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Signal detection theory (SDT; Tanner & Swets in Psychological Review 61:401–409, 1954) is a dom-
inant modeling framework used for evaluating the accuracy of diagnostic systems that seek to distinguish
signal from noise in psychology. Although the use of response time data in psychometric models has
increased in recent years, the incorporation of response time data into SDT models remains a relatively
underexplored approach to distinguishing signal from noise. Functional response time effects are hypoth-
esized in SDT models, based on findings from other related psychometric models with response time data.
In this study, an SDT model is extended to incorporate functional response time effects using smooth
functions and to include all sources of variability in SDT model parameters across trials, participants,
and items in the experimental data. The extended SDT model with smooth functions is formulated as a
generalized linear mixed-effects model and implemented in the gamm4 R package. The extended model
is illustrated using recognition memory data to understand how conversational language is remembered.
Accuracy of parameter estimates and the importance of modeling variability in detecting the experimental
condition effects and functional response time effects are shown in conditions similar to the empirical data
set via a simulation study. In addition, the type 1 error rate of the test for a smooth function of response
time is evaluated.
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1. Introduction

1.1. Signal Detection Theory and Response Time

Signal detection theory (SDT; Tanner & Swets, 1954) is a popular analytic and theoretical
approach to data from discrimination tasks in which a choice between two categories needs to be
made. For example, respondents might be presented with an image and asked to choose between
two response options. Responding that they had previously studied the image, or responding that
they had not previously studied the image, success in this task depends on correctly distinguishing
images that had been previously studied (the signal) from images that had not been studied (the
noise). In the motivating empirical study of this paper, respondents viewed a series of images
across trials, and for each image they responded whether it had been “presented earlier” (OLD
stimulus) or “not presented earlier” (NEW stimulus). The resulting responses are coded in binary
form.

It is becoming more common for response time data to be available from decision tasks and
from cognitive test responses. Although SDT as such does not include response time, there are
some studies in which the parameters of an SDT model have been related to response time data
(e.g., DeCarlo, 2021; Parasuraman, Masalonis, &Hancock, 2000).When response time data from
discrimination tasks or cognitive tests are available, there are two ways of including response time
in statisticalmodels: (1)models with response time as covariates for responses (e.g., Goldhammer,
Steinwascher, Kroehne, & Naumann, 2017, for an item response theory [IRT] model), and (2)
joint models for responses and response time. Among the latter, there are in turn two subtypes of
models: (2a) information accumulation models, such as the drift diffusion model (DDM; Ratcliff,
1978) and the linear ballistic model (Brown & Heathcote, 2008), and (2b) separate sub-models
for responses and response time with a connection between the two at a hierarchically higher
level to capture the relationship between responses and response time (van der Linden, 2007 for
an IRT model). In this study, we consider response time as a covariate in an SDT model because
a motivating empirical question is how response time as an indicator of the response process is
related to responses.

1.2. A Signal Detection Theory Model and Its Limitations

We identify the following limitations in the existing SDT model specifications for detecting
experimental condition effects and exploring response time effects as covariates. The existing
SDT model specifications do not allow all sources of random variability in the experimental data
to be modeled. Rouder et al. (2007) extended an SDT model to account for participant and item
variability simultaneously using hierarchical Bayesian models (Rouder et al., 2007). DeCarlo
(2010) presented an SDT model with variability in model parameters across trials. Although
trial-level variability in criteria is not typically included in standard SDT models, there is some
evidence for its presence in recognition memory (e.g., Benjamin et al., 2009; Wickelgren, 1972).
In addition, DeCarlo (2011) extended an SDT model with variability in an item effect (e.g., item
difficulty) across items over trials. In the motivating empirical study of the current study, binary
responses of recognition memory tasks are frommultiple trials, participants, and items. However,
an SDT model has not been presented to account for three sources of variability in the model
parameters simultaneously. It is expected that ignoring these sources of variability would lead to
an asymptotic underestimation of sensitivity in the SDT model (e.g., DeCarlo, 2010; Rouder &
Lu, 2005). Furthermore, the effect of response time (as a covariate of interest) is expected to be
biased when the variability is not controlled.

There are attempts to address response time in SDT. For example, Parasuraman et al. (2000)
present fuzzySDTas a combination of fuzzy set theory andSDT tomodel how the SDTparameters
can be calculated when the degree to which a signal has occurred. Wright et al. (2009) discussed



SUN-JOO CHO ET AL.

the possibility of adding response time as a covariate in an SDT model, but the authors did not
specify and illustrate the model. DeCarlo (2021) presented a joint model of an SDT model and
a mixture lognormal response time model by allowing the parameters of the two models to be
correlated. To the best of our knowledge, however, current SDT model specifications have not
incorporated response time effects as a covariate.

1.3. A Signal Detection Theory Model as a Generalized Linear Mixed-Effects Model

DeCarlo (1998) presented the connection between an SDT model and a generalized lin-
ear model (GLM). When the SDT model is formulated as a GLM, the sensitivity and criterion
parameters (discussed in Sect. 3) of the SDT model can be estimated as regression coefficients of
covariates in a regression-type model. DeCarlo (2010) further extended a SDT model to model
variability in model parameters across trials. In psycholinguistics, modeling variability in model
parameters across participants and items is widely advocated using a generalized linear mixed-
effects model (GLMM) (Baayen et al., 2008; Jaeger, 2008). Wright et al. (2009) presented an
SDT model with variability in the model parameters across participants and items by formulating
an SDT model as GLMM.

Based on previous findings from DDM and IRT models for accuracy and response time (as
will be discussed below), the relationship between response time and outcomes in the SDTmodel
is hypothesized to be functional1. A smooth function can be used for response time covariates that
are known to predict an outcome nonlinearly. The functional relationship can also be predicted
with a polynomial regression in which regression coefficients are estimated with covariates of
higher-order polynomials for response time. However, it is challenging to choose the degree of the
polynomial because too high of a degree can result in overfitting while too few degrees can result
in underfitting. In using a smooth function, the ‘wiggliness’ of the functional relationship can be
controlled by a parameter called a smoothing parameter (e.g., Wood, 2017). Using polynomials
may result in artefactual wiggliness in areas with sparse data points, which is avoided by using
a smooth function with a smoothing parameter (Baayen et al., 2017, pp. 208–209). Wood (2004,
2006, 2017) showed that a smooth function can be reformulated as a random effect. Based on
Wood’s work, an SDT model with a smooth function to model the functional response time effect
can be estimated as aGLMM.However, implementation of the SDTmodel with a smooth function
has not been illustrated.

1.4. Study Purpose and Novel Contributions

The purpose of this paper is to present and illustrate an extended SDT model as a GLMM
for detecting experimental condition effects in psychological experiments and for understanding
the role of response time in SDT. Novel extensions include (a) the incorporation of functional
response time effects for the SDT model parameters and (b) the specification of all sources of
variability in the model parameters (across trials, participants, and items) in the experimental
data. For the extension (a), a smooth and by-variable smooth (Wood, 2017) are used to estimate
the functional response time effects directly for the SDT model parameters, which may not be
straightforward in fitting a polynomial regression. The extended SDT model is illustrated using
a recognition memory task data set. For parameter estimation, Laplace approximation is used
in the gamm4 R package (Wood & Scheipl, 2020). Because the gamm4 package was developed
for either GLMMs or generalized additive mixed models (GAMMs) in general, the specificity of
implementation for the extended SDTmodel is needed. In this study, the reformulation of smooth
functions as random effects, as derived by Wood (2004; 2006; 2017), is applied to respecify the

1We use the term functional to refer to the intrinsic structure of the data rather than their explicit form (Ramsay &
Silverman, 2005, p. 38).
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extended SDT model as a GLMM. In addition, a simulation study is conducted to investigate
parameter recovery of the extended SDT model and to show consequences regarding detecting
experimental condition effects and functional response time effects when ignoring variability in
the model parameters across trials, persons, and items. Furthermore, type 1 error rate for testing
a smooth function of response time is evaluated via a simulation study.

The remainder of this paper is organized as follows. In Sect. 2, we describe an empirical
study that motivated the current paper. In Sect. 3, we discuss related models and hypotheses
regardingvariability and response time. Subsequently,wepresent an extendedSDTmodel, provide
parameter estimation methods in a gamm4 package, explain testing and prediction of smooth
functions for response time, and describe the model selection and evaluation methods. In Sect. 4,
the extended SDT model is illustrated using an empirical data set. In Sect. 5, the simulation study
is presented. In Sect. 6, we end with a summary and a discussion.

2. Motivating Empirical Study

In this section, a motivating empirical data set is described.

2.1. Experimental Design

The present analysis includes data from Experiments 1, 2, and 4 reported in Yoon et al.
(2021); Experiment 3 in that paper featured a different data structure and was not included in the
present analysis. Across the three experiments, there were slight differences in the appearance
of the experimental materials and in the implementation of the experimental condition effects.
These differences are not pertinent to the present analysis, thus here we focus on the experimental
manipulations that are shared across the three studies. See the original publication for further
details.

In each experiment, 247 participants (71 in Experiment 1; 72 for Experiment 2; 104 for
Experiment 4) were tested in pairs in a referential communication task (Krauss & Weinheimer,
1964). Following the communication task, the participants separately completed a recognition
memory test for images that were viewed during the communication task. In what follows, we
describe the communication task and then the memory test.

2.2. Communication Task and Memory Test

During the communication task, participants were seated at separate computers in the same
room, and viewed different visual displays across a series of trials (see Fig. 1). Each display
featured a 3 × 5 grid with four images, and on the speaker’s screen one of the 4 images was
highlighted with a red box. On each trial, the listener saw the same 4 images, but without the
box. The task was for the speaker to describe the highlighted image to their partner, the listener,
and for the listener to click on that image. For example, in the top panel of Fig. 1, the speaker
might say “Click on the dotted socks,” and for the bottom panel of Fig. 1, the speaker might say
“Click on the leather belt” (note participants viewed actual images, rather than text labels). The
position of the images in the 3 × 5 grid varied across trials, and the two participants took turns
playing the role of speaker and listener across trials. The present analysis focuses on a subset of
these communication trials where the visual display contained two images from the same basic
level object category (e.g., two types of socks, two types of belts, etc.). Following the naming
conventions in the original paper, we will refer to the named image as the “contrast” image (e.g.,
the dotted socks), and the other image from the same category as the “context” image (note, in the
original paper this subset of trials is the differentiation-condition “setup” trial type; see Yoon et
al., 2021). Each pair of participants completed 14 of these critical trials during the communication
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Figure 1.
Illustration of communication task trials from the speaker’s perspective, with the target image highlighted in red.
Note. The arrow in Fig. 1 indicates that each participant does multiple trials. Participants saw photographic or clip art
pictures (rather than text). The listener’s view on this trial showed the same four images, but without a red box. The
context/contrast images are written in bold font. Image background and color varied across experiments and conditions;
see (Yoon et al. 2021) for details (Color figure online).

task, each ofwhich featured two images of interest, the contrast and context images. The remaining
trials that participants completed during this phase are not relevant to the current analysis and will
not be discussed further.

After completing the communication task, there was a brief delay, and then participants
completed a recognition memory task for the images that they had viewed in the communication
task. Over a series of test trials, participants saw one image at a time and were asked to make
a recognition memory judgement, indicating by keypress whether this image was OLD (seen in
the communication task), or NEW (not seen in the communication task). Half of the memory
test trials were in fact OLD images seen in the communication task, and the other half of trials
presented a NEW image that was not seen in the communication task, but was from the same
category (e.g., a new sock image that had not been seen before). Thus, to succeed at the memory
task, participants had to correctly recognize the specific images that they had seen in the first phase
of the experiment, and not simply the image category. The present analysis focuses on a subset of
the memory test trials consisting of 28 image groups that are considered to be items. Specifically,
for each participant, we analyze participant responses to the 14 OLD context images and the 14
OLD contrast images that they had seen on the 14 critical communication task trials of interest,
as well as 28 NEW images that had not been seen before, but that were from the same categories
as the previously seen images. Note that the contrast vs. context variable is undefined for NEW
images and that the label of contrast vs. context for NEW images is simply for convenience. For
each memory trial, the computer recorded participant responses regarding whether the image was
OLD or NEW, as well as the response time for this judgment.

The focus of the present analyses is on the subset of the recognition memory data (“old”
vs. “new” responses) described above, and on the associated response time. The response time
is measured in seconds and corresponds to the time between the presentation of the picture on
the computer screen at test, to when the participant made the “old”/“new” memory judgement.
Besson et al. (2012) found that recognition occurs as early as 370ms (0.37 s), whichwas also found
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in our data. As a result, observations less than 0.37 s are discarded for analysis. The remaining
(i.e., > 0.37s) raw response time data are log-transformed because of their skewness, which is a
common practice when dealing with response time data (Besson et al., 2012).

The fixed experimental condition effects are (a) whether the image was OLD (seen during the
communication task) or NEW (isold), (b) whether the participant was the speaker or listener
for that trial (role), and (c) whether the image was named by the speaker (contrast image, e.g.,
dotted socks) or viewed but not named (context image, e.g., rainbow socks) (condition).

2.3. Data Structure

Across the data set, a total of 112 trials on the memory test designate the crossing of one of
28 image groups (items), whether that image was OLD or NEW, and whether it was a context or
contrast item (28× 2 × 2 = 112). Trials are crossed-classified by 247 participants and 28 image
groups. Participants are nested within experimental conditions.

The subset of the data that the present analyses focus on includes 28 image groups, where
each image group constitutes one basic object type (e.g., sock, belt, bag2). The original study
used a modified Latin-squares design to vary which experimental condition a given image and
image-group were assigned to across experimental lists. Each participant completed the trials on
the list. As a result, in the subset of the data examined here, each participant has memory response
data for 56 images (28 OLD, 28 NEW), corresponding to 4 images from each of 14 image groups.
For example, during the memory test, participant ID 4152 responded to 4 “backpack” images (1
OLD context backpack image, 1 OLD contrast backpack image, and 2 new backpack images),
whereas participant ID 4151 did not have any “backpack” images, but did have 4 “chair” images
(1 OLD context chair, 1 OLD contrast chair, and 2 NEW chairs). At test, participants saw a single
image on each of a series of 224 trials; for each participant we analyze 56 of those trials here.
Note that trial identifiers 1 − 56 are for OLD images and trial identifiers 57 − 112 are for NEW
images.

The total number of observations in this analysis is 13,832 (247 participants × 56 trials [=14
items × 2 OLD vs. NEW × 2 contrast vs. context image]). Sample sizes in the 8 cells created by
the crossing of 2 isold (whether the image is OLD or NEW) × 2 condition (whether the
OLD image was a contrast or a context image)× 2 role (whether the participant was the speaker
or listener for the corresponding study trial) are almost equal [with a maximum difference of 12
in the sample sizes across the 8 cells]). Of the 13,832 observations, there are 169 observations
from participants who accidentally hit a wrong keyboard response and there are 107 observations
with a response time less than log(0.37) = −0.994 (which can only be interpreted as noise-based
responses as explained earlier). In addition, there was a participant who had only 4 trials (out
of 56 trials) remaining after deleting observations with wrong keyboard responses. These 280
(= 169 + 107 + 4) observations were discarded for data analysis. That is, 13,552 observations
(= 13, 832 − 280) were included for analyses for 112 trials, 246 participants, and 28 items. Of
these 13,552 observations, there are no missing observations.

3. Methods

In this section, we first introduce an SDT model based on DeCarlo (1998) as a basis model
for extensions regarding variability and functional response time effects and discuss related mod-
els and hypotheses on variability and response time. We then specify the extended SDT model
and describe parameter estimation using the gamm4 package, testing and prediction of smooth
functions for response time, and model selection and evaluation methods.

2The 28 image groups are: baby, backpack, banana, belt, bird, boot, box, chair, desk, dog, flag, grapes, hair, hat,
jacket, juice, pants, paper, pie, pig, ring, shirt, shoe, skirt, sock, swords, tree, watch.
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Figure 2.
Signal detection theory with underlying probability distributions for the effects of the presentation of NEW (noise) and
OLD (signal) items. Redrawn from Fig. 1 in DeCarlo (1998) with modification.

3.1. An SDT model, Related Models, and Previous Findings and Hypotheses on Variability and
Response Time

3.1.1. Signal detection theory model In recognition memory research, the effects presenting
NEW (noise) and OLD (signal) items can be represented by underlying probability distributions,
as shown in Fig. 2. The two distributions are assumed to differ with respect to location while being
the same with respect to scale. In the experiment, each participant is assumed to give a response
using a response criterion (we denote a response by y): “yes” (responds “old”; y = 1) if memory
falls above the criterion c, and “no” (responds “new”; y = 0) otherwise for each trial. Given
NEW (noise) and OLD (signal) items, there are four possible responses: hit (response “old” for
OLD items), false alarm (response “old” for NEW items), correct rejection (response “new” for
NEW items), and miss (response “new” for OLD items) (see Table 1[top] for summary). In an
SDTmodel, there are a criterion (c) parameter and a sensitivity (d) parameter for the four possible
responses. As presented in Fig. 2, the c parameter is the distance of the response criterion from
the mode of the NEW distribution and the d parameter is a measure of the distance between the
two modes of the distributions.

An SDT model with binary responses (“old” vs. “new” responses) can be reformulated with
either a logistic function or a probit function (e.g., DeCarlo, 1998). A logistic function and a probit
function differ with respect to standard deviation: the standard deviation is

√
π2/3 for the logistic

function and 1 for the probit function. Thus, estimates of the logistic function tend to be about
1.6 to 1.8 larger than those of the probit function when both functions fit well to the data (Agresti,
2002, pp. 246–247). In this study, the logistic function is chosen because we prefer to interpret
SDT parameters on the logit scale using the logistic function rather than on the probability or
transformed z-score scale using the probit function.

When the logistic function is chosen for binary responses, d can be calculated as

d = ψOLD − ψNEW

τ
√

π2/3
, (1)

where ψOLD and ψNEW are the modes of the OLD and NEW distributions, respectively (see
Fig. 2), and τ is a scale parameter, assuming that the scale parameter is the same between the
OLD and NEW distribution.
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The conditional probability of responding “yes” (y = 1) given that an OLD item is presented
(a hit) can be written as:

logit[P(y = 1|OLD)] = ψOLD − c

τ
. (2)

The conditional probability of responding “yes” (y = 1) given that a NEW item is presented (a
false alarm) can be written as:

logit[P(y = 1|NEW )] = ψNEW − c

τ
. (3)

Here,
√

π2/3 is dropped for a logit link parameterization.
Equations 2 and 3 can be combined when an indicator variable isold for OLD vs. NEW

items is introduced (isold= 0 for NEW items; isold= 1 for OLD items):

logit[P(y = 1|isold)] = (ψNEW − c)

τ
(1 − isold) + (ψOLD − c)

τ
isold. (4)

When setting ψNEW = 0 and τ = 1 (as reference location and scale parameters, respectively),
and defining d = ψOLD − ψNEW , Eq. 4 leads to

logit[P(y = 1|isold)] = −c + d × isold. (5)

Here, one can see that the intercept parameter is −c and the slope parameter of isold is d.
The c parameter is the negative of the log odds of a false alarm, or the log odds of a correct

rejection:

c = − log

{
P(y = 1|isold = 0)

P(y = 0|isold = 0)

}
= log

{
P(y = 0|isold = 0)

P(y = 1|isold = 0)

}
. (6)

The d parameter is the model-based log odds ratio of the indicator variable isold:

d= logOddsRatio(isold) = log

{ P(y=1|isold=1)
P(y=0|isold=1)
P(y=1|isold=0)
P(y=0|isold=0)

}

= log
P(y = 1|isold = 1)

P(y = 0|isold = 1)
−log

P(y = 1|isold = 0)

P(y = 0|isold = 0)
. (7)

3.1.2. RelatedModels andHypotheses onVariability andResponseTime To formulate hypothe-
ses regarding the relationship between the SDT parameters and response time as a covariate, we
can rely on findings regarding similar relationships from other types of models, such as the DDM
and IRT models for the relationship between accuracy and response time. Before discussing the
empirical results obtained with these other models (DDM and IRT), it should be clarified that the
parameterization of the SDT for recognition memory tasks is not based on an accuracy coding of
the responses (responding “old” for an OLD item and responding “new” for a NEW item), but on
the differentiation between signal (OLD items) and noise (NEW items), and a decision threshold
to differentiate between signal and noise. The smaller the distance between the two distributions
for signal and noise, the smaller the probability is for a correct response (“old” for an OLD item
and “new” for a NEW item). Related to the response coding difference, the threshold in SDT
for recognition tasks is not the threshold between correct and incorrect, but between an “old”
response and a “new” response.
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There are three main findings of interest in the IRT modeling literature that can be used to
formulate predictions for SDT. First, response time is consistently and positively related to item
difficulty and thus negatively related to accuracy. Difficult items have a lower rate of accurate
responses and take more time (Schnipke & Scrams, 2002; van der Linden, 2009). Second, the
correlation across persons between accuracy (and thus ability) and response time is not consistent
across persons. Sometimes the correlation (across persons) is positive, and sometimes it is negative
(Schnipke & Scrams, 2002; van der Linden, 2009). Third, there seems to be a relationship across
pairs of respondents and items after controlling for item differences and individual differences
(Bolsinova et al., 2017; De Boeck & Jeon, 2019). A closer look tells us that the relationship has
an inverted-U shape form (Bolsinova &Molenaar, 2018; Chen et al., 2018): longer response time
is associated with higher accuracy up to a turning point on the log of response time scale, after
which the accuracy begins to decrease for longer response time.

Similar findings are obtained with the DDM. Ratcliff et al. (2015) conclude that for easier
discrimination tasks (including for recognition tasks), response time tends to be faster than for
more difficult discrimination tasks. As explained earlier, for recognition, easy and difficult are
defined here in terms of ease of discriminability, which is different from the ease of responding
“old,” as indicated by the c parameter from SDT. Furthermore, Kang et al. (2022a) and Kang
et al. (2022b) found a similar inverted-U shape for the relationship between response time and
accuracy across pairs of respondents and items with the DDM, after controlling for person and
item parameters.

In summary, there is congruence between DDM and IRT in that a negative relationship is
found across items (stimuli) between response time and accuracy, and that after controlling for
individual differences and item differences, the relationship has an inverted-U shape. Based on
the results discussed above, we expect similar results for response time and the d parameter.
Combining the findings when response time is used as a covariate (not differentiated into its
three components of items, persons, and pairs of items and persons), we expect a mainly negative
relationship between response time and the d parameter, modified by a small positive slope for
the shorter response time and a highly negative slope for the longer response time. Note that
the items in our study may differ with respect to their easiness of differentiation between OLD
and NEW. Also note that while we use the term “item” when discussing responses to stimuli
in the IRT models and the DDM, the term “item” will be used in the description of the present
experimental design with a somewhat different meaning. It is worth noting that (Chen et al.,
2018) found that, without differentiating between sources of variations (items, persons, and items
by persons), the relationship also had an inverted-U shape for five different tests, although the
degree of the curvilinearity depended on the test. For each of the five tests, the upward part of the
relationship was clearly shorter than the downward part. Given our parameterization of the SDT
model, we expect similar results for the d parameter. We have no expectations for the c parameter
after controlling for the d parameter.

3.2. Extended Signal Detection Theory Model

Below, we specify the extended SDTmodel by incorporating functional response time effects
using smooth functions and by accounting for variability in the SDT model parameters across
trials, persons, and items. An extended SDT model can be written as:

logit[P(yl ji = 1|X,isoldl j i , RTl ji , γ , dl ji , cl ji )] = ηl j i

= γX − f1(RTl ji ) − cl ji + f2(RTl ji )isoldl j i + dl jiisoldl j i , (8)

where l is an index for trial (l = 1, . . . , L), j is an index for person ( j = 1, . . . , J ), i is an
index for item (i = 1, . . . , I ), yl ji is a binary outcome variable; yl ji = 0 if person j responds
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“new” on item i for trial l; yl ji = 1 if person j responds “old” on item i for trial l), X is a
design matrix of the fixed intercept and covariates (i.e., condition, person characteristics, item
characteristics, and their interaction effects), RTl ji is response time in ms, γ is a vector of fixed
effects, isoldl j i is an indicator variable for OLD item i and person j for trial l; isoldl j i = 0
for the NEW item i and person j for trial l; isoldl j i = 1 for the OLD item and person j
for trial l, cl ji is a criterion parameter, dl ji is a sensitivity parameter, f1(RTl ji ) is a smooth
function of RTl ji for the cl ji parameter, and f2(RTl ji )isoldl j i is a by-variable smooth function
of RTl ji for the differences in the effect of response time byisoldl j i (i.e., f2(RTl ji )(isoldl j i =
1)− f2(RTl ji )(isoldl j i = 0) for the dl ji parameter).3 In this study, the focal parameter in Eq.8
is the sensitivity parameter, which is the separation of the signal and noise distributions’ peaks
and indexes a person’s ability to discriminate signal from noise trials. In Eq. 8, the f1(RTl ji ) is
added with a minus sign to interpret it as the effect of response time for a (model-based) false
alarm (given NEW items withψNEW = 0 as a reference location), not for a (model-based) correct
rejection. That is, the minus sign of f1(RTl ji ) makes the effect a positive effect on the correct
rejection probability.

In the motivating data set, a given trial identifier is either designated as OLD or NEW. Thus,
variability across trials cannot be modeled for sensitivity because sensitivity reflects the ability
to distinguish OLD from NEW as differences. To allow for variability in d and c parameters, the
two parameters are modeled as follows:

dl ji = μd + θdj + βd
i (9)

and
cl ji = μc + ζ c

l + θcj + βc
i , (10)

where μd is a fixed intercept (overall mean) of the sensitivity, θdj is a person random effect of

the sensitivity, βd
i is an item random effect of the sensitivity, μc is fixed intercept (overall mean)

of the criterion, ζ c
l is a trial random effect of the criterion, θcj is a person random effect of the

criterion, andβc
i is an item randomeffect of the criterion.Normality is assumed for ζ c

l .Multivariate
normality is assumed for [θdj , θcj ]′, and [βd

i , βc
i ]′, respectively. DeCarlo (2010) showed that the

traditional unequal variance SDTmodel can be obtained from the equal variance SDTmodel with
random effects for the c and d parameters. In the extended STD model, having random slopes
of dummy-coded isoldl j i for persons (θdj ) and for items (βd

i ) indicates that differences in the
variances of OLD vs. NEW items can be modeled for persons and items, respectively.

The univariate smooth function f1(RTl ji ) of the RTl ji covariate in Eq.8 is specified as a
weighted sum of a set of basis functions over the covariate RTl ji :

f1(RTl ji ) =
K∑

k=1

δ1kb1k(RTl ji ), (11)

where k is an index for a basis function (k = 1, . . . , K ), δ1k is a basis coefficient for the smooth
function f1(RTl ji ), and b1k(RTl ji ) is the kth basis function for the smooth function f1(RTl ji ). A
by-variable smooth is used for f2(RTl ji )isoldl j i . The f2(RTl ji ) is defined as the differences in

3There are three identifiable parameterizations of smooth functions of RTl ji : (a) the mean level of isoldl j i and
a smooth function of RTl ji for each level of isoldl j i , (b) a smooth function of RTl ji and a smooth function for the
differences in the effect of response time by isoldl j i , and (c) the mean level of isoldl j i , a smooth function of RTl ji ,
and a smooth function for the differences in the effect of response time by isoldl j i . In this current study, we chose the

third parameterization to estimate the fixed d parameter (μd ), a smooth function of RTl ji for the cl j i parameter, and a
smooth function of RTl ji for the dl ji parameter.
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the effect of response time by isoldl j i (i.e., f2(RTl ji )(isoldl j i = 1)− f2(RTl ji )(isoldl j i =
0)):

f2(RTl ji ) =
K∑

k=1

δ2kb2k(RTl ji ), (12)

where δ2k is a basis coefficient for the smooth function f2(RTl ji ) and b2k(RTl ji ) is the kth basis
function for the smooth function f2(RTl ji ).

3.3. Parameter Estimation

The gamm4 function in the gamm4 package in R was used for parameter estimation. Under-
lying fitting engines in the gamm4 function is the mgcv package (Wood, 2019) and the lme4
package (Bates et al., 2015). In the gamm4 package, smooth functions are reformulated as ran-
dom effects and parameters of GAMM are estimated as parameters of a GLMM (Wood, 2004;
2006; 2017). Below, we describe the details of the implementation of the glmm4 function for the
extended SDT model.

Denote a univariate smooth function by fh(RTl ji ) where h is an index for a smooth function
(h = 1, 2). In thegamm4 package, a smooth function is estimatedwith an identification constraint
such that fh(RTl ji ) sums to 0 over the observed covariate values (i.e.,

∑
v fh(RTl ji ) = 0 for each

h); otherwise, fh(RTl ji ) can be confounded with the intercept. That is, the intercept parameter
(e.g., the criterion c parameter) can be estimated because a smooth function is centered. In addi-
tion, isoldl j i should be coded as an ordered factor variable in R to estimate μd , f1(RTl ji ),
and f2(RTl ji ) ( f2(RTl ji )(isoldl j i = 1) − f2(RTl ji )(isoldl j i = 0)) (Wieling, 2018). When
isoldl j i is coded as a numeric variable in R, separate smooth functions are estimated for each
level of isoldl j i (i.e., NEW items vs. OLD items), and they are not centered at 0. As a result, the
fixed effect with isoldl j i (μd ) (which is one of focal parameters in our empirical study) cannot
be estimated.

In GAMM applications using the gamm4 package, a cubic regression spline (CRS; Wood,
2017) and a thin plate regression spline (TPRS; Wood, 2017, sec. 5.5.1) can be used for the
univariate smooth functions ( fh(RTl ji )). The CRS is a smooth curve composed of sections of
cubic polynomials. The sections are joined together at locations referred to as knots. At each knot,
the joined sections of the cubic polynomials have equivalent values, first derivatives, and second
derivatives (Wood, 2017, sec. 5.3.1). In the gamm4 package, the default is for the knots to be
equally spaced over the entire range of the observed covariate and the same sequence of knots
was used for f1(RTl ji ) and f2(RTl ji ). Although the CRS yields better computational efficiency,
the CRS and the TRPS yield comparable results for univariate smooth functions (e.g., Finch &
Finch, 2021). Thus, the CRS was chosen in the current study. For the CRS, the number of basis
functions (K ) should be selected to obtain a good fit. The dimensionality of the basis expansion is
determined by K . To determine whether a selected K is large enough, the value of the k-index can
be assessed. The k-index is a measure of howmuch of a pattern remains in the residuals. A k-index
below 1 for a specified K indicates that there is amissed pattern left in the residuals. In the case of a
k-index below 1, a larger K should be considered. In addition to the k-index, the corrected Akaike
information criterion (corrected AIC calculated as deviance +2ed f , where ed f , the effective
degrees of freedom, is the number of parameters needed to represent smooth functions) (Wood
et al., 2016) was used for selecting a model with an adequate amount of smoothing from the data
among candidate models differing in K .

The ‘wiggliness’ of smooth function fh(RTl ji ) is controlled by a quadratic smoothing penalty
(e.g., Wood, 2017). The quadratic smoothing penalty for the model can be written as:

λh

∫ +∞

−∞
[ f ′′

h (RTl ji )]2dRT = λhδ
T
h Shδh, (13)
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whereλh is a smoothing parameter,
∫ +∞
−∞ [ f ′′

h (RTl ji )]2dRT is an integrated squared second deriva-
tive as a measure of the curvature of the function, δh is a vector of basis coefficients, and Sh is
a penalty matrix. The elements of Sh are known and are determined by the chosen CRS and the
parameter λh controls the trade-off between goodness of fit and model smoothness.

Wood (2004; 2006; 2017, p. 239) presented how a smooth function in GAMM can be refor-
mulated into fixed and random effects in GLMM. Below, key derivations in Wood (2004; 2006;
2017, p. 239) are applied for the estimation of smooth functions in the extended SDT model.
For a smooth function fh(RTl ji ) (h = 1, 2) with a model design matrix (i.e., basis functions
bh) and smoothing parameter λh , the penalty matrix Sh in Eq.13 is reparameterized using its
eigendecomposition to have a proper distribution for standard linear mixed modeling approaches:

Sh = UhDhUT
h , (14)

where Uh is an orthogonal matrix of eigenvectors and Dh is a diagonal matrix of eigenvalues.
Note that there is an eigendecomposition for each smooth function fh(RTl ji ) when there is more
than one smooth function in GAMM. The eigenvector matrix Uh is partitioned for random and
fixed effects of a smooth function:

Uh = [UhR,UhF ], (15)

whereUhR is the (K−1)×(K−1−n) eigenvectormatrix (where n is the number of 0 eigenvalues)
corresponding to nonzero eigenvalues of Sh for random effects of a smooth function, and UhF is
the remaining (K − 1) × n eigenvector matrix for fixed effects of a smooth function. With this
decomposition of Uh , the design matrices for the fixed effects Xh and the random effects Zh of a
smooth function are defined as follows:

Xh = XUhF (16)

and
Zh = XUhRD

−1/2
h , (17)

where X is a model matrix (the number of observations × K − 1) for a smooth function. In
Eq.17, note that the size of D−1/2

h is (K − 1− n) × (K − 1− n). Using the design matrices, Xh

(the number of observations × n) and Zh (the number of observations × (K − 1 − n)), a linear
predictor of a smooth function fh(RTl ji ) is written as:

ηh = Xhγ h + Zhuh, (18)

where γ h contains the fixed effects (the penalty null space) and uh contains the random effects
of a smooth function. The random effects of a smooth function are defined as:

uh ∼ MV N (0, (λh S̃h)−1), (19)

where S̃h = UT
hRShUhR . In this random effect specification, the smoothing parameter λh is the

reciprocal of the variance, as shown in Silverman (1985).
Using the reformulation of smooth functions as random effects, the linear predictor for para-

metric terms and the two smooth functions ( f1(RTl ji ), f2(RTl ji )) in GAMM can be combined
for fixed and random effects, respectively, to estimate GAMM parameters as GLMM, with the
long form of data:

η = [X f ,X1,X2][γ , γ 1, γ 2] + [Z,Z1,Z2][u,u1,u2], (20)
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whereX f ,X1, andX2 are the designmatrices for fixed parameters (γ ), the fixed effects of a smooth
function f1(RTl ji ) (γ 1), and thefixed effects of a smooth function f2(RTl ji ) (γ 2), respectively, and
Z, Z1, and Z2 are the design matrices for parametric random effects (u = [θd ,βd , ζ c, θc,βc]′),
the random effects of a smooth function f1(RTl ji ) (u1), and the random effects of a smooth
function f2(RTl ji ) (u2), respectively. The design matrix of random effects for the two smooth
functions (Zh , h = 1, 2) is combined as a multiple of the identity matrix for parametric random
effects in the extended SDT model (u). For the logit link, the gamm4 function calls the glmer
function in the lme4 package for Laplace approximation.

3.4. Testing and Predicting of Smooth Functions of Response Time

For testing and predicting a smooth function, basis coefficients δh can be estimated as coef-
ficients of known basis functions bh using the following equation:

η̃h = δhbh, (21)

where η̃h is a smooth function based on the linear predictor for a smooth function (η̃h = Xh γ̂ h +
Zh ũh based on Eq.18). In Eq.21, an intercept parameter should not be estimated for reasons of
identification.

To determine whether or not a smooth function fh(RTl ji ) is distinguishable from zero, the
following null hypothesis can be tested: H0 : fh(RTl ji ) = 0 for all RTl ji in the range of interest.
A test statistic for fh(RTl ji ) is:

Tr = f̂Th V
−
fh
f̂h, (22)

where r is the rounded ed f of fh(RTl ji ) (integer; e.g., r = 1 in the case of ed f = 1.25), the
f̂h is the vector of fh(RTl ji ) evaluated at the RTl ji values, and V−

fh
is a rank r pseudo-inverse

of V fh (V fh = XhVδhXT
h , where Xh are basis functions and Vδh is the covariance matrix of

basis coefficient estimates) (Wood, 2017, pp. 305–306). Under H0, the test statistic Tr follows a
Chi-square distribution (Tr ∼ χ2

r ) (Wood, 2013).
Credible intervals for a predicted smooth function are obtained by taking the quantiles from

the posterior distribution of fh(RTl ji ) (Marra &Wood, 2012). To obtain the posterior distribution
of fh(RTl ji ), a large number of replicated sets (1,000 in this study) are simulated from a posterior
distribution of basis parameters δh using a multivariate normal (MV N ) distribution:

δh ∼ MV N (̂δh, V̂δh ), (23)

where δ̂h is the vector of basis parameter estimates and V̂δh is the covariance matrix of basis
parameter estimates for a smooth function h (which can be extracted using vcov(model$gam)
in the gamm4 package). Based on replicated parameters, the predicted smooth functions can be
calculated using the following equation:

f̃h(RTl ji ) = δ̂hbh . (24)

The mean of 1,000 replicated predicted smooth functions can be plotted against RTl ji along with
95% credible intervals.



PSYCHOMETRIKA

Table 1.
Four Possible Outcomes (top), Model-Based Probability with an SDTModel (middle), andModel-Based Probability with
the Extended SDT Model (bottom) for the Four Possible Outcomes.

NEW items OLD items

“new” response Correct Rejection Miss
(y = 0)
“old” response False Alarm Hit
(y = 1)

NEW items (isold = 0) OLD items (isold = 1)

“new” response P(y = 0|NEW ) = 1
1+exp(−(c)) P(y = 0|OLD) = 1

1+exp(−(c−d))

(y = 0) = 1 − P(y = 1|NEW ) = 1 − P(y = 1|OLD)

“old” response P(y = 1|NEW ) = 1
1+exp(−(−c)) P(y = 1|OLD) = 1

1+exp(−(−c+d))

(y = 1)

NEW items (isoldl ji = 0) OLD items (isoldl ji = 1)

“new” response P(yl ji = 0|NEW ) P(yl ji = 0|OLD)

(yl ji = 0) = 1
1+exp[−(−γX+ f1(RTl ji )+cl ji )] = 1

1+exp[−(−γX+ f1(RTl ji )+cl ji− f2(RTl ji )−dl ji )]
“old” response P(yl ji = 1|NEW ) P(yl ji = 1|OLD)

(yl ji = 1) = 1
1+exp[−(γX− f1(RTl ji )−cl ji )] = 1

1+exp[−(γX− f1(RTl ji )−cl ji+ f2(RTl ji )+dl ji )]

3.5. Model Selection and Evaluation

A model is selected among candidate models depending on which random effects (random
slopes) are necessary for the d parameter. The question is whether the d parameter varies across
persons and items. The baseline model is Eq. 8 without the random slopes. Based on a selected
model, the necessity of random slopes for experimental condition effects is explored. For model
selection, two information criteria, the marginal AIC (Vaida &Blanchard, 2005) and the Bayesian
information criterion (BIC; Schwarz, 1978), were chosen. For calculating the number of param-
eters in the marginal AIC and BIC for a smooth function, the number of γ h parameters in Eq.18
and λh parameters in Eq.19 were counted together.

The Pearson residual for one observation from a trial, a person, and an item (
yl ji−P̃√
P̃(1−P̃)

) is

calculated to check whether a selected model describes binary data adequately. The P̃ is a model-
based probability for each of four possible outcomes (see Table 1 [bottom]), which is calculated
based on yl ji , parameter estimates, predicted smooth functions, and predicted random effects.
The Pearson residual for one binary observation from a trial, a person, and an item can be an
outlier based on the normal distribution. Observations with the Pearson residuals exceeding 2 in
absolute value are worth closely examining for misfit (e.g., Rodríguez, 2007).

In addition, a binned plot is created to evaluatewhether the effect of response time data (RTl ji )
for c and d parameters are described adequately by a selected model with smooth functions. In the
binned plot, the empirical c (denoted by ec) is compared with the averagemodel-based probability
(denoted by mc) across observations within each stratum (i.e., a level in the binned RTl ji ) q of
the RTl ji on the logit scale using NEW items only. In addition, the empirical d (denoted by ed) is
compared with the average model-based probability (denoted by md) across observations within
each stratum q of the RTl ji on the logit scale using NEW and OLD items. The ec and ed for each
stratum q are calculated as follows:

ecq = −logit{Propq(yl ji = 1|isoldl j i = 0)} (25)
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and

edq = log

{
Propq(yl ji = 1|isoldl j i = 1)

Propq(yl ji = 1|isoldl j i = 0)

}
, (26)

where Propq(yl ji = 1|isoldl j i = 1) is the proportion of responding “old” within a stratum q
for OLD items and Propq(yl ji = 1|isoldl j i = 0) is the proportion of responding “old” within
a stratum q for NEW items. The mc and md for each stratum q are obtained as follows:

mcq = E[logit{P̃q(yl ji = 1|X,isoldl j i = 0, RTl ji , γ̂ , d̃l j i , c̃l j i )}] (27)

and
mdq = E[logit{P̃q(yl ji = 1|X,isoldl j i , RTl ji , γ̂ , d̃l j i , c̃l j i )}]. (28)

The number of bins can be chosen arbitrarily to have a large enough number of observations
within a bin.

4. Illustration

In this section, we illustrate the extended SDT model using the empirical data described
earlier. Data and the R code used in the application can be found in the Open Science Framework,
https://osf.io/xvzm5/?view_only=fbb18ea6edf84bbba200c467cef33a6e.

4.1. Research Questions and Hypotheses

The empirical questions of interest in this research concern what people do and do not
remember after a conversation is over. In the recognition test, the participants were presented
with a series of images one at a time. For each image they made a timed judgement as to whether
that image had been presented in the communication phase of the task (OLD) or not (NEW).
The effect of image status (OLD vs. NEW) on responses reflects the recognition memory for the
images, with better memory indicated by more “old” responses to items that were actually OLD,
and fewer “old” responses to items that were actually NEW. For OLD images, we expect better
memory for speakers than listeners, as generating a description tends to promote memory for the
item that is described (Slamecka & Graf, 1978; Yoon et al., 2021). We also expect better memory
for the named contrast item than the not-named context item, as naming an image draws focal
attention to it, which tends to boost memory. The speaker benefit is likely to be larger for the
named contrast item than for the context item, as the benefit from generating a description tends
to primarily affect memory for the focal information that was generated, more so than context
information (Yoon, Benjamin, & Brown-Schmidt, 2016). Once response time is past a certain
criterion, speed trades off with accuracy such that slower responses tend to be more accurate, up
to a certain point (Wickelgren, 1977). Based on prior work and inspection of the data, we used
370ms as the criterion (0.37 s; Besson et al., 2012), although the appropriate criterion point is
likely to vary depending on various task-related factors.

4.2. Descriptive and Exploratory Analyses

The frequency of “old” vs. “new” responses in OLD vs. NEW item conditions is shown in
Table 2. Based on the 2 × 2 cross-tabulation in Table 2, descriptive hit rate (=hit/(hit+miss))
and false alarm rate (=false alarm/(false alarm+correct rejection)) are 0.710 (= 4798/(4798 +
1959)) and 0.157 (= 1070/(1070 + 5725)), respectively. To verify that estimates of μc0 and
μd0 parameters we specified in Eq.8 (prior to modeling variability across trials, persons, and

https://osf.io/xvzm5/?view_only=fbb18ea6edf84bbba200c467cef33a6e
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Table 2.
Empirical Study: Frequency of “old” vs. “new” Responses in OLD vs. NEW Item Condition (top), and Mean (M) and
Standard Deviation (SD) of Empirical c and Empirical d across Trials, Persons, and Items and their Correlation (bottom).

NEW items OLD items Total

“new” response (y = 0) 5,725 1,959 7,684
“old” response (y = 1) 1,070 4,798 5,868
Total 6,795 6,757 13,552

Empirical c Empirical d Correlation
(Empirical c, Empirical d)

Trials M = 1.899, SD = 0.871
Persons M = 1.810, SD = 0.779 M = 0.793, SD = 1.080 0.810
Items M = 1.857, SD = 0.778 M = 0.938, SD = 1.049 0.917

Note.Mean (M) and standard deviation (SD) across trials for the empirical c were calculated across 56 trials
for NEW items.

items and prior to adding experimental condition effects)4 are the same as hit rate and false
alarm rate, the SDT model without random effects and smooth functions was estimated using
a logistic regression (implemented using glm function of the stats package [R Core Team,
2019] in R). The parameters were estimated as μ̂c0 = 1.677 (SE=0.033) and μ̂d0 = 2.573
(SE=0.043). Based on these estimates, the null model-based hit probability was calculated as
0.710 (= 1/1+ exp{−(−1.677+ 2.573)}) and the null model-based false alarm probability was
calculated as 0.157 (= 1/1 + exp{1.677}).

To explore variability in c and d and their relation descriptively, logit-transformed propor-
tion measures of c and d (called empirical c and d) were calculated for each trial, person, and
item. For persons as an example, the empirical c for each person (ec j ) was calculated as ec j =
−logit{Prop j (yl ji = 1|isoldl j i = 0)}, where Prop j (yl ji = 1|isoldl j i = 0) is a proportion of
responding “old” for each person j using NEW items only. The empirical d for each person (ed j )

was obtained as log

{
Prop j (yl ji=1|isoldl j i=1)
Prop j (yl ji=1|isoldl j i=0)

}
, where Prop j (yl ji = 1|isoldl j i = 1) is the propor-

tion of responding “old” using OLD items for each person j , and Prop j (yl ji = 1|isoldl j i = 0)
is the proportion of responding “old” using NEW items for each person j . The empirical c for
trials and the empirical c and d for items were obtained in a similar way. Table 2 shows the mean
and the standard deviation of the empirical c for trials, and means and standard deviations of
the empirical c and d for persons and items and their correlations. As presented in the standard
deviations of Table 2, non-ignorable variability in the empirical c and d was observed and positive
and high correlations between the empirical c and d were found for persons and items.

To explore the relations between RTl ji and empirical c, and between RTl ji and empirical d,
the logit-transformed proportion measures of c and d (ecq and edq ) for each stratum q defined in
Eqs. 25 and 26 were plotted against the mean of RTl ji for each stratum q (RTq ) using a binned
plot. The number of bins, 25, was selected to have a large enough number of observations ranging
from 271 to 272 for c and ranging from 542 to 543 for d. In Fig. 3, values of ecq and edq are
presented with hollow circles and with the dotted lined smooth functions. In the figures, ecq and
edq increase for RTq < −0.25 before decreasing for RTq > −0.25.

Based on these descriptive and exploratory results, the following effects were added simulta-
neously to the SDT model as the extended SDT model: (1) random effects for c across trials; and

4“0” in the superscripts of μc0 and μd0 indicates “null,” which means that they are estimated without random effects
and without experimental condition effects.
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Figure 3.
A binned plot of model-based c values (mcq , Eq. 27) and empirical c values (ecq , Eq. 25) on the y-axis vs. average RT
within a bin on the x-axis (top), and a binned plot of model-based d values (mdq , Eq. 28) and empirical d values (edq ,
Eq. 26) on the y-axis vs. average response time within a bin on the x-axis (bottom).
Note. Response time is log-transformed response time data in seconds; solid lines indicate smooth functions of empirical
values (ecq and edq ), and dotted lines indicate smooth functions of model-based values (mcq and mdq ). The number of
bins, 25, was selected to have a large number of observations ranging from 271 to 272 for c and ranging from 542 to 543
for d.



PSYCHOMETRIKA

Table 3.
Empirical Study: Model Selection Results Regarding Random Slopes.

Model Num. Random Slope for Model Selection Criteria
Trial Person Item LL(NPar.) Marginal AIC BIC

isold
1 −6336.8(15) 12704 12816
2

√ −6314.5(17) 12663 12791
3

√ −6314.7(17) 12664 12791
4

√ √ −6292.4(19) 12623 12766
role and condition
4-1

√ −6291.1(24) 12630 12811
4-2

√ −6287.4(26) 12627 12822
4-3

√ −6283.2(26) 12618 12814
4-4

√ √ −6308.5(29) 12675 12893
4-5

√ √ −6283.0(31) 12628 12861
4-6

√ √ −6278.2(33) 12622 12870
4-7

√ √ √ −6277.9(38) 12632 12917

Note.
√

indicates that a random slope of a covariate is added to the extended SDT model; LL indicates the
log-likelihood; Numbers in parentheses (Npar.) are the number of parameters.

for c and d parameters across persons and items to model variability, and (2) smooth functions of
response time for c and d parameters to model functional response time effects.

4.3. Analysis of the Extended SDT Model

As mentioned earlier, a dummy variable was created as a covariate for OLD vs. NEW items
with isold=0 for NEW items and isold=1 for new items. The two other experimental condi-
tion variableswere coded as dummyvariables: listener=0 and speaker=1 for arole covariate, and
context=0 and contrast=1 for a condition covariate. The main effects, two-way interactions
(denoted by a colon, e.g., isold:role), and three-way interactions of these three covariates
were considered in the extended SDT model.5 For fixed-effect estimation, these three covariates
were treated as ordered factors in R to identify two smooth functions in the extended SDT model
( f1(RTl ji ) and f2(RTl ji )).

For the smooth functions in the extended SDT model, the number of basis functions K was
selected by sequentially increasing K from 4 to 10 (K = 4, . . . , 10). The k-index for K = 7 was
1.00 (p-value=.41 for f1(RTl ji ); p-value=.44 for f2(RTl ji )) for all candidate models considered.
In addition, the corrected AIC was the smallest for the model with K = 7. These results indicate
that K = 7 is adequate to obtain a good fit for smooth functions in the models.

Table 3 presents the log-likelihood (LL), marginal AIC, and BIC for candidate models with
random slopes of theisold,role, andcondition covariates.Model selection is conducted in
two steps. First, a selectionwasmade regarding the randomslopes ofisold, because it is the focal
covariate in the extended SDTmodel. Second, the random slopes of role and conditionwere
considered. Among the candidate models summarized in Table 3, there were small differences in
marginal AIC for Model 4 and Model 4–3 (12,623 vs. 12,618), although BIC was the smallest
for Model 4. Considering these results together, Model 4 was selected for model-data fit analyses
and result interpretations.

5With ordered factors inR (e.g., ordered.disOLD= as.ordered(factor.disOLD) for aisold covariate), the interactions
are not strictly interactions as in the analysis of variance (ANOVA) but as regression coefficients of the covariates.
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For Model 4, which had random slopes of the isold covariate for persons and items, only
0.3% (37 observations) of 13,552 observations had the Pearson residuals exceeding |2|. Of those
37 observations, 35 observations are for miss responses and 2 observations are for false-alarm
responses. Figure3 presents binned plots of ecq vs. mcq as a function of RTq (top) and edq vs.
mdq as a function of RTq (bottom), with smooth functions of empirical values (ecq and edq ) (thick
lines) and model-based values (mcq and mdq ) (dotted lines). The figure shows that the model-
based c and d are similar to the empirical c and d over response time except for short response
time. These results suggest that the model provides an adequate description of the data except for
observations in the first bin of the plots. Very fast response time may reflect non-decisions, that
is responses occurring before enough time had passed to make intentional decisions. There were
542 observations (4% of all observations) having response time shorter than −0.543 in the first
bin of the binned plots. The extended SDT model was fit to the data without these observations
to check whether the misfit in the first bin of the binned plots affects inference for parameters of
fixed and random effects in the extended SDT model. There were no differences in inference for
parameters of fixed and random effects in the model with and without these 542 observations.
In addition, there is one extreme RT value, 7.162. Results of interest (estimates of fixed effects
and their standard errors, and the predicted smooth functions) were similar with and without the
extreme RT value. Thus, the results presented in Table 4 (including the 542 observations and the
extreme RT value) are interpreted below. To investigate the effect of response time in Model 4 in
detecting experimental condition effects, Model 4 without the two smooth functions ( f1(RTl ji )
and f2(RTl ji ), called Model 4 w/o RT) was fitted to the same data.

4.4. Results of the Selected Model

The baseline c estimate with isold=0, role=0, and condition=0, was 1.989 on the
logit scale (μ̂c = 1.989, SE=0.168), which indicates that the baseline model-based false-alarm
probability is 0.120 (= 1/1 + exp{1.989}) and the baseline model-based correct-rejection prob-
ability is 0.880 (= 1/1 + exp{−1.989}). The baseline d estimate was 2.317 on the logit scale
(μ̂d = 2.317, SE=0.170), which suggests that the odds of saying “yes” to OLD items were
10.145(= exp(2.317)) times larger than the odds of saying “yes” to NEW items. Based on the
μ̂c = 1.989 and μ̂d = 2.317, the baseline model-based hit probability is calculated as 0.581
(= 1/1 + exp{−(−1.989 + 2.317)}) and the baseline model-based miss probability is obtained
as 0.419 (= 1/1 + exp{−(1.989 − 2.317)}) (see Table 1[bottom] for model-based probability
calculations of four possible outcomes).

The significant fixed effects regarding the three covariates for experimental designs
(isold, role, and condition) were isold:role:condition, isold:condition,
and isold. Marginal (or cell) means calculated based on the fixed effects of the three covariates
for experimental designs were interpreted because they were coded as ordered factors in R to
identify the two smooth functions in the extended SDT model. The marginal means are presented
in Fig. 4 and their estimates (and standard errors) are reported in Table 4. The effect of isold
(EST=2.317, SE=0.170) reflects participants’ memory for the conversational task, with more
“old” responses when the image was actually OLD than NEW. The isold:condition effect
(EST=1.195, SE=0.139) reflects a better ability to distinguish OLD fromNEW for contrast items,
which had been named in the conversational task, compared to context items which were viewed
but not named. The isold:role:condition effect (EST=0.961, SE=0.188) indicates that
the memory boost for contrast over context items is amplified for speakers. This is likely due to the
fact that speakers generated a description of the contrast item, further enhancing its memorability.

As shown in Table 4, the two smooth functions, f1(RTl ji ) and f2(RTl ji ), are distinguishable
from zero (T5 = 57.83, p-value < 2e − 16 for f1(RTl ji ); T5 = 104.54, p-value < 2e − 16
for f2(RTl ji )). Figure5 (top) presents the predicted smooth function ( f̃1(RTl ji )) for functional
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Table 4.
Empirical Study: Results of the Selected Extended SDT Model (Model 4) and Model 4 without Smooth Functions of
Response Time (Model 4 w/o RT).

Model 4 Model 4 w/o RT
Fixed Effects

EST SE p-value EST SE p-value

μc[intercept] 1.989 0.168 <2e-16 1.982 0.169 <2e-16
μd [isold] 2.317 0.170 <2e-16 2.293 0.171 <2e-16
γ1[role] 0.110 0.097 .258 0.131 0.097 .177
γ2[condition] 0.001 0.106 .991 0.023 0.106 .825
γ3[isold:role] −0.070 0.122 .567 −0.068 0.121 .574
γ4[isold:condition] 1.195 0.139 <2e-16 1.180 0.138 <2e-16
γ5[role:condition] −0.254 0.140 .069 −0.285 0.139 0.041
γ6[isold:role:condition] 0.961 0.188 3.09e-07 0.958 0.187 3.15e-07

Random Effects

EST EST
Var(ζ cl ) 0.018 0.017
Var(θcj ) 0.359 0.355

Var(θdj ) 0.398 0.414

Corr(θcj , θ
d
j ) 0.602 0.607

Var(βc
i ) 0.578 0.593

Var(βd
i ) 0.496 0.511

Corr(βc
i , βd

i ) 0.800 0.805

Smooth Functions

Ref.ed f Tr p-value
f1(RTl ji ) 4.569 57.83 <2e-16 -
f2(RTl ji ) 5.042 104.54 <2e-16 -

Model Selection

Marginal AIC 12623 12697
BIC 12766 12810

Significance for fixed effects in bold based on z-test at alpha of.05; − indicates that a smooth function was
not considered.

RTl ji effects on the c parameter. The effect of RTl ji on responding “old” for NEW items (y-
axis) increases as RTl ji (x-axis) increases up to RTl ji = −0.020 and then decreases (except for
a few observations with large RTl ji ). This pattern reflects an initial period where the criterion
increases with increasing response time, possibly reflecting a pairing of slower response time with
a more strict criterion. This pattern then reverses slightly at higher response time, possibly due to
more difficult decisions being made more slowly. In addition, Fig. 5 (bottom) shows the predicted
f̃2(RTl ji ) = f̃2(RTl ji )(isoldl j i = 1) − f̃2(RTl ji )(isoldl j i = 0), which are functional dif-
ferences between the two smooth functions by levels of isoldl j i (i.e., functional RTl ji effects).
The effect of RTl ji on log odds-ratio of responding “old” (y-axis) increases with increasing RTl ji
(x-axis) up to RTl ji = −0.094. After RTl ji = −0.094, the effect decreases with large RTl ji .
This result reflects an initial period where response time increases as the difference between the
OLD and NEW distributions increases, possibly reflecting the amount of time it takes a person to
distinguish OLD from NEW in memory as they engage with the task of distinguishing the two.
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Figure 4.
Marginal means of experimental condition effects on the logit scale.
Note. Sample sizes in 8 cells (2 isold × 2 role × 2 condition) are all similar.

This pattern then reverses slightly at higher response time, possibly due to more difficult decisions
being made more slowly.

Figure6 presents the predicted random effects (i.e., the deviation from the average c or
d, which varies across each of trials, persons, or items). There is non-ignorable variability in c
estimates across 112 trials as shown in Fig. 6 (top) (Var(ζ c

l ) = 0.018 in Table 3). In addition, there
are non-ignorable variabilities in c and d across persons (Var(θcj ) = 0.359 and Var(θdj ) = 0.398

in Table 3) and across items (Var(βc
i ) = 0.578 and Var(βd

i ) = 0.496 in Table 3), as presented in
Fig. 6 (middle) and Fig. 6 (bottom), respectively. The variability in the c parameter across persons
and items likely indicates that people vary in how strict of a criterion they adopt in making the
memory judgement, and likewise how strict of a criterion a given item prompts a person to make.
The variability in the d parameter across persons and items likely indicates that people vary in
how distinguishable they find OLD and NEW items to be as they make the memory judgement,
and likewise how difficult it is to separate OLD and NEW items in memory. For example, it may
be easier to distinguish OLD and NEW pictures of dogs (a familiar category to many people) than
to distinguish OLD and NEW pictures of pigs (a less familiar category).

According to the marginal AIC and BIC reported in Table 4, Model 4 fits better than Model
4 w/o RT, which suggests that adding two smooth functions of response time ( f1(RTl ji ) and
f2(RTl ji )) resulted in improving model-fit even when penalizing for a greater model complex-
ity. Ignoring the smooth functions of response time in Model 4 w/o RT led to a significant
role:condition effect (EST=−0.285, SE=0.139), which was not significant in Model 4.
Results of the other experimental condition effects were similar between Model 4 and Model 4
w/o RT (see Table 4 for comparisons).
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5. Simulation Study

5.1. Simulation Study 1

The aims of the simulation study 1 are (a) to show parameter recovery of the selected model
(Model 4 in Table 4) and (b) to show the consequences of ignoring variability in the c parameter
(across trials, persons, and items) and in the d parameter (across persons and items) in detecting
experimental condition effects and functional response time effects when Laplace approximation
(implemented in the gamm4 R package) is used for parameter estimation.

5.1.1. Simulation Design and Analysis To achieve the two aims, estimates of Model 4 were
considered as ‘true’ parameters, and the covariates from 112 trials, 246 participants, and 28 items
in the empirical study were used in data generation. Five hundred data sets were generated. Model
4 was then fit to these simulated data sets for (a), and Model 4 without random effects was fit to
these simulated data sets for (b).

As evaluation measures, bias was calculated to quantify the accuracy of parameter estimates,
and root mean square error (RMSE) was calculated to quantify accuracy and parameter estimate
variability. In addition, themean standard error estimates (M(SE)) across five hundred replications
were compared with the standard deviations (SD) of the estimates to evaluate the accuracy of
standard error (SE) estimates for experimental condition effects (γ ). For the applications of the
extended SDTmodel, it is of practical interest whether the generated smooth functions are close to
the predicted smooth functions. To evaluate whether the generated smooth functions are recovered
well, the root mean squared difference (RMD) between predicted values (calculated based on
estimates) and true values (calculated based on true parameters of smooth functions) was obtained

with the total number of observations N : RMD=
√

{∑K
k=2 δ̂1kb1k(RTl ji ) − f1(RTl ji )}2/N for

f1(RTl ji ) for f1(RTl ji ) and RMD=
√

{∑K
k=2 δ̂2kb2k(RTl ji ) − f2(RTl ji )}2/N for f2(RTl ji ) for

f2(RTl ji ) (as differences between a smooth function for OLD and a smooth function for NEW
with an ordered factor variable in R).6 The RMD is interpreted as the standard deviation of the
differences between predicted and true smooth functions.

There were no convergence problems in any simulation replications. With K = 7 (used in
data generation), the k-index was close to 1 for smooth functions and the corrected AIC was the
smallest for a model with K = 7 among candidate models with K = 5, 7, 9 for all replications.

5.1.2. SimulationResults Table 5presents simulation study results.Regardingparameter recov-
ery of the extended SDT model, biases of the estimates of fixed effects and of the variances and
correlations of random effects were all close to 0, and RMSE of these estimates is comparable
to that of estimates of GLMM for binary responses (e.g., Cho, Partchev, & De Boeck, 2012). In
addition, the ratio (M(SE)/SD) for fixed-effect estimates was close to 1, which indicates that the
estimated standard errors are approximately correct. For smooth functions, RMD for f1(RTl ji )
was 0.094 and RMD for f2(RTl ji ) was 0.118, suggesting that the predicted smooth functions are
close to the generated smooth functions. Taking all results together, we conclude that parameters
of the extended SDT model are recovered well.

To investigate the consequences of ignoring variability in the c parameter (across trials, per-
sons, and items) and in the d parameter (across persons and across items) in detecting experimental
condition effects and functional response time effects, results of the extended SDTmodel without
random effects (Model 4 w/o RT; a misspecified model) are reported in Table 5. Overall, bias and
RMSE for fixed-effect estimates and estimates of random effects in the misspecified model were

6Summations start with 2 because of the identification constraints.
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larger than those of the extended SDTmodel (the truemodel). Furthermore, the ratios (M(SE)/SD)
for the two fixed-effect estimates of the c and d parameters (μ̂c and μ̂d ) were much smaller than 1
(0.428 and 0.688, respectively), indicating that standard errors were underestimated. In addition,
RMDs for the two smooth functions for the misspecified model were larger than those for the true
model, although the differences in RMDs between the two models were small. To summarize,
these results show that it is necessary to model the random effects for the c and d parameters for
more precise estimates of the experimental condition effects and smooth functions.

5.2. Simulation Study 2

The aim of the simulation study 2 is to evaluate the type 1 error rate of the test for a smooth
function implemented in the gamm4 package. Model 4 w/o RT (the selected model without the
two smooth functions of response time in the empirical study) was considered a data-generating
model. Estimates of Model 4 w/o RT in Table 4 were considered as ‘true’ parameters, and the
covariates from 112 trials, 246 participants, and 28 items in the empirical study were used in
data generation. One thousand data sets were generated. Model 4 (the selected model with the
two smooth functions of response time in the empirical study) was then fit to these simulated
data sets. For each smooth function in Model 4 (i.e., f1(RTl ji ) and f2(RTl ji )), the proportion
of significance out of 1,000 results at α = .05 was calculated as the empirical type 1 error rate.
No convergence problems occurred in any simulation replications. In fitting Model 4, K = 7
was used as used in the simulation study 1. The empirical type 1 error rates for f1(RTl ji ) and
f2(RTl ji ) were.053 and.054, respectively, which are close to the expected value, .05.

6. Summary and Discussions

In this study, an extended SDT model was presented and illustrated for recognition memory
tasks to detect experimental condition effects and to understand the role of response time, while
controlling for all sources of variability in model parameters. Simulation results showed that
parameters of the extended SDT model were recovered well, and that the functional response
time effects were predicted adequately in the simulation condition similar to the empirical study.
In addition, the results showed that ignoring all sources of variability regarding the c and d
parametersmainly led to biased statistical inference on the fixed effects related to such parameters.
Furthermore, simulation results showed that the type 1 error ratewas controlled in testing a smooth
function of response time implemented in the gamm4 package.

6.1. What Did We Learn from the Extended SDT Model?

Response timedata are often available in experiments inwhich participants provide judgments
over a series ofmany trials. In the original report of the data analyzed inYoon et al. (2021),memory
responses were analyzed, but not response time for those memory judgements. Fixed condition
effects were observed both in the original analysis and in the present analysis, with the ability to
distinguish OLD from NEW items being better for named contrast items than for context items
that were passively viewed, reflecting the benefits tomemory of generating or otherwise producing
information (MacLeod et al., 2010; Slamecka & Graf, 1978). The fact that this memory boost for
the contrast object over the context object was more pronounced for the speaker suggests that in
conversation, the asymmetry between memory for what was said over memory for the context of
language use, is likely to be enhanced for the speaker. However, focusing on the memory findings
alone ignores the fact that the memory responses themselves varied in the temporal domain, and
thus examining the temporal properties of these responses may reveal additional insights into the
cognitive processes that shape how items are remembered.
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The results we have obtained from the smooth functions for response time effects are clearly
in line with the hypothesized inverted-U effect, with a rather short upward part and a longer
downward part. The d parameter first increases for shorter response time, and then decreases for
larger response time. As expected, the shape of the curve for the c parameter is very similar; as
explained, the similarity follows from the necessary dummy coding used for the coding of OLD
and NEW items. The fact that the inverted-U shape is so prominent means that the findings from
IRT and DDM that more difficult items take more time has not played an important role. Greater
difficulty in standard SDT can only be interpreted as a decrease in d. A possible reason for this
effect is that the trials in the present study, which are analogous to the items from an IRT model,
correspond to the image group category (e.g., belts, bags) presented in different conditions and in
different roles, so that the effect of response time is partly controlled through the fixed effects. The
remaining variance (of trials) was very small. A possible explanation for the upward section of
the inverted-U-shaped curve is that time helps to differentiate between OLD and NEW (yielding a
larger d), so that very short response time is too fast for an optimal differentiation. Following the
same line of interpretation, it seems that from a given point onward the difference between OLD
vs. NEW becomes blurred. It is also possible that a difficult differentiation (smaller d) requires
more time.

In addition, variability in the c and d parameters across persons may reflect theoretically
relevant differences among persons in the amount of evidence they require before determining an
item is in fact OLD (i.e., a high c parameter), and in the ability to distinguish OLD from NEW
(i.e., the d parameter). Such individual differences may be fruitfully explained by appealing
to individual characteristics such as participant age (Ratcliff, Thapar, & McKoon, 2006), traits
such as anxiety (Frenkel et al., 2009), and interactions between person characteristics (e.g., age)
and task-related factors such as an emphasis on speed of responding (Benjamin, 2001; 2013).
Similarly, the fact that we observed meaningful variability in the c and d parameters across items
indicates that some item groups tended to demand more evidence before participants were willing
to respond “old” (i.e., a high c parameter), and some itemgroups tended to be easier for participants
to distinguish OLD from NEW (i.e., a high d parameter). These item-specific differences deserve
further inquiry and may relate to specific visual or linguistic features of the items (see DeCarlo,
2011).

6.2. Discussions and Limitations of the Current Study

In this study, a smooth function of response time (from multiple trials, persons, and items)
was modeled for OLD vs. NEW items. Depending on the experimental design, it may be possible
to consider additional smooth functions of response time for the other experimental condition
variables. In the empirical study, there were two additional experimental condition variables,
role and condition. When the smooth functions for the two experimental condition variables
were added to the extended SDTmodel, the smooth functions were not significantly different from
0 and the patterns of the smooth functions for OLD vs. NEW items did not change. In addition,
it is possible to model different functional response time effects by trials, persons, and items,
beyond the effects we included in the selected model based on the model selection criteria we
used. For the current empirical data sets, variability in functional response time effects were not
found across trials, persons, and items when functional response time effects were modeled for
OLD vs. NEW items. However, we encourage researchers to explore additional smooth functions
of response time other than OLD vs. NEW items for other data sets.

Two types of effects were added to the basic SDT model to create the extended SDT model
(Eq.8): (a) the smooth functions for the response time effects, and (b) the random effects to
capture the variability in the d and c parameters across persons and items (with the random effect
to model the variability in c parameter across trials). The parameterization of the model implies
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that the mean of the distribution for NEW items is 0 as a reference location in line with the
SDT literature (e.g., DeCarlo, 1998). The consequence of this fixed reference location is that the c
parameter increases when the d parameter does. As a consequence, the following empirical results
were found. First, the two smooth functions of the response time effect in the model have similar
shapes (see Fig. 5). Second, high correlations were found between person random effects of the d
and c parameters (θdj and θcj ) and between item random effects of the d and c parameters (βd

i and
βc
i ) (see Fig. 6 [middle] and Fig. 6 [bottom]). A different reference location for the distribution of

NEW items (i.e., ψNEW in Fig. 2) is expected to yield different correlations between the random
effects. For example, when the reference location for the distribution of NEW items was set
to −0.5 using effect coding (isoldl j i = −0.5 for the NEW items; isoldl j i = 0.5 for the
OLD items), the correlation between person random effects that reflect the variability of d and
c parameters was reduced from 0.60 to 0.10 and the corresponding correlation for item random
effects was reduced from 0.80 to 0.49. However, estimating the smooth functions for the effect
of response time requires dummy coding of isold so that the distribution of the NEW items
is centered at zero. Because these effects of response time are the focal interest of our study, we
decided to stay with the dummy coding. Therefore, the correlations of the random effects and
the similar shapes of the predicted smooth functions of response time should be interpreted with
caution, as the correlations depend on the coding choices, such that the smooth function may
look different for the c parameter with different coding (but not for the d parameter because the
d parameter is a slope parameter). In addition, ordered factor coding of experimental condition
effects in R is required to estimate smooth functions without them being confounded with fixed
effects in the extended SDT model. Fixed interaction effects cannot be tested with the ordered
factors but they be tested, for example, with effect coding.

Although simulation results showed that parameters and standard errors can be estimated
precisely using in the gamm4 package in the simulation condition similar to the empirical study,
future work is needed to generalize our findings to other data structures with different choices for
(a) the number of trials, persons, and items, (b) the magnitude of effects, and (c) smooth functions
of response time.

6.3. Broad Impact of the Current Study

In conclusion, this paper presents novel applications of an extended SDTmodel to data from a
task that examines the cognitive (mental) processes that are involved in memory for the things that
are talked about in conversation, and the contexts in which they are discussed.While it is common
in SDT models to use binary participant responses (e.g., responding “old” vs. “new”) to model
the conditions that make it more or less difficult to distinguish signal (e.g., information that was
previously studied) from noise (e.g., information that was not previously studied), these responses
are also characterized by a response time - that is, how long it took to make the response. While
response time data have been incorporated into SDTmodels before, the use of these two aspects of
the response (the response choice, and the response time) remains a relatively underexplored in the
literature. In this paper, we use the extended SDT model to detect experimental condition effects
and functional response time effects, while allowing for variability in SDT model parameters
across persons and items (also across trials for the c parameter). In doing so, the present research
has identified functional response time effects in the extended SDT model. We also demonstrate
that ignoring the smooth functions of response time changed inference regardingoneof the primary
fixed effects of interest, illustrating the importance of taking this information into account.

This model is likely to be of increasing interest to researchers in cognitive psychology as
variability across persons and items is becoming more appreciated in modeling experimental data
(Baayen et al., 2008). Thinking of persons and items as having systematic variance to explain
expands the rangeof theoretical applications that one can explore, including explainingwhycertain
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persons are more successful at distinguishing signal from noise, and explaining the properties of
certain items that create difficulty in distinguishing OLD from NEW. Not only is it important
to account for this variability in order to make appropriate inferences regarding fixed effects
and functional response time effects, but in addition, the observed variability across persons and
items is relevant to theoretical issues concerning the relative (in)consistency in cognitive processes
across persons and contexts. For example, evidence that individual differences inworkingmemory
explain variability in syntactic judgments (James et al., 2018) and choices in language production
(Ryskin et al., 2015) could be fruitfully extended by further exploring the response time associated
with these responses. Likewise, in reading studies where items (such as excerpts of text) differ
in their difficulty (Martinez et al., 2022), systematic differences between items in how they were
read and later remembered could be further explored by incorporating response time associated
with the memory response. These examples are just a few of the many potential applications of
the extended SDTmodel which serves as an exciting new way to understand both the choices that
people make and how quickly they make them.
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