Pavement Preservation and Thin Lift Asphalt

NCAUPG and Illinois Bituminous Paving Conference
February 3, 2015

Dr. Michael Heitzman, PE
Dr. Mary Robbins
Mr. Don Watson, PE
Pavement Preservation

“A program employing a network level, long-term strategy that enhances pavement performance by using an integrated, cost-effective set of practices that extend pavement life, improve safety and meet motorist expectations”

- FHWA Pavement Preservation Expert Task Group
Current Life Extension Based on Ranges

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Reported Extended Service Life Range (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Overlay</td>
<td>3-23</td>
</tr>
<tr>
<td>Chip Seal</td>
<td>3-8</td>
</tr>
<tr>
<td>Microsurfacing</td>
<td>3-8</td>
</tr>
<tr>
<td>Crack Sealing</td>
<td>0-4</td>
</tr>
<tr>
<td>Mill and Resurfacing</td>
<td>4-20</td>
</tr>
<tr>
<td>Hot In-place Recycling</td>
<td>3-8</td>
</tr>
<tr>
<td>Slurry Seal</td>
<td>4-7</td>
</tr>
<tr>
<td>Fog Seal</td>
<td>4-5</td>
</tr>
<tr>
<td>Cold In-place Recycling</td>
<td>4-17</td>
</tr>
<tr>
<td>Full Depth Reclamation</td>
<td>10-20</td>
</tr>
<tr>
<td>Structural Overlay (Mill and Fill)</td>
<td>6-17</td>
</tr>
<tr>
<td>Whitetopping</td>
<td>3-17</td>
</tr>
</tbody>
</table>

FHWA-HIF-10-020, January 2010
Pavement Preservation
2012 Preservation Group Study

- Quantify life extending benefit of study treatments
 - \textit{Time/traffic to return to pretreatment condition(s)}
 - Test sections on the Track and Lee Road 159
Preservation Group Experiment

- 25 sections on local county road (Lee Road 159)
 - ≈5½” thick paved access road to quarry/asphalt plant
 - 2 control, 22 sections with treatments/combinations, 1 demonstration section
 - Pretreatment condition varied by WP and direction
- 14 sections on the NCAT Pavement Test Track
 - 7” pavements placed in the summer of 2009
 - PFC sections, DGA sections (virgin, high RAP)
 - >10 million ESALs
• Low ADT roadway
• **Very** high % trucks
• Load data provided by quarry and asphalt plant
• No traffic control needed for data collection
Lee Road 159

- Preventive maintenance
- Routine maintenance
- Minor rehabilitation
1. Rejuvenating Fog Seal
2. Fibermat Chip Seal
3. Control
4. Control
5. Crack Seal (CS)
6. Single Layer Chip Seal
7. CS + Single Layer Chip Seal
8. Triple Layer Chip Seal
9. Double Layer Chip Seal
10. Single Chip + Microsurfacing (Cape)
11. Microsurfacing
12. CS + Microsurfacing
13. Double Layer Microsurfacing
14. Fibermat Chip + Microsurfacing (Cape)
15. Scrub Seal + Microsurfacing (Cape)
16. Scrub Seal
17. Distress Demo Section
18. Fibermat Chip + HMA thinlay (Cape)
19. HMA Thinlay (PG 67-22)
20. 100% Foamed Recycle Inlay + thinlay
21. HMA Thinlay (PG 76-22)
22. Ultra Thin Bonded Wearing Course
23. HMA Thinlay (50% RAP)
24. HMA Thinlay (5% PCRAS)
25. HMA Thinlay (High Polymer)
LR 159 Testing Overview

- **Weekly**
 - Inertial Profiler (roughness, texture)
 - Visual inspections with notes/pictures

- **Monthly**
 - Video for crack mapping
 - Rut depth
 - Falling weight deflectometer (FWD)
 - Subgrade moisture readings

- **Other**
 - Locked wheel skid trailer friction
 - Ground penetrating radar (GPR)
Thin Lift Asphalt (Thinlays)

- Surface preservation
- Smaller NMAS, thinner lift thickness – lower cost
- Good rut resistance
- Impermeable surface

Selection conditions:
- Smooth pavement
- Good friction fine aggregate in mix (for high speed routes)
- Cool weather paving (thin lift)
- Modified mix design / construction criteria
Advantages of Thin Overlays

- Pavement preservation tool (no cure, no loose stone)
- Provides long service life (when placed over structurally sound pavements)
- Provides good riding surface (site dependent)
- Reduces noise (fine-graded mixes)
- Maintains grade and slope geometry
- Is recyclable
- Uses a surplus aggregate (if required quality)
2003 NCAT Test Track Cycle

- Mississippi DOT 4.75 mm mix
- ¾ in thick
- 92.2% Theoretical Density
- PG 76-22
- Aggregate
 - 69% Limestone
 - 19% Gravel
 - 12% Natural Sand
- After 30 million ESALs, 7 mm rut
2003 NCAT Test Track Cycle

- 9.5 mm mix
- 1 in thick
- 93.7% Theoretical Density
- PG 76-22
- Aggregate
 - 19% Natural Sand
- After 30 million ESALs, 5 mm rut
NCHRP Synthesis of Thin Overlays

- 9.5 and 12.5mm dense graded
- 9.5 and 12.5mm SMA
- 4.75mm dense graded and SMA
- UTBWC (ultra-thin bituminous wearing coarse)
- OGFC/PFC
PennDOT Use of Thin Overlays
Where Not To Use Thin Overlays
Performance Measures
(Purdue Study)

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Roughness (IRI)</th>
<th>Condition (PCR)</th>
<th>Rut Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Used</td>
<td>110 in/mi (1.74 m/km)</td>
<td>85</td>
<td>0.25 in (6 mm)</td>
</tr>
<tr>
<td>Expected Life (Yrs.)</td>
<td>7 - 10</td>
<td>7 - 11</td>
<td>8 - 11</td>
</tr>
</tbody>
</table>
Service Life

- LTPP Data (Liu, 2013)
 - 341 Thin Overlay Sections
 - 40 States, 8 Canadian Provinces
- Median life expectancy – 7 to 9.5 years
Explanations for Range in Service Life

Environmental Differences
Explanations for Range in Service Life

Construction Quality Standards - Interstate versus Secondary
Explanations for Range in Service Life

Variation in material quality
Explanations for Range in Service Life

Temporary Fix
NCAT Pavement Preservation Study

<table>
<thead>
<tr>
<th>Section</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>4.75/PG 67-22</td>
<td>4.75/PG 67-22</td>
<td>4.75/PG 76-22</td>
<td>4.75/PG 76-22</td>
<td>UTBWC</td>
<td>4.75 50% RAP</td>
<td>4.75 5% Shingles</td>
<td>4.75 PG 88-22</td>
</tr>
<tr>
<td>Subsurface</td>
<td>Fibermat</td>
<td>Existing</td>
<td>Full-Depth Reclamation</td>
<td>Existing</td>
<td>Existing</td>
<td>Existing</td>
<td>Existing</td>
<td>Existing</td>
</tr>
</tbody>
</table>
Conclusions

- Agencies need to define performance for pavement preservation
- Thin overlays routinely used as preservation tool
- Thin overlays extend life of pavements
 - Success depends on existing distresses
 - Service life generally in 7 – 11 year range
2015 Pavement Test Track Conference
March 3-5, 2015
The Hotel at Auburn University
and Dixon Conference Center
Auburn, Alabama

- WMA & High RAP/RAS/GTR Mixes
- Pavement Preservation
- Open-Graded Friction Courses
- Optimized Structural Design

Official registration information available at www.ncat.us

Lee Road 159
Pavement Preservation Experiment to Reduce the Cost to Maintain Your Roads

Funding Provided by:
Alabama, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, and FP2 via Auburn University and the Lee County Commission