated at the center s0 of S.
Let J̃ = PJP−1 the real Jordan form and use the matrix P as the coordinate transfor-
mation matrix for Jf (x). Contraction matrix [23] introduces more general coordinate
transformation. However, there are no general methods to compute it for nonlinear sys-
tems. Choosing a constant matrix as transformation is an implementable approach, and
Lemma 6 applies to any invertible matrix.

In the previous example (4), the Jacobian matrix is constant, and the discrepancy
function without coordinate transformation is:

‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖et−t1 .
If we use P = [1 3;−

√
3
√
3] as the coordinate transformation matrix, J̃ = PJP−1 =

[0
√
3;−
√
3 0], and the discrepancy function with coordinate transformation is

‖ξ(x1, t)− ξ(x2, t)‖ ≤
√
3‖x1 − x2‖.

In practice, the coordinate transformation can be made for longer time interval [ti−k, ti],
where k > 2, to reduce the multiplicative error term

∏
cond(P [i]).

5 Local Input-State Discrepancy

Large and complex models of dynamical system are created by composing smaller
modules or subsystems. Consider a dynamical system A consisting of several inter-
acting subsystems A1, . . . , AN , that is, the input signals of a subsystem Ai are driven
by the outputs (or states) of some another component Aj . Let’s say that each Ai is n-
dimensional which makes A nN -dimensional. One way of achieving scalable verifica-
tion ofA is to exploit this compositional structure and somehow analyze the component
Ai’s to infer properties of A.

In [20], the notion of input-to-state (IS) discrepancy was introduced to address the
problem of finding annotations for large models. It is shown that if we can find input-to-
state (IS) discrepancy functions for the individual component Ai, then we can construct
a reduced N -dimensional model M such that the executions of M serve as the dis-
crepancy of the overall system. Thus, from IS-discrepancy for the smaller Ai models
and simulations of the N -dimensional system M , we are able to verify A. This has
the beneficial side-effect that if the Ai’s are rewired in a new topology, then only the
reduced model changes [19]. However,[20] still assumes that the user provides the IS-
discrepancy for the smaller modules. In this section, we will show the approach used in
the previous section can be used to get IS discrepancy function for Lipschitz continuous
nonlinear subsystems Ai. Furthermore, it gives an over-approximation of the reachsets
with nondeterministic bounded inputs.

5.1 Defining Local IS Discrepancy

Consider a dynamical system with inputs:
ẋ = f(x, u) (5)

where f : Rn × Rp → Rn is Lipschitz continuous. For a given input signal which is
a integrable function υ : [0,∞) → Rp, and an initial state x0 ∈ Rn, a solution (or
trajectory) of the system is a function ξ : Rn×R≥0 → Rn such that ξ(x0, 0) = x0 and
for any time t ≥ 0, ξ̇(x, t) = f(ξ(x, t), υ(t)).

First, we give the original definition of IS discrepancy function for the system in
(5). Here U is the set {u|u : [0,∞)→ Rp} of all input signals.

Definition 4. A pair of uniformly continuous functions β : R≥0 × R≥0 → R≥0 and
γ : R≥0 → R≥0 is called C-local input-to-state discrepancy if

(1) β is of class K with respect to its first argument and γ is also of class K,
(2) for any pair of initial states x, x′ ∈ C, any pair of input signals u, u′ ∈ U , and

t ∈ R≥0:‖ξ(x, t)− ξ(x′, t)‖ ≤ β(‖x− x′‖, t) +
∫ t
0
γ(‖u(s)− u′(s)‖)ds.

For a bounded, compact set I ⊆ Rp. A family of bounded time input signals
over I is the set U(I) = {u|u : [0, T) → I} of integrable functions. We denote
Reach(K,U(I), [t1, t2]) as the reachable states of the system from compact set K with
input set U(I) over [t1, t2]. Next, we introduce an inductive definition of IS discrepancy
for inputs over compact neighborhoods.

Definition 5. Consider compact sets K ∈ Rn, I ∈ Rp and a sequence of time points
0 = t0 < t1 < t2 < . . . < tk = T . For any pair of initial states x1, x2 ∈ K,
any pair of input signals u1, u2 ∈ U(I), the (K,U(I))-local IS discrepancy function
α : K2 × U(I)2 × R≥0 → R≥0 is defined as:

α(x1,x2,u1,u2,t)=


‖x1 − x2‖ , if t = t0,

α(x1, x2, u1, u2, ti−1)e
a[i](t−ti−1)+

M [i]ea[i](t−ti−1)
∫ t
ti−1
‖u1(τ)− u2(τ)‖dτ if t ∈ (ti−1, ti]

where a[1], . . . , a[k],M [1], . . . ,M [k] are real constants.

5.2 Algorithm for Local IS Discrepancy

The approach to find (K,U(I))-local IS discrepancy function is similar to ComputeLDF
algorithm, which also uses a for -loop to compute the coefficients a[i] and M [i]. The
only changes are 1) in Line 5 S should be computed as in Lemma 7, 2) in Line 10 ∆
should be updated as in Lemma 9. Next we illustrate this process in more detail. First,
we use Lipschitz constant to get a coarse over-approximation of Reach(K,U(I), [ti−1, ti])
parallel to Lemma 1. Let l = dia(I).

Lemma 7. In ith iteration of the for -loop, Reach(B∆(Ri−1), U(I), [ti−1, ti]) ⊆ S,
where S = hull(Ri−1, Ri) ⊕ B∆′(Ri) and ∆′ = (∆ + ε)(eLfτi) + lLfe

Lfτiτi, τi =
ti − ti−1.

Two trajectories starting from x1, x2 ∈ Rn at ti−1, with u1, u2 ∈ U(I) as inputs
respectively, their distance at time t, ‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖(eLf (t−ti−1))+

Lfe
Lf (t−ti−1)·

∫ t
ti−1
‖u1(τ)− u2(τ)‖dτ . The lemma directly follows this inequality.

Next we give a one step IS discrepancy function in Lemma 9. Before proving it, we
need another generalized form of mean value theorem:

Lemma 8. For any continuous and differentiable function f : Rn × Rp → Rn, f(x+
r, u+ w)− f(x, u) =(∫ 1

0
Jx(x+ sr, u+ w)ds

)
r+

(∫ 1

0
Ju(x, u+ τw)dτ

)
w, where Jx = ∂f(x,u)

∂x and

Ju = ∂f(x,u)
∂u are the Jacobian matrices of f with respect to x and u.

Proof. The lemma follows by writing f(x+ r, u+w)− f(x, u) = f(x+ r, u+w)−
f(x, u+ w) + f(x, u+ w)− f(x, u) and then invoking Lemma 2.

Lemma 9. Consider the ith iteration of the loop for a dynamic system (5). Let x, x′ ∈
B∆(Ri−1), and ξ(x, t), ξ(x′, t) be the trajectories starting from x and x′ with input
u1(t), u2(t) ∈ U(I) respectively, where t ∈ [ti−1, ti]. Then,

‖ξ(x, t)− ξ(x′, t)‖ ≤ ‖x− x′‖ea(t−ti−1)

+Mea(t−ti−1)

∫ t

ti−1

‖u1(τ)− u2(τ)‖dτ, (6)

where a = λmax(S) +
1
2 , λmax(S) is the upperbound of the eigenvalues of the sym-

metric part of Jx over S, and M = max
u∈U(I)

(‖Ju(ξ(x, t), u)‖).

To prove Lemma 9, we will use Lemma 8 and the detailed proof can be found in [14].
Using Lemma 9 to get the coefficients a[i] andM [i] in each time interval [ti−1, ti], i =

1 . . . , k, we will have:

Theorem 4. The items in array a and M are a coefficients of the (K,U(I))-local IS
discrepancy function for the system (5).

This theorem enables us to compute the (K,U(I))-local IS discrepancy function for
each subsystem Ai. Although in the original definition we assume the IS discrepancy
function is valid for any input signals u1, u2 ∈ U , in practice Ai can only take Aj’s
outputs or states as inputs, which is bounded. Thus, [20] can still use (K,U(I))-local
IS discrepancy function computed by this approach. Furthermore, the (K,U(I))-local
IS discrepancy function here can over-approximate the reachset of the systems in (5)
with the input u being chosen nondeterministically in some compact set.

6 Experimental Evaluation

We have implemented the verification Algorithm 1 and the ComputeLDF subroutine
with coordinate transformations in Matlab. The implementation and the examples are
available from [14]. For simulation we use Matlab’s built-in ODE solver. The Jacobian
matrix, an upper bound of the Lipschitz constant are given as inputs. In addition, the
function to do the term-wise maximization of the error matrix is also given as inputs
(see Section 4.2). We use the absolute error for ODE solver as the error bounds for
simulation. The results presented here are based on experiments performed on an Intel
Xeon V2 desktop computer.

Comparison with other tools. We compare the performance of our algorithm with two
other tools, namely, Flow* [6] and HyCreate [26], for safety verification problem of
nonlinear dynamical systems. We use seven benchmarks which are shown in Table 1
with time bound T = 10s. Flow* uses Taylor models for approximating reachtubes
from a set of initial states. Currently, it returns “Safe” or “Unknown”, but not “Unsafe”.
HyCreate uses the face-lifting approach of [8] and provides a intuitive interface for
creating models.

Vanderpol, CoupledVanderpol, JetEngine, and Brusselator are commonly used, low-
dimensional, nonlinear benchmarks. Sinusoidal tracking [25] is a 6 dimensional non-
linear designed as a frequency estimator. The Lorenz Attractor (row 7) is a well known
chaotic dynamical system. Robot arm is a 4 dimensional nonlinear system described
in [3]. The Helicopter is a high dimension linear model of a helicopter system from [16].
In row 10 and 11, we increase the time bound of the fixed-wing model to T = 50 and
T = 100 respectively and the results show that the algorithm scales reasonably for
longer time horizons. Columns (#Sim) and (LDF) are the results of the proposed al-
gorithm ComputeLDF with coordinate transformation. More results of the algorithm
without coordinate transformation can be found in [14].

Flow* and HyCreate generate a single over-approximation of the reachtube from the
initial set independent of the safety property. While our algorithm will refine the initial
sets when the reachtube intersects with the unsafe set. In all of these benchmarks, we
make the unsafe set close to the reachtubes, to make the models safe yet it needs a lot
of refinements to arrive at that conclusion. Overall, the proposed approach with coor-
dinate transformation outperformed others in terms of the running time, especially in
high dimensional benchmarks. The “TO” in the table means the algorithm timed out
at 30 minutes. Of course, our implementation requires the users to give the symbolic
expression of the Jacobian matrix and term-wise maximization functions, while Flow*

Table 1: Safety verification for benchmark examples. dim: dimension of the model; δ:
diameter of the initial set; U: unsafe set; #Sim: number of simulations with coordinate
transformation; LDF: runtime of our implementation (with coordinate transformation)
in secs.

example dim δ U #Sim LDF(s) flow*(s) HyCreate(s)

1 Vanderpol 2 0.5 x>2.0 9 0.378 11.2 2.776

2 Brusselator 2 0.5 x>1.3 21 1.01 11.8 1.84

3 Jet Engine 2 0.4 x>2.0 5 0.353 8.74 5.54

4 Robot arm 4 0.5 x>2.5 81 4.66 169 >300

5 CoupledVanderpol 4 0.5 x>2.5 41 2.21 93 49.8

6 Sinusoidal Tracking 6 0.5 x>10 185 13.2 258 >300

7 Lorenz Attractor 3 0.02 x>1e4 570 13.99 53.4 TO

8 Fixed-wing UAV (T=10) 7 3 x> 39 321 20.8 TO TO

9 Helicopter 28 0.02 x>4 585 67.7 TO TO

10 Fixed-wing UAV (T=50) 7 3 x> 39 321 99.8 TO TO

11 Fixed-wing UAV (T=100) 7 3 x> 39 321 196 TO TO

and HyCreate just needs the differential equations. Moreover, our implementation cur-
rently handles only nonlinear dynamical systems, and both Flow* and HyCreate can
handle hybrid systems.

Properties of LDF. We explore the behavior of the algorithm with respect to changes
in the relative positions of the initial set and the unsafe set. We use the nonlinear model
of the Robot arm system. We fix the point [1.5, 1.5, 0, 0] as the center of the initial set
and T = 10 seconds as the time bound, and vary the diameter of the initial set (δ) and
the unsafe set (U : θ > c), where θ is the angle of the arm. The number of simulations
used by the algorithm with coordinate transformation (#Sim), the diameter of the reach
tube at the final time T (dia), and the total running time (RT) are shown in Table 7.

From the first 4 rows in the Table, we see the expected behavior that for a fixed
unsafe set, the diameter of the Reachtube decreases with decreasing δ. This corresponds
to the property that the discrepancy function β(x, x′, t) goes to 0 as the initial points
x→ x′, and therefore the error in the reachability computation decreases monotonically
with the diameter of the initial set. Rows 3 and 5-6 show that if we fix the size of the
initial set, then as the unsafe set comes closer to the actual reachtube, the number of
simulations increases and therefore the running time increases until the system becomes
unsafe. As more refinements are made by the algorithm, the accuracy (measured by the
diameter of the reachtube) improves. Similar trend is seen in rows 7-8, the algorithm
will need more refinements to find a counter example that shows unsafe behavior, if the
unsafe set is close to the boundary of the reachtube.

Next, we explore the behavior of the algorithm (with coordinate transformation)
with large initial sets. We use the 7 dimensional model of a fixed-wing UAV. The initial
sets are defined as balls with different radii around a center point [30, 980, 0, 125, 0, 0, 30.4]
and δ in the first column is the diameter of the initial sets. The unsafe set is defined as

H > c, where H is the thrust of UAV. The time horizon is fixed at T = 10 seconds. As
shown in Table 3, our algorithm can handle large initial set and high dimension systems.
Although it may need many simulations (24001 covers), the algorithm terminates in 30
mins. All the results of this table are safe.

7 Conclusions and Future Work

In this paper, we present an algorithm ComputeLDF to compute local discrepancy
functions, which is an upperbound of the distance between trajectories starting from
an initial set. The algorithm computes the rate of trajectory convergence or divergence
for small time intervals and gives the rate as coefficients of a continuous piecewise
exponential function. The local discrepancy we compute satisfies the definition of dis-
crepancy function, so the verification algorithm using ComputeLDF as a subroutine is
sound and relatively complete. We also provide a coordinate transformation method
to improve the estimation of rates. Furthermore, we extend the algorithm to com-
pute input-to-state discrepancy functions. ComputeLDF has been successfully used
to safety verify several complex nonlinear systems like powertrain control system. In
the future, we plan on using more rigorous ODE solvers like [5] and embedding the
algorithm in verification tools like C2E2 [11] for safety verification of hybrid systems.

δ U saftey #Sim dia RT(s)

1 0.6 θ>3 safe 17 5.6e-3 0.948

2 0.3 θ>3 safe 9 2.6e-3 0.610

3 0.2 θ>3 safe 5 1.8e-3 0.444

4 0.1 θ>3 safe 1 1.5e-3 0.271

5 0.2 θ>2.5 safe 9 1.7e-3 0.609

6 0.2 θ>2.15 safe 161 9.2e-4 6.705

7 0.2 θ>2.14 unsafe 45 N/A 1.997

8 0.2 θ>2.1 unsafe 1 N/A 0.267

Table 2: Safety verification for a robot arm
with different initial states and unsafe sets.
safety: safety result returned by verification
algorithm;

δ U #Sim RT(s)

1 50 H>400 24001 1518

2 46 H>400 6465 415

3 40 H>400 257 16.33

4 36 H>400 129 8.27

5 20 H>400 1 0.237

Table 3: Safety verifica-
tion for a fixed-wing UAV
with large initial sets.

References

1. M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with
uncertain parameters using conservative linearization. In CDC, pages 4042–4048, 2008.

2. D. Angeli. A lyapunov approach to incremental stability properties. IEEE Trans. Autom.
Control, 47(3):410–421, 2002.

3. D. Angeli, E. D. Sontag, and Y. Wang. A characterization of integral input-to-state stability.
IEEE Trans. Autom. Control, 45(6):1082–1097, 2000.

4. Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A tool for temporal
logic falsification for hybrid systems. 2011.

5. CAPD. Computer assisted proofs in dynamics. urlhttp://www.capd.ii.uj.edu.pl/, 2002.
6. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid

systems. In CAV, pages 258–263, 2013.
7. T. Dang, A. Donzé, O. Maler, and N. Shalev. Sensitive state-space exploration. In CDC,

pages 4049–4054, 2008.
8. T. Dang and O. Maler. Reachability analysis via face lifting. In HSCC, pages 96–109. 1998.
9. A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In HSCC, pages

174–189. 2007.
10. P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan. Meeting a powertrain verification

challenge (to appear in cav 2015).
11. P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated models from exe-

cutions. In EMSOFT, page 26, 2013.
12. P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan, and C. Muñoz. Temporal precedence

checking for switched models and its application to a parallel landing protocol. In FM, pages
215–229. 2014.

13. C. Fan, P. S. Duggirala, S. Mitra, and M. Viswanathan. Progress on powertrain verification
challenge with c2e2. ARCH, 2015.

14. C. Fan and S. Mitra. Bounded verification with on-the-fly discrepancy computation (full
version). available at http://web.engr.illinois.edu/˜cfan10/research.
html.

15. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In S. Q.
Ganesh Gopalakrishnan, editor, CAV, 2011.

16. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In CAV, pages
379–395, 2011.

17. A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incremen-
tally stable switched systems. IEEE Trans. on Autom. Control, 55(1):116–126, 2010.

18. Z. Han and P. J. Mosterman. Towards sensitivity analysis of hybrid systems using simulink.
In HSCC, pages 95–100, 2013.

19. Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Z. Kwiatkowska. Invariant verification of
nonlinear hybrid automata networks of cardiac cells. In CAV, pages 373–390, 2014.

20. Z. Huang and S. Mitra. Proofs from simulations and modular annotations. In In 17th Inter-
national Conference on Hybrid Systems: Computation and Control, Berlin, Germany. ACM
press.

21. M. Islam, R. DeFrancisco, C. Fan, R. Grosu, S. Mitra, S. A. Smolka, et al. Model checking
tap withdrawal in c. elegans. arXiv preprint arXiv:1503.06480, 2015.

22. A. A. Julius and G. J. Pappas. Trajectory based verification using local finite-time invariance.
In HSCC, pages 223–236. 2009.

23. W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automat-
ica, 34(6):683–696, 1998.

24. N. Nedialkov. VNODE-LP: Validated solutions for initial value problem for ODEs. Techni-
cal report, McMaster University, 2006.

25. B. B. Sharma and I. N. Kar. Design of asymptotically convergent frequency estimator using
contraction theory. IEEE Trans. Autom. Control, 53(8):1932–1937, 2008.

26. B. Stanley and C. Marco. Computing reachability for nonlinear systems with hycreate. In
Demo and Poster Session, HSCC.

27. M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models for nonlinear control
systems without stability assumptions. IEEE Trans. Autom. Control, 57(7):1804–1809, 2012.

http://web.engr.illinois.edu/~cfan10/research.html
http://web.engr.illinois.edu/~cfan10/research.html

	Bounded Verification with On-the-Fly Discrepancy Computation

