
MODELS OF UNFORCED CHOICE 1

Models of Unforced Choice

Víctor H. Cervantes and Aaron S. Benjamin

University of Illinois Urbana-Champaign

Author Note

Víctor H. Cervantes https://orcid.org/0000-0001-9525-3454

Correspondence concerning this article should be addressed to Víctor H. Cervantes,

Department of Psychology, University of Illinois Urbana-Champaign, 603 E Daniel St.,

Champaign, IL 61820. E-mail: victorhc@illinois.edu

We would like to dedicate this article to the memory of Thomas D. Wickens. Tom

contributed as much as anyone in advancing the use of multivariate geometry in the

development of signal detection theory, trained generations of students who loved him

dearly at UCLA and Berkeley, and passed away much too young. VC is also grateful to

Ehtibar N. Dzhafarov for many constructive conversations about contextuality and

selective influences which influenced the developments of the covariance matrix structure.

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied, of

the University of Illinois.

https://orcid.org/0000-0001-9525-3454


MODELS OF UNFORCED CHOICE 2

Abstract

Unforced choice tasks are ones in which the responder has the option of selecting from a

limited array of choices or rejecting the entire set. Such tasks are common in perceptual

and cognitive research, but models of decision-making for unforced choice are sparse in the

literature and lack a unifying mathematical framework. Such tasks are important for

theoretical development because they contain elements of relative, criterion-independent

decision making—in which response options are compared to one another—and also

criterion-dependent decision making, in which options are compared to a decision criterion

determined by the observer. We provide a generic signal-detection multivariate framework

for developing models of unforced choice that draws lessons from the geometry of

multivariate statistics, from multidimensional signal-detection theories, and from

psychophysical models of visual search. We show how this framework can accommodate all

extant models of unforced choice that have been applied to the specific case of lineup

memory tasks for eyewitnesses. Exact derivations, some of which have proven elusive to

this point, are provided for each model in both an unrestricted form—in which variances

and covariances are relatively free to vary across signal and noise—and in various restricted

forms, in which constraints are applied to variances and covariances. Using the

formalizations presented here, we show that all of the current models of lineup memory

have severe limitations that render some models challenging to directly compare to one

another and other models unidentifiable. Overall, the multivariate framework will aid in

the testing of current models and in the development of new models of lineup memory and

other tasks involving unforced choice.

Keywords: signal detection theory, SDT, multivariate SDT, unforced choice,

non-forced choice, forced choice, lineup memory, independent observations model,

dependent observations model, ensemble model, psychophysics, visual search
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Models of Unforced Choice

Detection, discrimination, and identification tasks in which subjects choose from a

set of predetermined options are among the most popular and widely used tools in

psychology and related fields. One common implementation uses forced-choice responding,

which obliges the subject to choose from that limited set to the best of their ability. In

research on perception and cognition, the use of these forced-choice tasks benefits from a

straightforward application of Signal Detection Theory (SDT; Green & Swets, 1966), a tool

that aids understanding of behavior in tasks that involve decision-making under conditions

of uncertainty. This fruitful marriage of popular empirical paradigms with well-grounded

theoretical tools dates back to some of the earliest papers on SDT (e.g., Green, 1964),

which developed and presented a natural relationship between yes/no response tasks and

forced-choice response tasks. That relationship is based on simple principles in multivariate

geometry and has held up well over time (e.g., Green & Moses, 1966; Jang, Wixted, &

Huber, 2009; Jesteadt & Bilger, 1974; Wickelgren, 1968). The resultant models have been a

major success for SDT and also a driving force underlying the development of more

complex, higher-dimensional models of forced-choice decision-making.

One way to think about the difference between a forced-choice task and a yes/no

response task is the nature of the decision rule. The key assumption of SDT is the idea

that yes/no judgments are made by comparing a noisy percept or noisy memory to a stable

decision criterion (cf. Benjamin, Diaz, & Wee, 2009); if the evidence yielded by that

percept surpasses the criterion, a positive decision is made. Forced-choice tasks simplify

the theoretical situation because observers simply choose the stimulus out of the response

set that elicits the most evidence. There is no need for the responder to derive, set, or

maintain a decision criterion (Benjamin & Bawa, 2004; Rotello & Macmillan, 2007).

The simplicity of this conceptual apparatus and the success of the models relating

yes/no and forced-choice recognition have led to a notable gap in the literature, however.
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Here we call these tasks unforced choice.1 Any task in which the observer has to select from

among a limited set of options, or to reject the entire set of options altogether, is a task of

unforced choice. They are neither fish nor fowl in the language of standard SDT because

they simultaneously rely on criterion-independent decision-making (in comparing the

response options with one another) and criterion-dependent decision-making (in choosing

whether to select an option or to reject the array).

Unforced choice tasks are widely used in psychology. In visual search paradigms, for

example, it is common to ask the observer to search for one of a designated set of objects,

with some trials including none of those objects (e.g., Apelt & Peitgen, 2008; Perry &

Barron, 2013; Steinmetz, Zatka-Haas, Carandini, & Harris, 2019; Zatka-Haas, Steinmetz,

Carandini, & Harris, 2021). A baggage screener faces a similar task: to identify whether

one of a small set of contraband objects is present in a suitcase—but, in most cases, none

of those objects are there (McCarley, Kramer, Wickens, Vidoni, & Boot, 2004).

Although tasks involving unforced choice are common and related in spirit to tasks

requiring forced choice, the application of SDT to these tasks has been incomplete and

lacks an overarching theoretical framework. Models have been proposed both outside of the

aegis of signal-detection theory (Clark, 2003; Wolfe, 1994; Wolfe, Cave, & Franzel, 1989),

and within it (e.g., Kaernbach, 2001; Phelps, Rand, & Ryan, 2006; Taylor & Fraser, 1966;

Watson, Kellogg, Kawanishi, & Lucas, 1973); most recently, advances in models of

eyewitness memory have motivated bespoke signal-detection models for lineup procedures

(Akan, Robinson, Mickes, Wixted, & Benjamin, 2021; Duncan, 2006; Wixted & Mickes,

2014; Wixted, Vul, Mickes, & Wilson, 2018).

Here, we provide a general multivariate framework by extending the well validated

principles of forced-choice SDT models to cases involving unforced choice. Along the way,

we highlight the mathematical challenges that accompany this transition. The technical

1 These tasks are also sometimes denoted non-forced choice, simultaneous detection and identification, or

compound decision tasks, though there is considerable variability in the use of these and related terms.
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complexity notwithstanding, the principles of the generalization are quite generic and the

resulting framework can accommodate a large family of theories of unforced choice. We

feature the most prominent examples of such theories in the third major portion of this

paper.

We use as a model case throughout this paper the example of a lineup as a test of

eyewitness memory—the witness may select one of the faces in the lineup as the

perpetrator of a previously witnessed crime but also understands that the perpetrator may

not be in the lineup and so may reject the entire array. Recent theoretical advances in

signal-detection models of eyewitness memory help provide the organization of this paper;

within the multivariate framework we present, we derive all of the extant models of

eyewitness lineup memory and present characteristics of those models that will aid in

adjudicating among them empirically. We derive important relationships among the

competing models that reduce the set of unique alternatives, and also point the way

forward to the development of new models using this framework.

The overarching goal of this work is to bring tasks of unforced-choice into the

language of SDT, so that research using those tasks can enjoy the same mutually beneficial

relationship with SDT as do models of forced-choice. In so doing, we draw from relevant

literatures on the geometry of multivariate statistics (Tong, 1990; Wickens, 2014), from

multidimensional models of signal detection (Ashby, 2014; Ashby & Soto, 2015; Banks,

2000; Thomas, Altieri, Silbert, Wenger, & Wessels, 2015), from psychophysical models of

visual search (Eckstein, 1998; Palmer, 1994), and, most recently, from models of lineup

memory for eyewitnesses (Akan et al., 2021; Duncan, 2006; Wixted et al., 2018).

We begin this article with a brief review of relevant principles on the multivariate

geometry of forced-choice tasks. We then present a generalization of these principles to

models of unforced choice and present the simplest possible independent observations

model that this framework can support. In the third section, we further derive other extant

models, including the dependent observations model (Akan et al., 2021), the integration



MODELS OF UNFORCED CHOICE 6

model (Duncan, 2006; Graham, Kramer, & Yager, 1987; Wixted et al., 2018), and the

ensemble model (Wixted et al., 2018). Throughout, we present exact expressions for each

of the models we review, though most derivations are presented in appendices so that they

can be conveniently accessed or bypassed at the will of the reader.

Multivariate geometry of n-alternative forced-choice

In standard signal-detection theory, the task for the observer is to discriminate

between signal events and noise events. Any distinguishing characteristic can serve to

differentiate these two classes, though it is common for that characteristic to be a

perceptual one (for perception tasks) or reflect an aspect of prior exposure (for memory

tasks). Signal events arise from a population of stimuli for which the to-be-detected target

property is present, though it is worth noting that this property may be evident at the

population level but not within each individual stimulus. Brown bears are on average

larger than black bears, but the distributions of size overlap considerably, making

identification solely on the basis of size challenging. Similarly, cognitive and perceptual

tasks sometimes characterize signal events by their true physical status (say, orientation or

luminance), with the idea that representational noise arises uniquely from perceptual

mechanisms, and sometimes employ stimuli that are derived from populations that differ in

the target dimension but are individually impossible to discriminate based on physical

characteristics (e.g., Mueller & Weidemann, 2008), like in the example with bears. The

case is even more complex for memory tasks, in which the nature of the underlying

representations is truly unknown.

In standard forced-choice tasks, the observer is assumed to select the stimulus that

yields the highest amount of evidence (Luce, 1963, pp. 138–139). It is useful to frame this

decision using multivariate geometry, in which the probability distributions of signal and

noise events are represented in a multidimensional space in which each dimension

corresponds to one of the n stimuli in the presented set. Figure 1 shows an example of this
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model in two-dimensional space, corresponding to a 2-alternative forced-choice task. Just

as in standard SDT, the distribution corresponding to noise events is centered by fiat at

the origin. The location of the signal distribution is offset in one dimension in that space.

The shape of the distribution represents the correlation of evidence across stimuli within a

set; in the example, the fact that it is an ellipsoid whose major axis aligns with the identity

diagonal indicates a positive correlation2.

With this simple structure, sophisticated models of forced choice across any set size

can be easily derived. The probability of selecting the target and the probability of

selecting one of the n− 1 lures are represented by regions in this space. In 2-alternative

forced-choice, these regions correspond to each of the two half-planes separated by the

identity line. More generally, in n-alternative forced-choice, the regions are found by the

partition of the space by hyperplanes into n symmetric regions around the identity line of

that space (Luce, 1963). These models have been tremendously useful in research on

perception, in which they have served as the backbone for some of the strongest theories in

tasks related to the ones we pursue here, like visual search (Eckstein, 1998; Palmer, 1994).

More extensive treatments of multivariate signal-detection theory and its application to

forced-choice responding are provided by Macmillan and Creelman (2004) and Wickens

(2001).

At a conceptual level, extending signal-detection models into the domain of

unforced choice requires the introduction of a decision criterion that divides the space yet

further, including a region in which none of the stimuli are judged to provide sufficient

evidence for an endorsement. At a mathematical level, this means that the domain of the

involved integrals reflects both an absolute criterion and the relative comparison among

stimuli; the computations become considerably more complex but can still be derived.

2 That is, the line where y = x or, in the example in Figure 1b, where θT = θF .
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Figure 1

Bivariate representation of 2-alternative forced-choice
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Note. A joint distribution of two internal responses, one to a stimulus from the noise population (θF ),

and one to a stimulus from the signal population (θT ). Dashed lines that run parallel to the axes indicate

the locations of the population means, at 0 for the noise population, and at µT for the target population.

The dashed diagonal line shows the identity line that partitions the space into the regions where the target

stimulus is chosen (to the left of the line), and where the lure is chosen (to the right). Panel (a) presents

the joint density of the responses together with their marginal densities. Panel (b) shows the corresponding

contour plot. Panel (c) shows the two marginal distributions superimposed on the same response axis.

Panel (d) superimposes the contour plots of the distributions when the target is present in one or the other

observation area.
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Structure of the variance-covariance matrix

One important step in providing a multivariate formulation for signal-detection

theories is facing the question of how to restrict the variance-covariance matrix that

describes the relationships among the stimuli within an array. In univariate SDT, this

problem is limited to the question of whether the signal and noise distributions are

presumed to have the same variance or are allowed to differ. This question leads directly to

the primary distinction among extant univariate models, namely, whether they utilize the

mathematics of equal-variance signal-detection theory (EVSD) or of unequal-variance

signal-detection theory (UVSD; e.g., Jang et al., 2009). UVSD requires estimation of an

additional parameter and so is undetermined in the many experimental designs that elicit

only a single hit and false alarm rate. However, in direct comparisons using designs that

use confidence ratings (Glanzer, Kim, Hilford, & Adams, 1999) or base-rate manipulations

(Ratcliff, Sheu, & Gronlund, 1992), UVSD has generally proven to be the superior model.

In multivariate applications, technical challenges usually motivate use of the

equal-variance assumption. This assumption usually carries along with it the assumption of

equal covariance among stimuli. For example, the model of visual search presented by

Eckstein (1998) assumes the variance of the distributions of evidence to be equivalent for

target and lure items within and across displays, and further assumes that the samples are

independent of one another (thus assuming a common covariance of 0).

The full complement of model restrictions for variance-covariance structures can be

seen in Figure 2, which shows contour plots for a two-item display. The least restrictive

model allows the distributions to be correlated and to have unequal variance (panel [a]),

and the most restrictive model (shown in panel [e]) disallows both of these characteristics

(and so corresponds to the EVSD model). Panels [c] and [d] show the cases for partial

restriction among these assumptions. Panel [b] shows a new formulation, introduced here,

in which the correlation between the target item and members of the filler population is a

function of the variance of the signal distribution and of the correlation between filler items
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themselves. This formulation adds additional flexibility to the model with equal variance

and a common correlation across array members (panel [c]) in that the correlation between

target and fillers is not constrained to be the same value as the correlation among the fillers.

It is, however, restricted in important but not dramatic ways. The theoretical mechanism

underlying this modification is that the two correlations, regardless of condition, have a

single common source. The basis for this restriction is presented in detail in Appendix A.

The juxtaposition of the empirical success of the unequal-variance model in

univariate applications with the ubiquity of the equal-variance assumption in multivariate

applications is noteworthy. Whether the equal-variance assumption survives in multivariate

models is a matter to be resolved by empirical inquiry, and we do not pursue that agenda

here. We do, however, provide formulations of multivariate models that adopt the

traditional equal-variance assumption (in the next section) and versions that do not (in the

appendices). The models that employ the equal-variance (and equal covariance) assumption

are more directly compatible with extant models and are easier to use. The less restricted

models are more generalizable but may not be implementable for all experimental designs.

With no restrictions on the structure of the variance-covariance matrix, derivations

of the general model would likely prove impossible. Thankfully, the basic assumptions of

SDT inform simple, uncontroversial restrictions that meaningfully simplify the models and

do not constrain the range of plausible models. These arguments and the accompanying

proofs are provided in Appendix A, though this material can be safely skipped without

impeding understanding of the restricted models presented in the next section. Derivations

of the standard forced-choice model based on these principles are presented in Appendix B.

Signal detection models of n-alternative unforced choice

We start by posing a general version of the unforced-choice task that maps well onto

the empirical measurement of lineup memory and possesses the basic features needed for

generalization to any unforced-choice task. For each of the n stimuli that are presented
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Figure 2

Bivariate representation of different variance-covariance structures
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Note. Classes of assumptions for the bivariate model with respect to restrictions on variance

(equal/unequal) and covariance (correlated/independent).



MODELS OF UNFORCED CHOICE 12

within each trial, the characteristics of that stimulus depend only on the parent population

from which it is sampled. In this case, the n stimuli in the sample are selected in one of

two ways:

1. Target-absent trials (TA): All stimuli are sampled from the noise population for

which the target characteristic is absent.

2. Target-present trials (TP): One target stimulus is drawn from the signal

distribution, and the remaining n− 1 lure stimuli are drawn from the noise distribution.

Other combinations are possible, in which several or even all the stimuli are sampled

from the signal population. Those variants are not presented here, but they can be

developed from the general framework and the derivations included in this paper.

Data structures in unforced choice

We adopt again the case of a criminal lineup as an example for illustrating how to

characterize the data that arise in an unforced-choice experiment. In a lineup procedure, a

suspect is presented together with a number of fillers. The fillers are known to be innocent

of the investigated crime. The suspect may be the actual perpetrator (in a TP lineup) or

may be innocent (in a TA lineup). In all lineup types, there are three possible responses:

the suspect may be identified, the lineup may be rejected, or a filler may be identified.

These choices correspond to different outcomes that depend on the trial type and are

summarized in Table 1.

If the eyewitnesses had perfect memory, then they would always choose to reject the

lineup when the suspect is innocent, and they would always select the suspect when they

are the true perpetrator. These outcomes are the correct responses in TA and TP trials,

respectively.

In TA trials, the selection of any of member of the lineup is an incorrect response.

Within the witness identification literature, however, the incorrect selection of the suspect

when the suspect is innocent is of greater consequence than the incorrect selection of a
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Table 1

Terminology for the outcomes of different responses to target-present (TP) and

target-absent (TA) arrays.

TP TA

Suspect identification Hit FA

Filler identification FITP FITA

Reject lineup Miss Correct rejection

filler (Colloff, Wilson, Seale-Carlisle, & Wixted, 2021; Gronlund & Benjamin, 2018). We

define the probability of selecting an innocent suspect as the perpetrator as the false-alarm

rate (FAR), though, following the lead of Smith, Yang, and Wells (2020) and Wells, Smith,

and Smalarz (2015), we also consider the identification of fillers an important variable and

provide derivations for filler-identification rates (FIR) as well. We define the probability of

correctly rejecting the lineup as the rejection rate of the TA array (RRTA). For a fair

lineup, in the absence of response bias, the probability of choosing a lineup member instead

of rejecting the lineup in a TA lineup is simply n times the FAR.

In a TP lineup, where the suspect is truly guilty, there are two different incorrect

responses. The eyewitness may incorrectly reject the lineup, an outcome we designate as a

miss and measure it as the rejection rate of the TP array (RRTP). Alternatively, they may

incorrectly identify a filler as the perpetrator, with a corresponding FIR. The probability

that they correctly identify the guilty suspect is denoted as the Hit rate (HR).

In TP lineups, the FIR can be computed from the other rates as

FIRTP = 1− HR− RRTP; in TA lineups, it equals FIRTA = 1− FAR− RRTA. Fair lineup

construction ensures that the suspect in a TA trial can be characterized by the evidence

distribution from the noise population; in that case, the filler-identification rate can also be

computed as FIRTA = (n− 1)FAR. In our presentation, we assume that the arrays are
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generated fairly—that is, that an innocent suspect will bear no more similarity to the

target than the remaining foils in the lineup. When lineup construction is presumed to be

unfair, the innocent suspect of a TA trial should be modeled as arising from a different

population as the fillers, and different models are necessary. Such models are compatible

with the structural assumptions we have made; together, they imply that the distribution

of the memory trace for the innocent suspect in a TA lineup follows a normal distribution

with some positive mean µI—most reasonably such that µI < µT . Hence, in a TA trial of

this kind all rates would be defined in the same manner as in a TP trial, but with µI

instead of µT .

Model parameterization

As in most applications of signal detection theory, we will assume that the internal

representation of evidence is aptly represented by a normal distribution. We will denote the

internal representation of evidence for a stimulus by θi, i = 1, . . . , n. For a stimulus sampled

from the noise population, the distribution of each θi is fixed, without loss of generality, to

be a standard normal with a mean of 0 and standard deviation of 1. For a stimulus from

the target population, the parameters of the corresponding normal distribution of θi will be

denoted µT and σT , for the mean and standard deviation, respectively.

Model with restricted variance and covariance. In this section, we adopt the

equal-variance and equal-covariance assumptions; hence, σ2
T = 1 and the common

covariance reduces to the correlation ρ. From this framework we advance to more flexible

and more complete models in which these parameters are also free to vary across

individuals or conditions. In this scheme, we characterize a single trial as a vector of n

internal representations, θ1, . . . , θn, each with a marginal normal distribution and

~θn ∼ Nn(~µn,Σn×n) (1)

in which the n memory traces are multivariate normally distributed with mean vector ~µn

and covariance matrix Σn×n. Under the assumptions of equal variances and covariances,
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the additional structural assumptions are expressed as

~µn =

 µ1

~0n−1

 (2)

Σn×n =(1− ρ)In×n + ρ~1n~1ᵀ
n (3)

where µ1 = 0 for stimuli for which the signal is absent (in our examples, a display that does

not include a target, or a lineup without the perpetrator), and µ1 = µT > 0 for stimuli for

which the target signal is present (an array that includes a single target stimulus).3 The

same models, with relaxed constraints on both variance and covariance, are presented in

appendices. Due to the assumption of equal variance for all event types, the sensitivity

index d′ = µT .

The general rule in standard forced-choice models is that the observer selects the

stimulus that yields the highest amount of evidence, which can be expressed as(
~1n−1 −I(n−1)×(n−1)

)
~θn > ~0n−1, (4)

where the inequality must be read component-wise. If inequality (4) is satisfied, then the

first stimulus elicits the highest amount of evidence, and would be chosen in a forced-choice

task. For each of the other stimuli i between 2 and n, we can write an expression analogous

to (4). For example, if (
−I(n−1)×(n−1) ~1n−1

)
~θn > ~0n−1 (5)

3 The following notation conventions are used in expressions (1)–(3) and throughout the text.

1. A vector with n components is denoted by the symbol naming the vector, the size of the vector as a

subscript, and an arrow hat. For example, ~θn is the vector of size n of evidence values, ~1n is the vector

with n ones, and ~0n is the vector with n zeroes.

2. A matrix of size m× n is denoted by the boldface symbol naming the matrix, and the size of the matrix

as a subscript. For example, Am×n is the matrix A which has m rows and n columns, and In×n is the

identity matrix of size n.

3. For writing block matrices and block vectors, the partitions are separated by dotted lines.
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is satisfied, then the n-th stimulus has elicited the highest amount of evidence. Only one of

the n expressions thus produced can be satisfied in a given trial.4 Because the labeling of

the stimuli is arbitrary, it suffices to work only with the single inequality (4), which

identifies the region where the (arbitrarily) first stimulus yields the highest response.

Throughout this paper we will refer to this first stimulus as the target, though it should be

understood that in actual empirical applications the target would be distributed among the

positions in the choice array across trials or subjects.

Expression (4) embodies the criterion-independent aspect of the decision-making;

shortly we will turn to the question of how to augment this representation with the

criterion-dependent aspect that additionally allows the observer to reject the array. In

models of eyewitness identification, this criterion-independent decision rule is commonly

referred to as the MAX rule. Figure 3 illustrates in two-dimensional space the MAX rule

partition of the space corresponding to 2-alternative unforced-choice. Notably, unforced

choice tasks deviate from standard forced-choice tasks in the manner in which they carve

up response space—three responses are available to the observer, rather than two.

Throughout this paper, we accompany each of the models we introduce with an illustration

of the segregation of the decision space into the various outcomes of an experiment

utilizing an unforced-choice procedure, as described in Table 1.

This formulation and the derivations that follow are general for any size array—that

is, for any dimensionality—but we depict each case in two-dimensional space in the

accompanying figures. When the evidence distributions are of greater dimensionality, so

are the required partitions; the lines in our figures become planes and hyperplanes in

higher dimensions.

Note also that this model formulation also assumes no bias in selection. That is,

responders are presumed not to favor certain positions in the array over others. Bias can

be easily introduced by replacing the vector ~0n−1 with a vector ~bn−1 of bias parameters in

4 Under the assumption of normality, a tie of two or more responses has probability zero.
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the appropriate expression, though doing so increases the difficulty of model estimation

and we do not pursue that case here. DeCarlo (2012) presents Bayesian algorithms for

estimating n-alternative forced-choice models in the presence of position bias.

Figure 3

Bivariate representation of 2-alternative unforced-choice

(a)

0 c µT

0

c

µT

θ2

θ 1

(b)

0 c µT

0

c

µT

θ2

θ 1

Note. Example of the joint distribution of two internal responses in 2-alternative unforced-choice. The

dashed diagonal line shows the identity line that partitions the space into the regions where the trace elicited

by the first stimulus is higher than that elicited by the second. The solid lines perpendicular to the axes at

the value c show the decision criteria for the Dependent Observations model that separate the region where

the set is rejected (without shading) from regions where a selection is made. The region shaded in orange

corresponds to the selection of the first stimulus and the region shaded in blue corresponds to the second

stimulus. Each panel shows the contour plots for the joint distributions of two memory traces. Panel (a)

presents the case of a TA trial, where both stimuli are drawn from the noise population. Panel (b) presents

contours of the joint distribution of a TP trial in which the first stimulus is drawn from the target population

and the second is drawn from the noise population.

We expand the model into the realm of unforced choice behavior by incorporating a

decision criterion that divides the space into two regions. One region represents the space

in which all internal responses fail to reach criterion and the decision is to reject the whole

set. The second region represents the space in which the MAX rule determines which of
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the stimuli is chosen. The most general way to introduce this decision criterion is by

defining a set of functions of ~θn such that

fj(~θn) < cj (6)

defines the region wherein the set is rejected. Though the framework is complete with the

introduction of the functions fj, with flexibility in the choice of fj, the most tractable

family of functions is that in which each fj is a linear combination of the components of ~θn.

That is, for each fj, there is some vector of coefficients ~kn such that

fj(~θn) = ~kᵀn
~θn.

This representation is not at all restrictive; in fact, all extant models of eyewitness

identification can be expressed within this class of functions, as we will show in the next

sections. Moreover, by using linear combinations, the models resulting from combining the

criterion-independent MAX rule and the criterion-dependent decision rule (6) are tractable

using the multivariate normal distribution to compute the relevant probabilities.

Standard results in SDT are easily understood as special cases of this framework.

When the stimulus set is of size 1, the MAX rule plays no role and the model reduces to

the standard SDT model for yes/no tasks under any (strictly increasing monotonic) choice

of f1. Similarly, for any choice of fj, when the criterion is set to −∞, the framework for

unforced-choice reduces to the model for n-alternative forced-choice.

Limiting behavior. The fact that the behavior of forced-choice models can be

understood as a special case of unforced-choice model behavior reveals that unforced-choice

models exhibit a limit on endorsement rates and that, conditional upon a particular joint

distribution of evidence, the family of all possible unforced choice models share the same

limits.

Those limits provide maxima for the HR and FAR in n-alternative unforced choice,

and those maxima directly influence the treatment and interpretation of data from

unforced-choice experiments. We return to this point shortly, when we introduce different
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forms for representing unforced-choice behavior in the form of receiver-operating

characteristics. Appendix B presents the derivation of these limits, which are summarized

here.

Letting ϕ and Φ denote the standard normal density function and the standard

normal cumulative probability function, respectively, expression (7) provides the upper

limit on HR and expression (8) provides the upper limit on FAR.

HR =
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ − x

)]n−1

dx (7)

FAR = 1
n
. (8)

An intuitive understanding of the origin of these limits can be gained by considering

the FAR in unforced-choice. Consider a decision-maker facing a two-item array with no

target. Any selection of an item in the display is by definition an error, but the selection

among the two options in the array is essentially random. For that reason, there is only a

50% chance that the selected item will be the one arbitrarily designated to yield a false

alarm (as opposed to a filler identification). This is a consequence of the treatment of all

nontarget stimuli as essentially the same, a topic covered in detail in Appendix A.

The same principles apply in a more complex manner to limits on HR. The

straightforward limiting behavior of FAR measures in unforced choice models has been

noted and understood but to our knowledge has not been derived for HR measures except

under the very limited case of complete independence (see e.g., Hacker & Ratcliff, 1979;

Macmillan & Creelman, 2004). Figure 4 presents HR values as a function of

discriminability, the correlation between array element strengths, and the size of the array.

When n = 2, the maximum hit rate takes the form

Φ
 d′√

2(1− ρ)

 , (9)

since we assume unit variance for the noise and target distributions. This expression

further simplifies to the well known equation for percentage correct (PC) in 2-alternative
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forced-choice

Φ
(
d′√
2

)
(10)

when evidence for the two traces is assumed to be independent.

Figure 4

Maximum hit rates for n-alternative unforced-choice
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Note. Maximum Hit rate (HR) of for n-alternative forced choice as a function of µT for different array

sizes n and correlations between element strengths. The ordinate at µT = 0 on each panel indicates the

maximum of FAR for the corresponding array size.

Independent-Observations model

The simplest signal-detection model in use in the analysis of unforced-choice

decision making is the Independent Observations (IO) model. This model assumes that the

internal responses are stochastically independent, and that the observer compares each
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internal response to a criterion value, as if they performed n yes/no tasks. If none of the

comparisons exceed the criterion, the observer rejects the whole set; if any comparison

produces a detection, then the MAX rule is applied and the stimulus that yielded the

highest response is chosen. The model is extremely useful as a starting point for theorizing

because its assumptions are transparent and commonplace in statistical modeling. It is also

simple to work with because, by the assumption of independence, the joint probability

functions are found through the product of the distribution functions of each of the n

internal responses. It provides an instructive starting point for thinking about models of

unforced choice and also for developing the terminology and mathematics for more

advanced, and more realistic, models.

The Independent Observations model was first presented as a model for eyewitness

identification by Duncan (2006), following the presentation by Macmillan and Creelman

(2004). Outside the context of witness identification, the 2-alternative case was presented

by Watson et al. (1973) within traditional psychophysics, and by Phelps et al. (2006) in the

context of mate choice and species recognition. Within psychophysics, the assumptions

underlying this model appear in models of multidimensional detection (Thomas et al.,

2015) and undergird a prominent theory of visual search (Eckstein, 1998; Palmer, 1994).

The rejection rates on both TA and TP trials require knowledge only of the

probability of a single event failing to exceed the criterion. The probability that the

response to a filler does not exceed the criterion is Φ(c), and the probability that a target

event does not exceed the criterion is Φ(c− µT ). Since the array is rejected if none of the

stimuli elicits a response that exceeds the criterion, and those responses are independent of

one another, the Rejection rate for TA trials is

RRTA = [Φ(c)]n , (11)

and for TP trials is

RRTP = Φ(c− µT ) [Φ(c)]n−1 . (12)
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To find the HR and FAR of the Independent Observations model, we additionally

need to use the law of total probability for continuous variables. Note that a correct

identification in a TP trial occurs when the internal response for the target stimulus is

larger than the n− 1 responses for the fillers. By independence, the likelihood of such an

event when the evidence elicited by the target stimulus equals x is

ϕ (x− µT ) [Φ(x)]n−1 .

From this formulation, we can compute the HR, using the law of total probability, by

integrating over the range of values where the response to the suspect surpasses the

criterion. This leads to expression (13) for the HR.

HR =
∫ ∞
c

ϕ (x− µT ) [Φ(x)]n−1dx. (13)

Similarly, expression (14) provides the FAR.

FAR =
∫ ∞
c

ϕ (x) [Φ(x)]n−1dx. (14)

The simplicity of the Independent Observations model allowed us to derive the

expressions to compute these rates without referring to the multivariate geometry of the

evidence distributions. Nonetheless, we can describe the model using the language of the

multivariate framework. The assumption of normally distributed independent memory

traces can be described in terms of a multivariate normal with mutually independent, and

hence uncorrelated, components. The comparison of each memory trace to a given criterion

value defines the set of linear combinations and decision criterion for the

criterion-dependent part of the model. Lastly, the requirement that the memory trace for

the selection of the guilty suspect or of a lure in the computations of the HR and the FAR

corresponds to the application of the MAX rule. This framing is formally completed in the

next section as part of deriving the Dependent Observations model, for which the

Independent Observations is obtained as a special case where ρ = 0. The full derivation

from axiomatic principles of both the Independent Observations and Dependent

Observations models is presented in Appendix C.
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Receiver-operating characteristics

One way of characterizing a detection-theoretic model is by its predictions about the

relationship between HR and FAR over the set of all possible decision criteria. All models

share the same fundamental starting points: when the decision criterion is conservative,

hits and false alarms are both infrequent; when the decision criterion is liberal, hits and

false alarms are both common. The function that relates the decision criterion to these

essential statistics is called a receiver-operating characteristic (ROC); here we review a

number of variants of the ROC for the case of unforced choice that vary in content. By

tradition, the ROC is plotted with FAR on the abscissa and HR on the ordinate. The shape

and location of the ROC is used to represent the theory and parameter set from which it

was generated. Individual points on that function specify a unique decision criterion.

One of the useful aspects of the ROC is that it provides an intuitive means of

summarizing the discriminability of a situation or observer. When discriminability is weak,

the HR and FAR will be very close to one another and the ROC will lie on or near the

positive diagonal. Under those conditions, the area under that curve (AUC) will be around

0.5. When discriminability is high, the HR will be considerably higher than the FAR,

yielding a function with an AUC approaching 1.0. An additional appeal of the ROC as a

measure of discriminability is that the AUC derived from a yes/no decision-making task

predicts 2-alternative forced-choice accuracy quite well (Green & Moses, 1966). These

data, among others, support the validity of SDT as a model of decision making in the

presence of noise (Wixted, 2020).

One challenge in developing models of unforced choice is that the standard

apparatus for moving between probability distributions and the ROC is incomplete. This

can be most easily understood by noting that the four responses typically gathered in a

yes/no decision experiment, which can be summarized by two independent performance

statistics, render hits and false alarms a complete summary of each response category or

confidence level for each subject or condition. Yet, as shown in Table 1, unforced choice
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tasks yield six, rather than four, response outcomes. The consequence of this complexity is

that a single ROC in two dimensions is insufficient to account for the totality of

performance in an unforced-choice task (cf. Wells et al., 2015).

There are a number of ways of extracting an ROC from a table of responses in an

unforced-choice experiment, and no one choice is optimal for all purposes. Here, we show

how each model can be summarized with three different ROC functions, each of which

highlights different aspects of performance.

The target operating characteristic. The first ROC that we consider features

identification of the target, or a designated replacement for the target, within the ROC. It

maps HR—the identification of the target in a target-present array—against FAR—the

identification of a foil that replaces the target in a target-absent array, and so maintains a

strong parallel with a “traditional” ROC from a yes/no experiment. In this paper, we refer

to this function as a TOC, highlighting the centrality of the target in a TP array and its

replacement in a TA array. Though the axes enjoy a straightforward mapping to a

traditional ROC (HR and FAR), the resultant function is quite different. The top two

panels of Figure 5 show examples from the IO model when the array size is varied (panel

[a]) and when discriminability varies (panel [b]). These ROCs are irregular, in that they do

not connect the lower leftmost point in the space with the upper rightmost point in the

space. This is a consequence of the limiting behavior of the model discussed in the previous

section. A decision-maker might successfully choose to reject the array—in which case the

outcome is not tallied in this particular ROC. If they do mistakenly choose an option, there

is only a 50% (in a 2-item array) chance that it will count as a false alarm (as opposed to a

filler identification). This is why the data abruptly stop along the abscissa at a value of 0.5

(more generally, at 1/n, as explained above). The truncated nature of these ROCs have led

also to their designation as partial ROCs (pROC).

A partial ROC introduces a challenge for assessing discriminability, because the

maximum area under that curve is no longer 1. As a practical matter, researchers have
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Figure 5

Three receiver-operating characteristics for n-alternative unforced choice under the IO

model.
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Note. Panels [a] and [b] show target-operating characteristics (TOC); panels [c] and [d] show identification-

operating characteristics (IOC); and panels [e] and [f] show ensemble-operating characteristics (EOC). Left

panels show the effect of array size (n) on the functions. Right panels show the effect of discriminability

(µT ) on the functions.
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attempted to circumvent this problem by comparing areas under the partial ROC (pAUC),

though a comparison between conditions commonly requires either extrapolation of a

shorter ROC to match the length of a longer one—in which case the theory underlying that

extrapolation might be wrong—or elimination of the tailing end of the longer ROC—in

which case data are being discarded and the procedure is de facto inefficient.

The target operating characteristic enjoys straightforward interpretation in

experimental designs in which a singular foil in a TA array enjoys special status as a

replacement for the target in a TP array. Such a situation is common in lineup memory

experiments, in which the truly guilty suspect is replaced by a foil who is not guilty, but is

different from the other foils in that they are at especial risk of prosecution if they are

selected by the witness.

Identification-operating characteristic. The second set of plots shown in

Figure 5 (panels [c] and [d]) plot HR against FAR + FIR. Here, we call this function an

identification-operating characteristic (IOC). This means of plotting the data has the

appeal of placing the correct response for a target-present trial on the ordinate and all

possible incorrect responses from a target-absent trial on the abscissa—an alternative

parallel with a standard ROC. This choice of axes extends the ROC horizontally, but not

entirely vertically, yielding a partially regular function. This regularity comes at a cost,

however—the functions now verge into the region of space previously understood as

representing below-chance performance (below the positive diagonal). It is easy to see how

this happens: though the ordinate reflects the probability of endorsement for a single item

in a target-present lineup, the abscissa now reflects the endorsement of any of n items in a

target-absent lineup. In essence, we have one dimension of the IOC that is regular and one

that is irregular. This plot enables straightforward comparisons of conditions but

eliminates the meaningful boundary value of the area under the curve of 0.5 as representing

chance performance. Pure guessing will yield performance on the line HR = FAR/n, yielding

an ROC with a slope of 1/n and AUC of 1/2n. In the absence of array bias (in which some
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members are systematically more alluring than others), the AUC for an IOC enjoys a

simple relationship with the AUC for a TOC: AUCIOC = nAUCTOC.

An IOC is a straightforward tool for designs in which there is homogeneity among

the members of a TA array. This is the case in many perceptual experiments in which a

target is to be detected against a background of distractors, none of which have any status

as the “replacement” for a target. This is not to say that the members of a TA need to be

identical to one another, only that the experimenter does not wish to feature in the

analysis any single one of them as a stand-in for a target.

Ensemble-operating characteristic. The final means of plotting performance

in unforced choice is shown in panels [e] and [f] of Figure 5. Here, we call this function an

ensemble operating characteristic (EOC).5 Endorsements of any member of a target-present

array are plotted on the ordinate (HR + FIRTP = 1− RRTP), and endorsements of any

member of a target-absent array are plotted on the abscissa (FAR + FIRTA = 1− RRTA).

This approach yields a regular ROC that obeys the AUC boundaries of a standard ROC of

0.5 and 1.0, remedying the problems faced by the receiver-operating characteristics

summarized above, but it is also not without cost. Namely, the discriminability measured

here is at the level of the ensemble (or array) and does not reveal anything about the

identity of specific members of that array. So the AUC of the EOC indexes the degree to

which an individual can discriminate ensembles with a target from ensembles without a

target, but does not speak to their ability to select or reject the specific target within that

ensemble. This feature makes the EOC an appropriate tool for describing detection of

targets in the absence of localization or identification. For that reason it is poorly suited to

eyewitness identification but appropriate for many basic tasks of detection and

discrimination.

5 This function has also been designated an ROC by Macmillan and Creelman (2004) and Meyer-Grant

and Klauer (2021). It is a true ROC for only for detection at the level of the ensemble, which is why we

have renamed it here.
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Models of unforced choice applied to eyewitness identification

In this section, we present signal detection models of eyewitness memory that have

been proposed as alternatives to the Independent Observations model. We derive each one

as specifications of the multivariate framework introduced in the previous section. For each

model, we highlight a simplified version in the text in which signal and noise variance are

assumed to be equal, as is the covariance across those classes of items. Separate appendices

for each model present the fully general case in which variance and covariances are free to

vary within the minimal constraints provided by the analysis in Appendix A. For each

model, we also present examples of all three types of receiver-operating characteristic as a

means of visualizing aspects of the model’s predictions.

Dependent observations model

Akan et al. (2021) extended the Independent Observations model to allow for

covariation of the internal responses and called the resultant model the Dependent

Observations (DO) model. The main complication in deriving closed-form solutions for the

outcomes of the DO model is that the lack of independence across signals prevents the use

of the product of the marginal densities and cumulative probability functions to compute

the relevant joint probabilities.

We frame the model using expressions (1)–(3), assuming that ρ has some

non-negative value and that the criterion-independent part of the model follows the MAX

rule. The functions used to define the criterion-dependent decision rule of the Dependent

Observations model can be written as fj(~θn) = θj since each response is compared with the

criterion. Each function fj, j = 1, . . . , n, is easily written as a linear combination of ~θn by

taking ~kn = ~ej,n, where ~ej,n is the vector with all but the j-th coefficient equal to zero, and

a 1 as its j-th component. The regions corresponding to the decisions to reject the lineup

and to choose the first person in the lineup can be written as

In×n ~θn < c~1n (15)
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and  1 ~0ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 c

~0n−1

, (16)

respectively. These regions are illustrated for the 2-dimensional case in Figure 6. Figure 6a

illustrates the regions of the space in a TA trial, where two fillers are presented. Figure 6b

shows the regions in a TP lineup where a guilty suspect is presented along with one

innocent filler.

Figure 6

Decision regions for the Dependent Observations model

(a) Outcomes for a TA array
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Note. The axes represent the evidence elicited by two nontarget stimuli (θF1 and θF2 in panel [a]), and

by one target and one nontarget stimulus (θT and θF in panel [b]). The ellipses represent isoprobability

contours of the bivariate normal distribution of ~θ2. The horizontal and vertical dashed lines at µT and at 0

indicate the means of the target and noise populations. The horizontal and vertical lines at c indicate the

boundary between the regions where θF1 > c and where θF2 > c. The diagonal line indicates the boundary

between the regions where θF1 > θF2 and where θF1 < θF2 . These boundaries separate the space into three

response regions: rejection of the lineup (RR), selection of the (arbitrarily) first stimulus (HR or FAR), and

selection of the second stimulus (FIR).

Using the properties of the multivariate normal distribution, we derive the following

expressions for the HR, FAR, RRTA, and RRTP for the Dependent Observations model in
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Appendix C. Below we present the outcomes of those derivations and present some

simplifying cases for practical use. Expressions (17) and (18) present the HR and the FAR

for the Dependent Observations model.

HR =
∫ ∞
−∞

ϕ(x) Φ
(
µ1 − c√

ρ
+
√

1− ρ
ρ

x

)
×

[
Φ
(

µ1√
1− ρ + x

)]n−1

dx.

(17)

FAR =
∫ ∞
−∞

ϕ(x) Φ
(
−c
√
ρ

+
√

1− ρ
ρ

x

)
[Φ(x)]n−1 dx (18)

These two expressions can be manipulated to arrive at the corresponding expressions for

the Independent Observations model as the correlation parameter tends to zero. However,

to facilitate derivation we also present alternative expressions for the Hit and False alarm

rates for the Dependent Observations model. The following expressions can be derived by

first conditioning upon the values of the stimulus that contains the target, in TP arrays, or

upon the values of one of the noise stimuli, in TA arrays, then finding an expression for the

distribution of the remaining noise stimuli, and, lastly, using the law of total probability.

HR =
∫ ∞
c
ϕ (x− µT )×

∫ ∞
−∞

ϕ(t)
[
Φ
(
µT

√
ρ2

1− ρ + x
√

1− ρ−√ρt
)]n−1

dt dx.

(19)

FAR =
∫ ∞
c

ϕ (x)
∫ ∞
−∞

ϕ(t)
[
Φ
(
x
√

1− ρ−√ρt
)]n−1

dt dx. (20)

The Rejection Rate is computed according to expression (21) for TP arrays and

expression (22) for TA arrays.

RRTP =
∫ ∞
−∞

ϕ(x) Φ
(
c− µT√

1− ρ +
√

ρ

1− ρx
)
×

[
Φ
(

c√
1− ρ +

√
ρ

1− ρx
)]n−1

dx

. (21)
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RRTA =
∫ ∞
−∞

ϕ(x)
[
Φ
(

c√
1− ρ +

√
ρ

1− ρx
)]n

dx. (22)

Figure 7 shows ROC curves for the Dependent Observations model at different values of µT

and ρ.

Yet more compact expressions of these rates can also be obtained specifically for the

case of 2-alternative unforced-choice. They can be represented using Φ2(x, y, r), the

cumulative (quadrant) probability function of the bivariate standard normal distribution

with correlation coefficient r:

HR =
∫ ∞
c−µT

ϕ(x) Φ
(

µT√
1 + ρ2 +

√
1− ρ
1 + ρ

x

)
dx

=Φ
(

µT√
2(1− ρ)

)
− Φ2

(
µT√

2(1− ρ)
, c− µT ,−

√
1− ρ

2

) (23)

FAR =
∫ ∞
c

ϕ(x) Φ
(√

1− ρ
1 + ρ

x

)
dx

=1
2 − Φ2

(
0, c,−

√
1− ρ

2

) (24)

RRTP =Φ2(c− µT , c, ρ) (25)

RRTA =Φ2(c, c, ρ) (26)

Independent Observations model, revisited. From expressions (19)–(22), it

is straightforward to obtain the expressions for the Independent Observations model by

setting ρ = 0. For illustration, we show the derivation for the HR. The derivation of the

other rates follows the same logic. For completeness, we present them below again without

their derivations.

HR =
∫ ∞
c

ϕ (x− µT )×

∫ ∞
−∞

ϕ(t)

Φ

µT
√

ρ2

1− ρ + x
√

1− ρ−√ρt

n−1

dt dx

=
∫ ∞
c

ϕ (x− µT )
∫ ∞
−∞

ϕ(t) [Φ(x)]n−1dt dx

=
∫ ∞
c

ϕ (x− µT ) [Φ(x)]n−1
∫ ∞
−∞

ϕ(t) dt dx

=
∫ ∞
c

ϕ (x− µT ) [Φ(x)]n−1dx.

(27)
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FAR =
∫ ∞
c

ϕ (x) [Φ(x)]n−1dx. (14: revisited)

RRTA = [Φ(c)]n . (11: revisited)

RRTP = Φ(c− µT ) [Φ(c)]n−1 . (12: revisited)

From expressions (11) and (12) it is possible to obtain formulas for the criterion

value and the mean of the target distribution for the Independent Observations model

assuming equal variances. These are

ĉ = Φ−1(RR1/n

TA). (28)

µ̂T = ĉ− Φ−1(RRTP · RR
n/(n−1)
TA ) (29)

Integration model

Graham et al. (1987) proposed a set of SDT models in which compound stimuli

elicit multiple independent internal responses, just like in the independent-observations

model. One unique model that they proposed used the summed output of the channels and

compared that integration to a decision criterion. Both Duncan (2006) and Wixted et al.

(2018) considered the Integration model as a model of lineup memory; Wixted et al. (2018)

even extended the model to include the possibility of correlated signals across channels.

Though that model did not fare well in accounting for human behavior in eyewitness

memory, it has proven useful in basic psychophysics, where tasks involving integration

(instead of discrimination) are more common (Graham et al., 1987).
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Figure 7

Three receiver-operating characteristics for n-alternative unforced choice under the DO

model.
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Note. TOCs (panels [a] and [b]), IOCs (panels [c] and [d]), and EOC curves (panels [e] and [f]) for the

Dependent Observations model. Left panels show the effect of varying the correlation (ρ) among stimuli.

Right panels show the effect of varying discriminability (µT ).
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In the multivariate framework, the function to define a criterion-dependent

integration rule is

f1(~θn) =
n∑
i=1

θi.

Hence, the region where the lineup is rejected is represented as
n∑
i=1

θi <c

~1ᵀ
n
~θn <c, (30)

and the region where the first (target) stimulus is chosen is 1 ~1ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 c

~0n−1

 (31)

These regions are illustrated for the 2-dimensional case in Figure 8. Figure 8a

illustrates these regions superimposed on the distribution of evidence in a TA trial, and

Figure 8b shows the same regions superimposed on the distributions of evidence in a TP

trial.

The expressions for the RR are given by

RRTP = Φ
 c− µT√

n [1 + (n− 1)ρ]

 (32)

RRTA = Φ
 c√

n [1 + (n− 1)ρ]

 (33)

The HR and FAR for the integration model are given by expressions (34) and (35).

HR = Φ
 µT − c√

n [1 + (n− 1)ρ]

×
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ − x

)]n−1

dx,

(34)

FAR = 1
n

Φ
 −c√

n [1 + (n− 1)ρ]

 . (35)

The full derivation of this model is presented in Appendix D, and Figure 9 shows

the ROC curves predicted by this model under the same parameters used for the joint

distributions in Figure 7.
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Figure 8

Decision regions for the Integration model

(a) Outcomes for a TA array
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(b) Outcomes for a TP array
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Note. The axes represent the evidence elicited by two nontarget stimuli (θF1 and θF2 in panel [a]), and

by one target and one nontarget stimulus (θT and θF in panel [b]). The ellipses represent isoprobability

contours of the bivariate normal distribution of ~θ2. The diagonal line along the positive diagonal indicates

the boundary between the regions where θF1 > θF2 and where θF2 > θF1 . The dotted diagonal line of

negative slope shows the boundary between the regions where θF1 + θF2 > 0 (above the line), and where

θF1 + θF2 < 0 (below it). The diagonal solid line parallel to the dotted one marks the decision criterion

boundary between the areas in which θF1 + θF2 > c and θF1 + θF2 < c. The diagonal solid lines separate

the three response regions: rejection of the lineup, selection of the (arbitrarily) first stimulus, and selection

of the second stimulus. The horizontal (vertical) dashed lines show the location of the means of the target

(µT ) and noise populations (0).
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Figure 9

Three receiver-operating characteristics for n-alternative unforced choice under the

Integration model.
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Note. TOCs (panels [a] and [b]), IOCs (panels [c] and [d]), and EOC curves (panels [e] and [f]) for the

Integration model. Left panels show the effect of varying the correlation (ρ) among stimuli. Right panels

show the effect of varying discriminability (µT ).
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Ensemble model

The Ensemble model (Wixted et al., 2018) operates with a different relative decision

rule among the stimuli. It assumes that the evidence yielded by each stimulus in the array

is compared to the average evidence elicited by the entire array of stimuli. If the largest of

these differences exceeds a decision criterion, then the corresponding stimulus is chosen;

conversely, if none of these differences surpasses the criterion, then the lineup is rejected.

An earlier development of this theory was presented by Kaernbach (2001), whose model

accounted for n-alternative unforced choice under the assumption of independence and also

allowed for a don’t know response by the observer. Though that response is substantively

different than a rejection of the array, in which the observer is making a claim about a

state of knowledge rather than the lack of one, the modeling is formally equivalent in the

two cases. Kaernbach (2001) defined the criterion-dependent part of his model by

identifying the hypersurfaces where the ratio between the likelihood of the target

corresponding to a specific signal and the sum of the likelihoods that the target

corresponds to each of the n signals is constant and equal to c+ 1/n (for n-alternative

forced-choice; the model can only produce unbiased responding, with c = 0). Such a

criterion is optimal on Bayesian logic (but perhaps not with human behavior), and requires

the structural assumptions of unbiased arrays or fair lineups (i.e., that all nontarget stimuli

are exchangable), variance homogeneity (that the variability of signal strength is equal to

the variability of noise strength), and common correlation (that the covariance among

members of an array is equivalent across specific examplars of the stimuli and across

categories of signal and noise). The models we present in the appendices of this paper

include versions that relax the second and third of these assumptions, making them

considerably more flexible than ones currently in use.

This set of characteristics aligns this model closely with the ensemble model of

Wixted et al. (2018), but the decision rules between the two models are notably different.

Kaernbach (2001)’s model employs a criterion-dependent rule based on the likelihood ratio.
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That assumption obliges the model to assume that the distribution of evidence in a TA

trial is optimally separated, in a Bayesian sense, from the evidence distribution in a TP

trial, a characteristic that does not comport to the decision structure in the ensemble

model. In fact, under the assumption of independence, Kaernbach’s model reduces to the

Independent Observations model, not to the Ensemble model. When the assumption of

independence is relaxed, it is different of all other models reviewed here and is in fact more

related in spirit to models employed within the framework of General Recognition Theory

using an optimal quadratic criterion (Ashby, 1992; Ashby & Soto, 2015).

Wixted et al. (2018) presented an approximation to the ensemble model based on a

normal approximation to the distribution of a truncated normal and the use of the law of

total probability. Wixted et al. (2018) assumed the same correlation structure we have

used here (expression [3]), representing the models with a unidimensional decomposition

into shared and unique variance of the joint distribution. Using these tools, they arrived at

the following expression6 to approximate the HR of the Ensemble model (with analogous

expressions for the other rates):

HR ≈
∫ ∞
−∞

1√
1− ρ φ

(
x− µT√

1− ρ

)[
Φ
(

x√
1− ρ

)]n−1

×{
1− Φ

(
nc− (n− 1)(x− µ∗)

σ∗
√
n− 1

)}
dx,

(36)

where

µ∗ = µT − Z
√

1− ρ and σ∗ =
√

(1− ρ)(1− Zβ − Z2),

with

β = x√
1− ρ and Z = ϕ(β)

Φ(β) .

The last factor of the integrand of expression (36, in curly brackets) is the approximation

to the probability

Pr
(
θ1 −

1
n

n∑
i=1

θi > c

∣∣∣∣∣ θ1,max(~θn) = θ1

)
.

6 Here we use the notation and terms used in this paper, which differ from those used by Wixted et al.

(2018).
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The authors make the case that this approximation is reasonable (see unnumbered Figure

on p. 109, Wixted et al., 2018). However, a risk yet to be assessed is whether the

approximation yields biased estimation of the different rates or of the model parameters.

Moreover, the decomposition into the factors of the integrand of expression (36) depends

on the assumption that all covariances are equal. While the structural assumptions of

equal variance and equal correlations that we have we used here for the restricted versions

of our models also pose this requirement, the framework can be used to explore and derive

corresponding expressions when a different covariance structure, such as one in which

correlations are equal but variances are unequal, is assumed. Detailed presentations of

these different versions of ensemble models are provided in Appendix E.

The assumptions that are made by Wixted et al. (2018) to develop their

approximation also pose a strong requirement on the specific values of the correlations

between stimulus members within a class of items. Specifically, it requires both that the

correlation between nontarget evidence values is the same (ρF ) across all pairs (as we have

done here as well), and that the correlation between targets and fillers is the ratio of the

correlation between fillers to the standard deviation of the target population (ρF/σ1). This

assumption is implicit in the reexpression of the likelihoods of each response in terms of

common and unique variance presented in Wixted et al.’s Appendix B.2. This latter

assumption is employed for mathematical convenience; the development of the ensemble

model we present here poses no such restriction. As a reminder, Appendix A includes a

detailed discussion of the various considerations that can be used to constrain the

covariance matrix.

Exact expressions for the outcomes of the Ensemble model can be derived within

the multivariate framework. We derive these expressions in Appendix E and present them

below. Using the exact expression, we can also verify the accuracy of the approximation in

expression (36) under the assumptions of equal variances and covariances. We return later

to examine the appropriateness of the approximation after the presentation of the model’s



MODELS OF UNFORCED CHOICE 40

exact expressions.

The ensemble criterion-dependent rule of taking the difference between each

stimulus and the mean of the ensemble means that the appropriate functions fj are

fj(~θn) = θj −
1
n

n∑
i=1

θi,

for j = 1, . . . , n. Consequently, the region where the lineup is rejected is defined by

simultaneously satisfying the following n inequalities.

θj −
1
n

n∑
i=1

θi < c, j = 1, . . . , n (37)

To express the functions fj in the form of linear combinations, it is convenient to transform

the inequalities as follows.

1
n

[
nθj −

n∑
i=1

θi

]
< c, j = 1, . . . , n,

nθj −
n∑
i=1

θi < nc, j = 1, . . . , n,

n~eᵀj,n~θn −~1ᵀ
n
~θn < nc, j = 1, . . . , n,

where ~ej,n is the vector with all but the j-th coefficient equal to zero, and a 1 as its j-th

component. In this manner, the regions corresponding to the decisions to reject the lineup

and to choose the first person in the lineup can be written as

[
nIn×n −~1n~1ᵀ

n

]
~θn < nc~1n (38)

and n− 1 −~1ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 nc

~0n−1

, (39)

respectively. These regions are illustrated for the 2-dimensional case in Figure 10.

Figure 10a illustrates the region of the space in which the lineup is rejected along with the

joint distribution of the internal responses in a TA trial; Figure 10b shows the region where

the guilty suspect is identified in a TP trial.
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Figure 10

Decision regions for the Ensemble model

(a) Outcomes in a TA trial
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(b) Outcomes in a TP trial
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Note. The axes represent the memory traces elicited by each of two stimuli (θF1 and θF2 in panel (a), θT

and θF in panel (b)). The ellipses represent isoprobability contours of the bivariate normal distribution of

~θ2. The solid diagonal lines show the boundaries between the regions where θT − 1
2 (θT + θF ) > c > 0, left,

and θF − 1
2 (θT +θF ) > c > 0, right. The dotted diagonal line shows the boundary between the regions where

θF1 > θF2 and where θF1 < θF2 . The diagonal solid lines separate the three response regions: rejection of

the lineup, selection of the first stimulus, and selection of the second stimulus.

The Hit, False Alarm, and Rejection Rates for the Ensemble model are derived in

Appendix E. The HR is presented in expression (40).

HR =
∫ ∞
nc

1√
n(n− 1)(1− ρ)

ϕ

 x− (n− 1)µT√
n(n− 1)(1− ρ)

×
∫ b1

a1
· · ·
∫ bn−2

an−2

n−2∏
k=1

ϕ(zk) d~zn−2dx

(40)

where

a1 = − x√
(n− 1)(n− 2)(1− ρ)

ak =

√
n− k

n− k − 1

k−1∑
j=1

√
1

(n− j)(n− j − 1)zj −
x

(n− 1)
√

1− ρ

 ,
k = 2, . . . , (n− 2)

(41)
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and

b1 =− (n− 2) x√
(n− 1)(n− 2)(1− ρ)

bk =− (n− k − 1)ak, k = 2, . . . , (n− 2).
(42)

The FAR is computed as shown in expression (43) with the limits of integration ak and bk,

k = 1, . . . , n− 2, defined in the same manner.

FAR =
∫ ∞
nc

1√
n(n− 1)(1− ρ)

ϕ

 x√
n(n− 1)(1− ρ)

×
∫ b1

a1
· · ·
∫ bn−2

an−2

n−2∏
j=1

ϕ(zj) d~zn−2dx

(43)

These two expressions simplify for the case of n = 2 to

Φ
 µT − 2c√

2(1− ρ)

 (44)

for the Hit Rate, and to

Φ
 −2c√

2(1− ρ)

 (45)

for the False Alarm Rate.

The Rejection Rates for the Ensemble models, RRTA and RRTP, can be computed

using expression (46). In the expression, one sets µ1 = µT for TP trials and µ1 = 0 for TA

trials.

RR =
∫ b1

a1
· · ·
∫ bk

ak

· · ·
∫ bn−1

an−1

n−1∏
k=1

ϕ(zk) d~zn−1 (46)

where

b1 = nc− (n− 1)µ1√
n(n− 1)(1− ρ)

bk =

√
n− k + 1
n− k

 nc+ µ1
n
√

1− ρ +
k−1∑
j=1

√
1

(n− j + 1)(n− j)zj

 ,
k = 2, . . . , (n− 1),

(47)

and

a1 = −(n− 1) nc+ µ1√
n(n− 1)(1− ρ)

ak = −(n− k)bk, k = 2, . . . , (n− 1).
(48)



MODELS OF UNFORCED CHOICE 43

When lineup size is n = 2, expression (46) simplifies to

Φ
 2c− µ1√

2(1− ρ)

− Φ
 −2c− µ1√

2(1− ρ)

 (49)

Figure 11 shows the ROC curves predicted by this model under the same

parameters for the evidence joint distributions as in Figure 7.

BEST-Rest model. To complete the presentation of the Ensemble model, we

consider the BEST−Rest (BEST) model (Clark, 2003; Clark, Erickson, & Breneman,

2011). This model is similar to the Ensemble model, and, as noted by Wixted et al. (2018),

the two models are linearly related. In the BEST model, it is assumed that each memory

trace is first compared to the average of the traces elicited by the remaining stimuli. If the

largest of these differences exceeds the decision criterion, then the corresponding stimulus

is chosen; conversely, if none of these differences surpasses the criterion, then the lineup is

rejected. The relationship between the two models is made apparent if we write the

functions fj and their corresponding representation as linear combinations of ~θn. The

functions fj are

fj(~θn) = θj −
1

n− 1

n∑
i=1
j 6=j

θi,

for j = 1, . . . , n. Consequently, the region where the lineup is rejected is defined by

simultaneously satisfying the following n inequalities, with their transforms in terms of

linear combinations as follows:

θj −
1

n− 1

n∑
i=1
j 6=j

θi < c, j = 1, . . . , n,

1
n− 1

(n− 1)θj −
n∑
i=1
j 6=j

θi

 < c, j = 1, . . . , n,

1
n− 1

[
nθj −

n∑
i=1

θi

]
< c, j = 1, . . . , n,

nθj −
n∑
i=1

θi < (n− 1)c, j = 1, . . . , n,

n~eᵀj,n~θn −~1ᵀ
n
~θn < (n− 1)c, j = 1, . . . , n,
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Figure 11

Three receiver-operating characteristics for n-alternative unforced choice under the

Ensemble model.
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Note. TOCs (panels [a] and [b]), IOCs (panels [c] and [d]), and EOC curves (panels [e] and [f]) for the

Ensemble model. Left panels show the effect of varying the correlation (ρ) among stimuli. Right panels show

the effect of varying discriminability (µT ).
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where ~ej,n is the vector with all but the j-th coefficient equal to zero, and a 1 as its j-th

component. Therefore, the region corresponding to the lineup rejection can be written as
[
nIn×n −~1n~1ᵀ

n

]
~θn < (n− 1)c~1n, (50)

The comparison of expressions (50) and (38) shows clearly that the BEST model and the

Ensemble model are mathematically equivalent. If the Ensemble model predicts a set of

probabilities given a criterion value cE, the BEST model makes precisely the same set of

predictions for the criterion value cB = n
n−1cE.

Approximation, revisited. Figure 12 presents the TOC curves of the ensemble

model computed using the exact expressions, (40) and (43), and the approximation

presented in Expression (36). The panels show the TOC curves as the correlation changes,

by row, and as discriminability changes, by column, for fixed array size of n = 2. We chose

this set size because larger set sizes, with consequently shorter TOCs, make it difficult to

see the differences between the two approaches. Two important effects are apparent in the

figure. First, the curves overlap to a striking degree, substantiating the view that the

approximation captures the tradeoff between HR and FAR appropriately. Second, the

approximation fails to account for the limiting behavior of the model described previously.

This can be seen in the fact that all curves for the approximation end at values lower than

the limits from Expressions (7) and (8). The immediate consequence of this shortcoming of

the approximation is that the AUC of the TOC is biased. Figure 13 presents the values,

computed using the approximation and the exact expressions, of the AUC for several set

sizes and magnitudes of discriminability as the common correlation varies from 0 to 1. The

bias of the AUC decreases as the correlation among ensemble members increases and also

as the array size increases. Since the TOC is generated by the variation of the decision

criterion, the fact that the curves overlap but differ in length means that the values of the

FAR and the HR predicted by the approximation and the exact expressions cannot be the

same for the same criterion value. This fact is illustrated in Figure 14 for several array

sizes and correlations. Taking all of these factors together, it appears that there is some
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Figure 12

TOC curves for the exact and the approximation of the Ensemble model

0.00

0.25

0.50

0.75

1.00

H
it 

R
at

e

0.00 0.25 0.50 0.75 1.00

(a)   ρ = 0,  µT = 0.5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(b)   ρ = 0,  µT = 1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(c)   ρ = 0,  µT = 1.5

0.00

0.25

0.50

0.75

1.00

H
it 

R
at

e

0.00 0.25 0.50 0.75 1.00

(d)   ρ = 0.4,  µT = 0.5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(e)   ρ = 0.4,  µT = 1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(f)   ρ = 0.4,  µT = 1.5

0.00

0.25

0.50

0.75

1.00

H
it 

R
at

e

0.00 0.25 0.50 0.75 1.00
False Alarm Rate

(g)   ρ = 0.8,  µT = 0.5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Alarm Rate

(h)   ρ = 0.8,  µT = 1

Exact

Approximation

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Alarm Rate

(i)   ρ = 0.8,  µT = 1.5

Note. Varying correlations (ρ) by row. Varying µT by column.
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advantage to using the exact derivation of the ensemble model, especially for parameter

estimation and for tasks with small array sizes.
Figure 13

Comparison of AUC for Exact Derivation and Approximation of the Ensemble model
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the HR and FAR derived in Appendix E and using the approximation derived by Wixted, Vul, Mickes, and

Wilson (2018).

Discussion

Tasks involving unforced choice are abundant in psychology. We have introduced

several important cases from research in perception, attention, and memory, with a

particular focus on lineup memory tasks, in which a witness can indicate a particular

member of a lineup as a previously seen perpetrator of a crime, or reject the lineup as

failing to contain that perpetrator. The fact that that task involves a relative comparison

among stimuli, as well as an absolute comparison between those stimuli and a memory

trace, makes it a task of unforced choice.

Models of lineup memory inspired by multivariate signal-detection theory have

proliferated in recent years (Akan et al., 2021; Duncan, 2006; Smith et al., 2020; Wixted
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Figure 14

Difference in FAR and HR between Exact and Approximated computations
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predictions correspond to µT > 0 across different set sizes (rows) and µT (columns).

et al., 2018), and have supported advances in both theoretical and empirical research in

eyewitness memory. This article aims to take those theories and place them on solid

mathematical footing, an act that should facilitate comparison among theories, additional

model development, and generalization to a wide variety of tasks both within and adjacent

to psychology.

The vehicle we have used to establish this framework is multivariate geometry

(Wickens, 2014). Though the particular means by which we have developed and derived

results in this paper may be unfamiliar to some, the general principles harken back to some

of the earliest development in signal-detection theory (Green, 1964), and the general

principles should be comfortable to anyone working within these domains.
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Figure 15

TOC curves for three models of unforced choice.
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Note. Correlations among stimuli (ρ) vary across rows. Signal strength µT varies across columns. DO

denotes the TOC for the Dependent Observations model (Independent Observations for ρ = 0); Int for the

Integration model; and Ens for the Ensemble model. The numbers within parentheses indicate the area

under the curve of the corresponding TOC.
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Figure 16

IOC curves for three models of unforced choice
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Note. Correlations among stimuli (ρ) vary across rows. Signal strength µT varies across columns. DO

denotes the IOC for the Dependent Observations model (Independent Observations for ρ = 0); Int for the

Integration model; and Ens for the Ensemble model.
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Figure 17

EOC curves for three models of unforced choice
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Note. Correlations among stimuli (ρ) vary across rows. Signal strength µT varies across columns. DO

denotes the EOC for the Dependent Observations model (Independent Observations for ρ = 0); Int for the

Integration model; and Ens for the Ensemble model.
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Model comparison

With exact formulations in hand, it is possible to draw more precise comparisons

among models than before. Figures 15, 16, and 17 show all three types of ROC for each of

the three major maodels presented in this paper: Dependent Observations in the top row

(with Independent Observations as a special case in the leftmost panel), Integration in the

middle row, and the Ensemble model in the bottom row.

With the three types of ROCs and the exact derivations of models presented here,

the models can be meaningfully compared to determine their uniqueness and identifiability.

This section provides a first attempt to do so in broad strokes, though we emphasize that

extensive model comparison is beyond the goals of this paper and is left for future work.

Model mimicry. Figure 18 shows the results of an analysis of model mimicry

using the major models presented in the paper. For each model, we generated one “simple”

data set in which the distributions were of equal variance and the correlation between all

array members was equal (with a nonzero value for all models except the IO model). We

also simulated a more “complex” data set with the distributions having unequal variance

and the correlation between target and fillers (ρ1) being different than the correlation

between fillers and fillers (ρ0). Exact values are provided in the figure caption.

Each model was then fit to the two data sets generated by the four decision models.

Fitting was constrained under three regimes. In the top panels, all parameters were

estimated freely. In the middle panel, the structural relationship between the correlation

parameters (ρ1 = ρ0/σT ) was used as a constraint and all other parameters were estimated.

Finally, in the bottom panel, the variance of the signal distribution and the relationship

between the two correlation parameters (ρ1 = ρ0/σT ) was provided and the remaining

parameters were estimated.

The outcomes of this fitting exercise are shown as heatmaps, with the left panels

indicating χ2 values of deviation between the original parameter values and the recovered

values, and the right panels indicating the p-value associated with that value of χ2.
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Notably, the DO and Integration model were completely able to mimic every model

in the set of generating models, including the Ensemble model. The IO model also

exhibited substantial flexibility, being able to mimic data from all of the models except the

Ensemble model. The Ensemble model, in contrast, successfully recovered parameters only

generated by the Ensemble model; it could not mimic data sets generated by the other

models.

This outcome should be concerning for researchers who employ the IO, DO, or

Integration models. It is not to say that those models are without merit—the parameters

provided by a fitting exercise may be informative for interpreting the outcome of an

experimental manipulation or relationship with a psychometric variable. However, it does

seem that those models can not be meaningfully adjudicated among using model fit. Of

course, there may be constraints beyond the very few employed here in which those models

can be successfully differentiated, though we see no obvious way of determining what those

constraints might be.

Model identifiability. Figure 19 shows the target-operating characteristics for

the DO, Integration, and Ensemble models under a variety of parameter values for µT and

ρ0. In the upper panels, the signal and noise distributions are assumed to have equal

variance, and the correlation among all array members is the same, regardless of whether

they are distractors or the target. In the bottom panels, the variance of the signal

distribution is allowed to vary across individual ROC functions, and the correlation between

the target and the distractors differs from the correlation among the distractors themselves.

All of the TOCs within each panel of Figure 19 are constrained to have the same

ending point. The goal of this exercise is to evaluate whether there is a unique TOC for

each set of distribution parameters; a prerequisite for this comparison is that those TOCs

end at the same point.

For both the DO and Integration models, it can be seen that different combinations

of parameters yield different TOCs that nonetheless end at the same point. However, this
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is not true for the ensemble model. In fact, the ending point of the TOC completely

determines the position of the TOC in space, and that TOC can be reached via an infinite

combination of distribution parameters. This is shown in the rightmost panels of Figure 19

for four different combinations of parameters. This outcome reveals that TOCs (and ROCs

more generally) are an inadequate tool for estimating parameters within the ensemble

model, and that the Ensemble model will need to be augmented with additional constraints

to render it identifiable.

Model viability. The lessons from model comparison are sobering. None of the

models have completely salutary characteristics. The DO and Integration models exhibit

worrisome flexibility, a fact that compromises model comparison within this realm. The

Ensemble model does not produce unique ROCs for each set of parameter values, making

parameter recovery challenging if not impossible.

Theoretical development using these models will have to move beyond comparison

of ROCs, even beyond comparison of combinations of different types of ROCs. Additional

model constraints may be necessary; those constraints might be properly informed by the

domain of study in which the models are being applied. Alternatively, model comparison

using techniques beyond ROC analysis may be beneficial (e.g. Kellen & Klauer, 2014, 2015;

Ratcliff & Starns, 2009)

Software for model fitting

A software package accompanies this paper that is designed to enable use of the

models presented here. The software can be accessed at:

https://github.com/herulor/unforcedChoice. In this section we provide an overview of that

software with guidance for its use in practical settings. The software has two purposes,

though it has the potential for expansion to meet the demands of future users.

For model exploration, the user can enter model parameters and visualize

target-operating characteristics (TOC), identification-operating characteristics (IOC), and

https://github.com/herulor/unforcedChoice
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Figure 18

Analysis of model mimicry
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Note. Two data sets were generated for each of the models (IO, DO, Integration, Ensemble). In the equal

variances data set, the distribution parameters were µ = 1, σT = 1, ρ0 = ρ1 = .2. In the unequal variances

data set, they were µ = 1, σT = 1.1, ρ0 = .22, ρ1 = .2. The distributions were assumed to satisfy the relation

ρ1 = ρ0/σT . Free estimation indicates no constraints on parameter estimation. Restricted structure indicates

that ρ1 was not estimated and its relation with ρ0 and σT was used to inform estimation and compute its

implied value. Fixed variance estimation was computed assuming that the value of σT was known in addition

to the structural information about correlations. The ∗ on some of the right panel tiles indicates where the

probability of observing a χ2 value under the null hypothesis as large as the one that was found is smaller

than 0.2.
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Figure 19

Analysis of model identifiability using TOCs
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Note. TOCs for different combinations of model constraints, model parameters, and specific model. The

left column shows the TOCs from the DO model, the middle column from the Integration model, and the

right column from the Ensemble model. For each decision model, the upper panel shows TOCs for an

equal-variance model with an equivalent correlation across array members. The bottom panel shows TOCs

for models with unequal variance and a differential correlation between target and distractors as between

distractors themselves. Parameter values for the four TOCs within each panel and indicated in the right

side of each panel.
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ensemble-operating characteristics (EOC) for all of the models presented in this paper.

These different forms of the receiver-operating characteristics are presented in an earlier

section in this paper. In addition, when criterion are specified by the user, HR, FAR, and

Rejection Rates are also provided. The user also has the choice between working with the

restricted versions of the models presented in the body of this article or the flexible

versions in which variances and correlations among stimuli are free to vary.

For model fitting, the user can enter performance data and estimate model

parameters and fits for any of the models presented in this paper. Again, both the

restricted and flexible versions can be selected among. The software will also generate

model ROCs with the data superimposed in a format similar to the figures presented in

this paper. Those figures can be cut-and-pasted (with appropriate attribution) in other

manuscripts and presentations.

Conclusions

Unforced-choice tasks are a valuable part of the experimentalist’s arsenal, with

strong connections to many important applied scenarios. The recent flurry of theoretical

development in this area is a sign of a maturing field, one that we see in some need of

organization. The framework presented in this paper is an attempt to bring that

organization to models of unforced choice.

We have summarized here the tools for model development and for characterizing

empirical data and model predictions in a manner that respects the approaches currently

being taken and unifies those approaches within well validated principles of signal-detection

theory. As part of that development, all of the models have been laid out in a relatively

unconstrained form throughout the Appendices, yielding more flexible versions than those

that have been worked with to date. Those models can be additionally constrained to yield

new variants.

The major models summarized here all appear to have serious flaws. These flaws
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would not have been evident without the derivations that follow from the multivariate

framework. Model comparison is undermined by the ability of some models (DO,

Integration) to mimic others. Parameter estimation is undermined by the unidentifiability

of others (Ensemble). New techniques, new models, or new constraints may be needed to

move forward in this domain, and it is out hope that the framework presented here can aid

researchers in that quest.
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Appendix A

Admissible covariance structures of n-alternative choice tasks

Formulating models of signal detection starts with assumptions about the distributions of

evidence. In multivariate models, these assumptions are primarily captured in the nature

of the variance-covariance matrix. The covariance structure is neither arbitrary nor it is

completely constrained by theoretical assumptions. Here we start with rudimentary

assumptions that are intended to be noncontroversial and show that the structure can be

considerably constrained quite easily.

Under the assumption that events of a common type (either signal or noise) are

drawn from a common distribution, the first restriction on admissible covariance structures

Σn×n is that variances of events drawn from the same population are equal. Moreover,

because the variance of the noise population is always one, all entries in the diagonal of

Σn×n corresponding to a noise ensemble should be 1. Also note that relaxing the

assumption of independence of a set of variables within a multivariate normal distribution

is equivalent to allowing their correlations to differ from zero. We seek to identify how this

correlation matrix can be constrained in a principled way. The main substantive

consideration that guides the following discussion is that stimuli drawn from the same

population are thought of as essentially the same.

Here, we present several means of formalizing this concept and show that each of

these approaches leads to the same means of constraining the structure of Σn×n. The

primary statistical vehicle for this work is the concept of exchangeability, whereas the

primary theoretical consideration is the notion of selective influences. Under the

constraints that follow from these varied approaches, the remaining Appendices present

derivations for the unrestricted versions of the models (in which variances and covariances

can vary) and the restricted versions of the models (in which signal and noise variance are

assumed to be equal and a common covariance among all evidence types is assumed) that

are discussed in the body of the paper.
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Selectivity

It is natural to assume that for an n-alternative unforced choice task, the evidence

elicited by each of the n stimuli is selectively influenced by the population to which each

belongs. This assumption gives the most general interpretation of essentially the same: the

definition of selective influences (Dzhafarov & Gluhovsky, 2006; Schweickert, Fisher, &

Kyongje, 2012) states that the distribution of the evidence for each of the stimuli can be

represented as some function of (pi, Ui, C) for each i = 1, . . . , n, where pi ∈ {S,N} indicates

which population the i-th stimulus belongs to (signal or noise, respectively), and all Ui and

C are independent random variables (or vectors) whose distribution does not depend on pi.

Under the assumption of (multivariate) normality of the distributions of the evidence

elicited, without loss of generality, each Ui, i = 1, . . . , n, can be taken to be standard

normal and C to be multivariate normal, of some dimensionality. The variables Ui capture

the variability unique to each of the i = 1, . . . , n stimuli and the vector C constitutes the

source of any common variability among them.

The consequences of selectivity on the joint distributions of evidence are that, for

any two stimuli i, j, the joint bivariate normal distribution of their evidence (θi, θj) has

parameters µ(pi), σ(pi), µ(pj), σ(pj), and ρ(pi, pj), and that ρ(pi, pj) can be written as

ρ(pi, pj) =
m∑
k=1

ak(pi)ak(pj), (51)

for some m ≥ 1, where the functions ak are subject to

m∑
k=1

a2
k(x) ≤ 1 (52)

(Kujala & Dzhafarov, 2008). Note that the functions µ(.) and σ(.) can be chosen with

additional constraints µ(N) = 0 and σ(N) = 1, consistent with standard approaches in

signal detection theory. Expressions (51) and (52) together are a necessary and sufficient

condition for selectivity of the populations upon the evidence elicited when all target

stimuli have the same normal distribution with mean µT and variance σ2
T and, analogously,
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all noise stimuli have the same standard normal distribution (Propostitions 1 and 2, Kujala

& Dzhafarov, 2008).

The form of the functions in Expression (51) means that the distribution of

evidence for stimuli from the same distribution must all have the same (normal)

distribution, and that the covariance structure for an array of n stimuli in an n-alternative

unforced-choice task must satisfy the following structure

ΣSI
n×n =

 σ2(p1) σ(p1)ρ(p1, N)~1ᵀ
n−1

σ(p1)ρ(p1, N)~1n−1 (1− ρ(N,N))I(n−1)×(n−1) + ρ(N,N)~1n−1~1ᵀ
n−1

 (53)

where the superscript SI indicates that the variables representing the evidence are

selectively influenced by their respective population, signal or noise, and where

ρ(N,N) ≥ 0. That is, the correlation of evidence across all samples of noise stimuli is the

same and is non-negative, and the correlation between evidence for the first stimulus (target

or lure) with that of the remaining stimuli is constant. Additionally, if a trial consists of an

array with more than one stimulus from the target population, the correlation between the

evidence of any two of the target stimuli would be the same (ρ(S, S)) and non-negative.

Selectivity has an additional consequence on how the values of ρ(pi, pj) relate to

each other across different combinations of pi and pj. In fact, given the multivariate

normality assumption, it is a criterion for the selectivity of the populations upon the

evidence that does not require finding the functions ak in equation (51). Letting ρpipj

denote the correlation ρ(pi, pj), there are only three different populations that are relevant

to the n-alternative task: ρNN , ρNS = ρSN , and ρSS. The criterion for selectivity

(cosphericity test, Kujala & Dzhafarov, 2008) can be written as

|ρNS(ρNN − ρSS)| ≤
√

1− ρ2
NS

[√
1− ρ2

NN +
√

1− ρ2
SS

]
. (54)

This inequality can only be assessed when the three component correlations are known.

However, a weaker converse that provides a sufficient condition based only on the two

correlations known in Expression (53) can be found if several additional conditions are met.
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If evidence is assumed to follow a multivariate normal distribution, with equal distribution

of evidence within a population, and the covariance matrix of an array containing one

target has the structure from Expression (53) with:

• |ρNS| ≤
√

2
2 , or

• ρNN ≤
√

2
2 and

√
2

2 ≤ |ρNS| ≤ cos
(

1
2 arccos ρNN

)
, or

• ρNN ≥
√

2
2 and

√
2

2 ≤ |ρNS| ≤ cos
(

1
2 arcsin ρNN

)
,

then the evidence elicited by each stimulus is selectively influenced by the population to

which it belongs. To prove this statement we note that, after algebraic manipulation, the

inequality in Expression (54) is equivalent to

max (|2 arcsin ρNS ± arcsin ρNN ∓ arcsin ρSS|) ≤ π. (55)

From Expression (55)7, the regions described above are easily derived, and are shown in

Figure A1. The main practical consequence of this result is that, provided the regular

assumptions of multivariate normal distribution of evidence and equal distribution evidence

for all stimuli from the same population, one can safely conclude that the population

selectively influences the evidence in the task when the evidence from the same population

is exchangeable (as defined below) with very mild restrictions on the correlations within

and across populations.

Exchangeability

From a statistical perspective, without assuming independence, the most restrictive

interpretation of essentially the same is that the variables representing the evidence for

7 This expression is a special case of the well known CHSH (Clauser-Horne-Shimony-Holt) inequalities for

contextuality in quantum mechanics. The relation of this type of set of inequalities with selective influences

in the psychological literature and with a more general theory of contextuality can be found in Dzhafarov,

Cervantes, and Kujala (2017), Dzhafarov and Kujala (2012, 2014), Dzhafarov, Kujala, and Cervantes

(2016), and Dzhafarov, Kujala, Cervantes, Zhang, and Jones (2016).
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Figure A1

Selectivity regions for ρNN and ρNS
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Note. The shaded regions show the values of ρNN and ρNS for which it is possible to affirm that the

evidence elicited by each stimulus in the n-alternative choice task is selectively influenced by the

population to which each belongs. The rectangle bounded by red dashed lines and the margin of

the figure indicates a region where the value of ρNS is sufficient. Both values of ρNS and ρNN need

to be considered in the adjacent regions. Values outside the shaded area indicate that nothing can

be affirmed about selectivity without additional knowledge of ρSS . See the text for the functions

that delimit these regions.
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stimuli from the same population are exchangeable. Intuitively, a set of exchangeable

random variables is one in which, if someone replaced one variable with another within the

set, or if one stimulus was replaced by another from the same population, one would not be

able to identify, in the long run, that a change occurred. Probabilistically, this means that

the joint distribution is unchanged by any permutation of the random variables; that is, if

{X1, . . . , Xn} is a set of exchangeable random variables and F is their joint distribution

function, then for any permutation π of the variables, F (π(~xn)) = F (~xn). Formally, the

definition of exchangeability involves infinite sequences of random variables. In addition to

the symmetry with respect to permutations just mentioned, if there exists a sequence of

variables {Y }∞i=1 such that for every m the variables {Y1, . . . , Ym} are

permutation-symmetric, and such that {Y1, . . . , Yn} have the same distribution as

{X1, . . . , Xn}, then the variables {X1, . . . , Xn} are exchangeable (see Section 5.3.1 of Tong,

1990).

In the present case, with multivariate normally distributed evidence,

exchangeability simply requires that, in addition to the same mean and variance, any two

variables from the same population have the same (non-negative) correlation (Theorem

5.3.1, p. 112, Tong, 1990). Within TA arrays, all stimuli are drawn from a common

population and exchangeability implies that

Σn×n = (1− ρNN)In×n + ρNN~1n~1ᵀ
n,

where ρNN is the common correlation among fillers.

For TP arrays, the filler items are exchangeable but the target is not exchangeable

with the fillers. Taken together, this pair of assumptions implies a covariance matrix in

which

Σn×n =

 σ2
T σTρNS~1ᵀ

n−1

σTρNS~1n−1
[
(1− ρNN)I(n−1)×(n−1) + ρNN~1n−1~1ᵀ

n−1

]
,


where σT is the variance of the target population and ρNS is the correlation between the

target and any filler.



MODELS OF UNFORCED CHOICE 72

We can parametrize both covariance matrices within a single expression by letting

ρ0 = ρNN , and setting σ1 = 1 and ρ1 = ρNN for TA arrays and σ1 = σT and ρ1 = ρNS for

TP arrays:

ΣEW
n×n =

 σ2
1 σ1ρ1~1ᵀ

n−1

σ1ρ1~1n−1 (1− ρ0)I(n−1)×(n−1) + ρ0~1n−1~1ᵀ
n−1

 (56)

where the superscript EW indicates that the variables representing the evidence are

exchangeable only within their respective population (signal or noise).

More restrictive special cases of this covariance structure are found by making the

correlation between all variables the same (that is, by setting ρ1 = ρ0), or by assuming

equal variances for both populations, hence making σT = 1. Under both restrictions, the

covariance matrix simplifies to

ΣAE
n×n = (1− ρ0)In×n + ρ0~1n~1ᵀ

n, (57)

where AE stands for all variables having equal variance and covariance, which provides the

structure for the restricted models presented in the body of the paper. For these models,

selectivity is assured whenever the common correlation (and covariance, since variances all

equal 1) is less than
√

3/4, and needs to be further investigated otherwise.

Next, we introduce some additional substantive considerations on how the

covariance structure may be restricted by looking at two important special cases of

selective influences.

Partitioning of correlations into independent sources

It is a consequence of the definition of covariance that any two variables X and Y

can be rewritten as the sum of three independent variables C, UX , and UY , where C

captures all the common variability of X and Y . Note that the specific C depends on both

X and Y . One alternative instantiation of selectivity is that the same unidimensional

source of common variability C is shared by all evidence coming from stimuli of the same
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population, such that, conditioned on any value of C = c, all memory traces are

independent. This framing is illustrated in Figure A2.

Figure A2

Variance decomposition into common and unique sources

UX1
UX2

UX3

X1 X2

X3

C1,2

C2,3C1,3

C1,2,3

Note. Illustration of the decomposition of the variance of three variables (X1, X2, and X3) into

variances from shared sources (C1,2, C2,3, C1,3, and C1,2,3) and unique variance (UX1 , UX2 , and

UX3). The variance of the common source C1,2,3 is shared by the three variables X1, X2, and X3;

variances of common sources Ci,j are shared by each pair Xi and Xj only. Only if all three, C1,2,

C2,3, and C1,3, are the null set, is it possible to comprehensively model the three variables, X1, X2,

and X3, with a single common variance component.

If we assume that the evidence from the same population can be decomposed as

having a single source of variance C, then one can write each evidence variable as:

θi = µ∗pi
+ C + Ui

with variance given by

σ2
CS = Var(C) + Var(Ui),

where CS indicates that this variance has the same common source for any two variables.

Note that this decomposition implies that the sources of unique variance for evidence from
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the same population must have the same variance, i.e., that Var(Ui) = Var(Uj), for any two

θi, θj from the same population. For any two samples of evidence from the same

population, the covariance is

Cov(θi, θj) = Cov(C + Ui, C + Uj)

= Var(C);

hence, their correlation is

Cor(θi, θj) = Var(C)
σ2

CS
.

That is, if we assume this particular decomposition, then all pairwise sets of evidence

drawn from a common population must have the same common correlation, and their

corresponding variables are symmetric to permutations (as defined above). This

decomposition in combination with symmetry to permutations is equivalent to the

condition of exchangeability of evidence from the same population (Proposition 5.3.1, Tong,

1990), and it satisfies the definition of selectivity where the evidence can be written as

θi = σ∗(pi) [C0 + I(pi)C1 + (1− I(pi))C2 + Zi] + µ∗(pi),

where C0, C1, C2, and Zi, i = 1, . . . , n, are independent standard normally distributed

random variables, and I(·), µ∗(·), and σ∗(·) are functions of the population with

I(N) = 1− I(S) = 1, σ∗(N) =
√

1/3, σ∗(S) =
√
σ2

T/3, µ∗(N) = 0, and µ∗(S) = µT .

This approach yields the same covariance structure as discussed in the

Exchangeability subsection, and also provides a further means to explore the nature of the

constraint on the covariance matrix.

Additional constraints on the covariance matrix from the

independent-dependent sources formulation

There are two conceptual possibilities with respect to the question of shared

variance across signal and noise populations. The simplest possibility is that the variance
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shared by evidence within each population equals the variance shared by all evidence

across populations—that is, across noise and signal populations, as shown in Figure A2. In

that case, because the variance of the noise distribution is 1, the correlation between noise

events is

ρ0 = Cor(θFi
, θFj

) = Var(C),

the correlation between target events with standard deviation σT is

Cor(θTi
, θTj

) = Var(C)
σ2
T

= ρ0

σ2
T

,

and the correlation between a noise stimulus (filler) and a signal (target) is

ρ1 = Var(C)
σT

= ρ0

σT
.

The alternative scenario is one in which variance is shared within a population of

events but not across those populations. In that case, there are three additional

possibilities, depending on which class of stimuli shares additional variance among their

members than what they also share with the members of the other class. Let us denote as

CFF the variance shared by fillers but not between fillers and targets, and as CTT the

variance shared by targets but not by targets and fillers. The outcomes of these competing

possibilities for the source of covariance are shown in Table A1.

Table A1

Possible sources of covariance within and between populations of events

All variance is common Some additional variance within type of stimuli

CFF = 0 and CTT = 0 CFF = 0 and CTT > 0 CFF > 0 and CTT = 0 CFF > 0 and CTT > 0

Cov(θTi
, θFj

) ρ0 ρ0 ρ0 − CFF ρ0 − CFF

Cov(θTi
, θTj

) ρ0 ρ0 + CTT ρ0 ρ0 + CTT − CFF

In all, if one assumes that all samples of evidence share the same common source of

variance as the fillers, then all off-diagonal elements of Σn×n are the same, and the matrix
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is parametrized as

ΣCS
n×n =

 σ2
1 ρ0~1ᵀ

n−1

ρ0~1n−1
[
(1− ρ0)I(n−1)×(n−1) + ρ0~1n−1~1ᵀ

n−1

]
. (58)

It is worth to emphasize that the matrix ΣCS
n×n is a covariance matrix. That is,

although ρ0 is the correlation among fillers, expression (58) indicates that its value equals

the covariance, not the correlation, between fillers and targets under the assumption of a

single common source of shared variance. Hence, the assumption of a single common source

of variance accounting for all correlations regardless of the population of origin implies a

very specific relationship between the correlation of the target with the fillers. This

correlation must equal the ratio between the correlation among fillers and the variance of

the target population.

Factor analytical decomposition

A more general approach to formalize the common sources of variation introduced

in the previous section is through the lens of factor analysis. Factor analysis decomposes a

covariance matrix into a (smaller) set of common factors, such that each of the variables

can be expressed as a linear combination of the factors plus a unique independent residual.

A covariance matrix is perfectly factorizable if all off-diagonal elements are perfectly

reproduced by the quadratic form of the factor loadings and the factors’ covariance matrix.

If the number of factors is not smaller than the number of variables whose covariance

matrix is factor analyzed, any covariance structure is (trivially) perfectly factorizable.

Most reasonably, we should expect that the variables representing evidence from the

same population to share a single factor, since it should account for any set size n ≥ 1.

Furthermore, any factor analyzable set of variables, in general, satisfies selective influence

of the set of (experimental, for example) factors that determine the factors (dimensions) of

the analysis: The functions are directly taken from the factor decomposition, whereas the

common and unique factors play the role of C and Ui.
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If one assumes that the population to which each stimulus belongs selectively

influences their corresponding evidence, then the factor weights for all stimuli from the

same population will be the same. It is easy to see that in that case, only a single factor

(dimension) is needed in the factor representation of evidence from the same population.

In this manner, the factor representation of the evidence yields the same constraint of

exchangeability within populations as represented by ΣCS
n×n in Expression (58).

Hence, we see that under all considered approaches the covariance structure given

by expression (56) already gives a reasonably general yet strongly constrained covariance

structure for evidence in n-alternative choice. We will develop the models under this

general structure, and also for the special cases of (1) a single common source of variance

across populations, and (2) of a single common source plus equal variances of both target

and noise populations. For all models, it is worth noting that the expressions for FAR and

RRTA for TA arrays do not change when a more restricted covariance is considered, since

the covariance structure within each population already corresponds to the most restricted

one.
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Appendix B

Forced-choice model

In the n-alternative forced-choice model, the region where the (arbitrarily) first stimulus is

selected is defined by the following inequality:

(
~1n−1 −I(n−1)×(n−1)

)
~θn > ~0n−1, (4: revisited)

where the inequality is read component-wise. We parameterize the means of the target and

noise populations as µ1, with µ1 = µT for TP arrays and µ1 = 0 for TA arrays.

Additionally, since the matrix in (4) represents the differences used to define the MAX rule

used in all models, we notate it as

M(n−1)×n =
(
~1n−1 −I(n−1)×(n−1)

)
(59)

Exchangeability

Under exchangeability within each population, the evidence vector has a

multivariate normal distribution with mean and covariance matrix:

~µn =

 µ1

~0n−1

 (2: revisited)

ΣEW
n×n =

 σ2
1 σ1ρ1~1ᵀ

n−1

σ1ρ1~1n−1
[
(1− ρ0)I(n−1)×(n−1) + ρ0~1n−1~1ᵀ

n−1

]
 (56: revisited)

Thus, the left-hand side of expression (4) has a multivariate normal distribution with mean

vector ~µFC and covariance matrix ΣFC
(n−1)×(n−1):

~µFC = M(n−1)×n~µn = µ1~1n−1 (60)

ΣFC
(n−1)×(n−1) = M(n−1)×nΣEW

n×nM
ᵀ
n×(n−1)

= (1− ρ0)I(n−1)×(n−1) + (σ2
1 − 2σ1ρ1 + ρ0)~1n−1~1ᵀ

n−1 (61)
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From expression (61), we see that all differences θ1 − θi, i = 2, . . . , n, are identically

normally distributed, with mean µ1 and variance

σ2
FC = σ2

1 − 2σ1ρ1 + 1. (62)

Therefore, all pairs of differences have the same correlation

ρFC =σ
2
1 − 2σ1ρ1 + ρ0

σ2
1 − 2σ1ρ1 + 1 (63)

=σ
2
FC − (1− ρ0)

σ2
FC

. (64)

Therefore, the generic probability of selecting the (arbitrarily) first stimulus in an

n-alternative forced-choice task is given by:

Pr(θ1 − θ2 > 0, . . . , θ1 − θn > 0 |µ1, σ1, ρ0, ρ1)

= Pr(θ2 − θ1 < 0, . . . , θn − θ1 < 0 |µ1, σ1, ρ0, ρ1)

= Pr(θ2 − θ1 + µ1 < µ1, . . . , θn − θ1 + µ1 < µ1 |µ1, σ1, ρ0, ρ1)

= Pr
(
Z1 <

µ1

σFC
, . . . , Zn−1 <

µ1

σFC

∣∣∣∣∣µ1, σ1, ρ0, ρ1

)

=
∫ ∞
−∞

ϕ(x)
n−1∏
i=1

[
Φ
( µ1
σFC

+√ρFCx√
1− ρFC

)]
dx

=
∫ ∞
−∞

ϕ(x)

Φ


µ1
σFC

+
√

σ2
FC−1+ρ0
σ2

FC
x√

1− σ2
FC−1+ρ0
σ2

FC



n−1

dx

=
∫ ∞
−∞

ϕ(x)
Φ
 µ1√

1− ρ0
+

√√√√σ2
1 − 2σ1ρ1 + ρ0

1− ρ0
x

n−1

dx.

(65)

The fifth line in (65) follows from Equation (8.3.1) in Tong (1990, p. 193), provided that

ρFC is non-negative. As shown in the first row of Table A1, the covariance term σ1ρ1 of

matrix ΣEW
n×n is less or equal to ρ0; hence,

σ2
1 − 2σ1ρ1 + ρ0 ≥ σ2

1 − ρ0.

The right-hand side is non-negative whenever σ1 ≥ ρ0. In most practical cases, it has been

observed that the target variability is no smaller than the noise variability, that is, σ2 ≥ 1.
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Hence, the non-negativity condition is always satisfied for TA arrays under the

exchangeability assumptions, and is expected to also hold for TP arrays in most

applications. Moreover, it should be noted that the correlation ρFC does not depend on the

set size n. However, a correlation matrix with a common negative correlation among all

variables must have correlations no smaller than − 1
n−1 . If ρFC is negative, then there exists

some n such that ρFC < − 1
n−1 . Therefore, if in any practical application it is feasible that

ρFC < 0, then one must reject the assumption of exchangeability of the evidence within

populations.

We can specify expression (65) to compute the Hit and False alarm rates as:

HR =
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ0

+
√
σ2 − 2σρ1 + ρ0

1− ρ0
x

)]n−1

dx (66)

and

FAR =
∫ ∞
−∞

ϕ(x)
[
Φ
(√

1− 2ρ0 + ρ0

1− ρ0
x

)]n−1

dx

=
∫ ∞
−∞

ϕ(x) [Φ(x)]n−1dx

= 1
n
,

(67)

where the last step is completed by noting that

d

dx
[Φ(x)]n = nϕ(x) [Φ(x)]n−1 .

Restricted cases

The HR expressions for the case in which a single common source of variance

accounts for all the covariance among the evidence is obtained by replacing ρ1 with ρ0/σ

Thus, for a single common source, the HR simplifies to:

HR =
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ0

+
√
σ2 − ρ0

1− ρ0
x

)]n−1

dx, (68)

and for the case with a single common source of variance and with equal variances across

populations (setting σ = 1), the HR is:

HR =
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ0

− x
)]n−1

dx. (69)
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Equation (69) has been derived from independence by Elliot (cited by Hacker &

Ratcliff, 1979). A simple change of variables in expressions (66)–(69) reveals that it is

impossible to identify whether the evidence is uncorrelated or not by exclusively using a

forced-choice design.
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Appendix C

Dependent (and Independent) Observations model

The regions corresponding to the decisions to reject the lineup and to choose the

(arbitrarily) first stimulus in a lineup can be written as:

In×n ~θn < c~1n, (15: revisited)

and  1 ~0ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 c

~0n−1

, (16: revisited)

respectively. Note that the matrix used for the rejection region is the identity matrix, In×n,

and that the matrix that defines the selection of the first stimulus can be written as:

Dn×n =

 ~eᵀ1,n

M(n−1)×n

, (70)

where ~e1,n is the vector with all but the first coefficient equal to zero, and M(n−1)×n as

defined in (59).

Exchangeability

Under exchangeability within each population, the evidence vector has a

multivariate normal distribution with mean and covariance matrix:

~µn =

 µ1

~0n−1

 (2: revisited)

ΣEW
n×n =

 σ2
1 σ1ρ1~1ᵀ

n−1

σ1ρ1~1n−1
[
(1− ρ0)I(n−1)×(n−1) + ρ0~1n−1~1ᵀ

n−1

]
 (56: revisited)

By the general assumptions of the models, the correlations among the fillers are all

equal to ρ0 and the correlations between each filler and the target are all equal to ρ1.

Therefore, we can write them as ρ0 = λjλk and ρ1 = λ1λj, for j, k = 2, . . . , n, with

λ1 = ρ1/√ρ0 and λj = √ρ0, j = 2, . . . , n. Based on this decomposition of the correlations, we
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can find the general expression for the probability of rejecting the lineup under the

Dependent Observations model as follows:

Pr(Reject) = Pr(θ1 < c, . . . , θn < c)

= Pr(θ1 − µ1 < c− µ1, θ2 < c, . . . , θn < c)

=
∫ ∞
−∞

ϕ(x) Φ
 (c−µ1)/σ1 + λ1x√

1− λ2
1

 n∏
j=2

Φ
 c+ λj√

1− λ2
j

dx
=
∫ ∞
−∞

ϕ(x) Φ
√ρ0(c− µ1)
σ1

√
ρ0 − ρ2

1

+ ρ1√
ρ0 − ρ2

1

x

[Φ( c√
1− ρ0

+
√

ρ0

1− ρ0
x

)]n−1

dx

(71)

The third line in (71) follows from Equation (8.2.13) in Tong (1990, p. 193), provided that

|ρ1| ≤
√
ρ0. As discussed in the “Exchangeability” section of Appendix B regarding the

non-negativity of ρFC, the condition |ρ1| ≤
√
ρ0 is satisfied under the exchangeability

assumption.

For TP arrays, expression (71) specifies the Rejection rate:

RRTP =
∫ ∞
−∞

ϕ(x)Φ
√ρ0(c− µT )
σ
√
ρ0 − ρ2

1

+ ρ1√
ρ0 − ρ2

1

x

×
[
Φ
(

c√
1− ρ0

+
√

ρ0

1− ρ0
x

)]n−1

dx.

(72)

For TA arrays the rejection rate becomes

RRTA =
∫ ∞
−∞

ϕ(x)
[
Φ
(

c√
1− ρ0

+
√

ρ0

1− ρ0
x

)]n
dx. (73)

With respect to the calculations for the probabilities of choosing the (arbitrarily)

first stimulus, we note that

Dn×n~θn

has a multivariate normal distribution with mean and covariance matrix:

~µDC = Dn×n~µn = µ1~1n, (74)
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and

ΣDC
n×n = Dn×nΣEW

n×nD
ᵀ
n×n

=

 ~eᵀ1,n

M(n−1)×n

ΣEW
n×n

(
~e1,n Mᵀ

(n−1)×n

)

=

 σ2
1 (σ2

1 − σ1ρ1)~1ᵀ
n−1

(σ2
1 − σ1ρ1)~1n−1 ΣFC

(n−1)×(n−1)

. (75)

We note further that the covariances in the first row and column of matrix ΣDC
n×n

can be written

σ2
1 − σ1ρ1 = ρDCσ1

√
σ2

1 − 2σ1ρ1 + 1,

where ρDC is the corresponding correlation. Thus, we see that the correlations in the first

row and column of the correlation matrix implied by ΣDC
n×n are:

ρDC = σ1 − ρ1√
σ2

1 − 2σ1ρ1 + 1
. (76)

The other correlations in the matrix equal ρFC as defined in expression (63). From these

two expressions, we can express the correlations as ρDC = λDCλFC and ρFC = λ2
FC with

λDC = σ1 − ρ1√
σ2

1 − 2σ1ρ1 + ρ0

and λFC = √ρFC. Thus, we can use Equation (8.2.13) from Tong (1990), as in the

computation of the Rejection rate in expression (71), to obtain the generic probability of

choosing the first stimulus in a lineup under the Dependent Observations model. Its
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expression is

Pr(Selection) = Pr(θ1 > c, θ1 − θ2 > 0, . . . , θ1 − θn > 0)

= Pr(−θ1 < −c, θ2 − θ1 < 0, . . . , θn − θ1 < 0)

= Pr(µ1 − θ1 < µ1 − c, θ2 − θ1 + µ1 < µ1, . . . , θn − θ1 + µ1 < µ1)

=
∫ ∞
−∞

ϕ(x) Φ
 (µ1−c)/σ1 + λDCx√

1− λ2
DC

Φ
 µ1√

1− ρ0
+

√√√√σ2
1 − 2σ1ρ1 + ρ0

1− ρ0
x

n−1

dx

=
∫ ∞
−∞

ϕ(x) Φ

√
σ2

1 − 2σ1ρ1 + ρ0(µ1 − c)

σ1

√
ρ0 − ρ2

1

+ σ1 − ρ1√
ρ0 − ρ2

1

x

×
Φ
 µ1√

1− ρ0
+

√√√√σ2
1 − 2σ1ρ1 + ρ0

1− ρ0
x

n−1

dx

(77)

Expression (77) particularizes into the HR of the Dependent Observations model for

TP arrays as

HR =
∫ ∞
−∞

ϕ(x) Φ
√σ2 − 2σρ1 + ρ0(µT − c)

σ
√
ρ0 − ρ2

1

+ σ − ρ1√
ρ0 − ρ2

1

x

×
[
Φ
(

µT√
1− ρ0

+
√
σ2 − 2σρ1 + ρ0

1− ρ0
x

)]n−1

dx

, (78)

and the FAR for TA arrays as:

FAR =
∫ ∞
−∞

ϕ(x) Φ
(
−c
√
ρ0

+
√

1− ρ0

ρ0
x

)
[Φ(x)]n−1 dx (79)

Restricted cases

If we assume that the same shared variance is shared among all evidence, we may

replace ρ1 by ρ0/σ in the expressions above. If, in addition, we assume equal variances, we

can further simplify the expressions by replacing σ with 1.

For the case with the same shared variance, the Rejection rate for TP arrays and
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the HR reduce to:

RRTP =
∫ ∞
−∞

ϕ(x)Φ
(
c− µT√
1− ρ0

+
√

ρ0

1− ρ0
x

)
×

[
Φ
(

c√
1− ρ0

+
√

ρ0

1− ρ0
x

)]n−1

dx,

(80)

HR =
∫ ∞
−∞

ϕ(x) Φ
√σ2 − ρ0(µT − c)√

ρ0(1− ρ0)
+ σ − ρ0/σ√

ρ0(1− ρ0/σ2)
x

×
[
Φ
(

µT√
1− ρ0

+
√
σ2 − ρ0

1− ρ0
x

)]n−1

dx

=
∫ ∞
−∞

ϕ(x) Φ
√σ2 − ρ0(µT − c)√

ρ0(1− ρ0)
+ σ2 − ρ0√

ρ0(1− ρ0)
x

×
[
Φ
(

µT√
1− ρ0

+
√
σ2 − ρ0

1− ρ0
x

)]n−1

dx.

(81)

Only the HR simplifies yet further when we additionally assume equal variances for

both populations. In this case, the HR becomes:

HR =
∫ ∞
−∞

ϕ(x) Φ
(
µT − c√

ρ0
+
√

1− ρ0

ρ0
x

)
×

[
Φ
(

µT√
1− ρ0

+ x

)]n−1

dx.

(82)

The derivations for the independent observations model (in which the covariances

across items are assumed to be 0) are presented in the body of the paper.
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Appendix D

Integration model

The rejection region for the Integration model is defined by the projection on a

unidimensional subspace. It represents the sum of all evidence, which is straightforward to

present in matrix notation as:

~1ᵀ
n
~θn < c. (30’)

The region where the (arbitrarily) first stimulus is chosen is given by 1 ~1ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 c

~0n−1

. (31: revisited)

The matrix that defines the region can be written as

Nn×n =

 ~1ᵀ
n

M(n−1)×n

. (83)

Exchangeability

The rejection rates are very simple to compute because the sum of normally

distributed random variables is (univariate) normally distributed. The mean of their sum is

the sum of the means; hence, it is 0 for TA arrays, and µT for TP arrays. The variance for

TA arrays is

n [1 + (n− 1)ρ0] ,

and for TP arrays is

σ2
IN = σ2 + (n− 1)[1 + 2σρ1 + (n− 2)ρ0] (84)

Therefore, the expressions for the RR are given by

RRTP = Φ
 c− µT√

σ2 + (n− 1)[1 + 2σρ1 + (n− 2)ρ0]

 (32: revisited)

RRTA = Φ
 c√

n [1 + (n− 1)ρ0]

 (33: revisited)
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For the probability of selecting the (arbitrarily) first stimulus, the mean and

covariance matrix of Nn×n~θn are given by:

~µIC = Nn×n~µn = µ1~1n, (85)

and

ΣIC
n×n = Nn×nΣEW

n×nN
ᵀ
n×n

=

σ
2
1 + (n− 1)[1 + 2σ1ρ1 + (n− 2)ρ0] [σ2

1 − (n− 2)(ρ0 − σ1ρ1)− 1]~1ᵀ
n−1

[σ2
1 − (n− 2)(ρ0 − σ1ρ1)− 1]~1n−1 ΣFC

(n−1)×(n−1)

. (86)

As was the case for the Dependent Observations model, it is possible to decompose

the correlations implied by matrix ΣIN
n×n into λIN and λFC, satisfying the requirements of

Equation (8.2.13) of Tong (1990). To facilitate the transparency of this derivation, we shall

use the following additional notation:

σ2
IC = σ2

1 + (n− 1)[1 + 2σ1ρ1 + (n− 2)ρ0],

aIC = σ2
1 − (n− 2)(ρ0 − σ1ρ1)− 1,

aFC = σ2
1 − 2σ1ρ1 + ρ0.

Now, we can compactly express λFC = √ρFC = √
aFC/σFC and λIC = aIC/σIC

√
aFC. To apply

Equation (8.2.13), we need to verify that λ2
IC ≤ 1. Note, however, that λIC depends on n.

Since the condition on λIC needs to be satisfied by any n, we examine its limiting behavior:

lim
n→∞

λIC = (ρ0 − σ1ρ1)2

ρ0aFC
,

which can be shown, after little algebraic manipulation, to be less than 1 if and only if

ρ2
1 ≤ ρ0. Therefore, the generic expression for the probability of selecting the first stimulus
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in a lineup according to the Integration model is:

Pr(Selection) = Pr(
n∑
j=1

θj > c, θ1 − θ2 > 0, . . . , θ1 − θn > 0)

= Pr(−
n∑
j=1

θj < −c, θ2 − θ1 < 0, . . . , θn − θ1 < 0)

= Pr(µ1 −
n∑
j=1

θj < µ1 − c, θ2 − θ1 + µ1 < µ1, . . . , θn − θ1 + µ1 < µ1)

=
∫ ∞
−∞

ϕ(x) Φ
 (µ1−c)/σIC + λICx√

1− λ2
IC

Φ
 µ1√

1− ρ0
+

√√√√σ2
1 − 2σ1ρ1 + ρ0

1− ρ0
x

n−1

dx

=
∫ ∞
−∞

ϕ(x) Φ
√ aFC

σ2
ICaFC − a2

IC
(µ1 − c) +

√√√√ a2
IC

σ2
ICaFC − a2

IC
x

×
[
Φ
(

µ1√
1− ρ0

+
√

aFC

1− ρ0
x

)]n−1

dx.

(87)

Expression (87) particularizes the HR for the Integration model as

HR =
∫ ∞
−∞

ϕ(x)×

Φ
 √

σ2 − 2σρ1 + ρ0(µ1 − c) + (σ2
1 − (n− 2)(ρ0 − σ1ρ1)− 1)x√

(σ2
1 + (n− 1)[1 + 2σ1ρ1 + (n− 2)ρ0])(σ2 − 2σρ1 + ρ0)− (σ2

1 − (n− 2)(ρ0 − σ1ρ1)− 1)2

×
[
Φ
(

µT√
1− ρ0

+
√
σ2 − 2σρ1 + ρ0

1− ρ0
x

)]n−1

dx,

(88)

and the FAR as:

FAR =
∫ ∞
−∞

ϕ(x)Φ
 −c√

n [1 + (n− 1)ρ0]

 [Φ(x)]n−1 dx

= 1
n

Φ
 −c√

n [1 + (n− 1)ρ0]

 .
(35’)
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Restricted cases

For the equal shared variance across populations, the HR simplifies to:

HR =
∫ ∞
−∞

ϕ(x) Φ
 √

σ2 − ρ0(µ1 − c) + (σ2 − 1)x√
(σ2 − ρ0)[σ2 + (n− 1)(1 + nρ0)]− (σ2 − 1)2

×
[
Φ
(

µT√
1− ρ0

+
√
σ2 − ρ0

1− ρ0
x

)]n−1

dx.

(89)

For equal variances and covariances, the HR of the Integration model is:

HR =Φ
 µT − c√

n [1 + (n− 1)ρ0]

×
∫ ∞
−∞

ϕ(x)
[
Φ
(

µT√
1− ρ0

− x
)]n−1

dx,

(32: revisited)
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Appendix E

Ensemble model

According to the Ensemble model, the region where the lineup is rejected can be written as

n
[
In×n −

1
n
~1n~1ᵀ

n

]
~θn ≤ nc~1n. (38: revisited)

We shall see that the matrix that defines the rejection region is particularly important in

computing all probabilities of this model. For m ≥ 1, we define

Km×m =
[
Im×m −

1
m
~1m~1ᵀ

m

]
. (90)

Thus, in particular, the rejection region will be written as nKn×n~θn ≤ nc~1n

The region where the first stimulus is selected isn− 1 −~1ᵀ
n−1

~1n−1 −I(n−1)×(n−1)

 ~θn >

 nc

~0n−1

. (39: revisited)

We shall denote the matrix that defines the region for selecting the first stimulus by

En×n =

n− 1
.... −~1ᵀ

n−1


M(n−1)×n

Exchangeability

The linear combination of the left-hand side of expression (38) has a multivariate

distribution with mean vector and covariance matrix:

µ1

n− 1

−~1n−1

 (91)

ΣNR
n×n = n2Kn×nΣEW

n×nK
ᵀ
n×n

=

(n− 1)[(n− 1)aFC + (1− ρ0)] −[(n− 1)aFC + (1− ρ0)]~1ᵀn−1

−[(n− 1)aFC + (1− ρ0)]~1n−1 n2(1− ρ0)I(n−1)×(n−1) − [(n+ 1)(1− ρ0)− aFC]~1n−1~1ᵀn−1

.
(92)
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In this case, neither Equation (8.3.1) nor (8.2.13) from Tong (1990) can be applied

because all covariances (and hence all correlations) are non-positive. Equation (8.3.1)

requires a common non-negative correlation and Equation (8.2.13) requires a

decomposition that implies that some correlations must be non-negative when n ≥ 3.

Moreover, note that the first row of ΣEW
n×n minus the sum of all other rows equals zero.

Therefore, this covariance matrix is singular, and we will need to compute the relevant

probabilities in a suitable subspace. Figure E1 illustrates the subspace for the case of one

target and one filler together with the density over that subspace.

Figure E1

Illustration of the joint distribution of 2K2×2~θ2

−µT

µT −µT

µT

θT − θF θF − θT

Note. Joint distribution of the transformation of two internal responses for the rejection of the

lineup in the Ensemble model where one stimulus from the noise population (θF ), and one stimulus

from the signal population (θT ) are presented. Dashed lines that run parallel to the axes indicate

the locations of the means of θT − θF , at µT , and of θF − θT , at −µT . The dashed lines show

the location of 0 which indicates the region where one response is larger than the other. The joint

density clearly shows the loss of dimensionality of the transformation by 2K2×2.

In general, the appropriate subspace of nKn×n is easier to identify by using the law
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of total probability for continuous variables to reexpress the probability that the evidence

falls in the rejection area defined in expression (38). We will denote

σE1 = (n− 1)[(n− 1)aFC + (1− ρ0)] (93)

and

K−(n−1)×n =
(
~0n−1 I(n−1)×(n−1)

)
Kn×n,

to write the probability of rejection as:

Pr(nKn×n~θn ≤ nc~1n) =
∫ nc

−∞

1
σE1

ϕ

(
x− (n− 1)µ1)

σE1

)
×

Pr
(
nK−(n−1)×n

~θn ≤ nc~1n−1

∣∣∣nθ1 −
n∑
k=1

θj = x

)
dx.

(94)

That is, we condition on the value of the first evidence variable and based on the law of

total probability recover the complete joint probability by integrating over its values within

the rejection area.

Next, note that nK−(n−1)×n
~θn given nθ1 −

∑n
k=1 θj = x has a multivariate normal

distribution with mean

− x

n− 1
~1n−1

and with covariance matrix

n2(1− ρ0)K(n−1)×(n−1).

We use the generic matrix Km×m to identify the dimension of the subspace and to

find expressions for the probability of rejection in the Ensemble model. Later, we will also

use it to compute the HR and FAR for this model. Note that the trace of Km×m is m− 1

and that the matrix is idempotent—that is, Km×mKm×m = Km×m. Since the matrix is

idempotent, all of its eigenvalues are either 0 or 1, and since its trace is m− 1, precisely

m− 1 of the eigenvalues equal 1. Consequently, the rank of Km×m is m− 1 and a vector of

variables whose covariance matrix is a (scalar) multiple of Km×m is completely described in

a subspace with dimension m− 1. For a multivariate normal distribution whose mean is µm
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and covariance matrix is k2Km×m, for some constant k, the distribution can be written as

kCm×(m−1) ~Zm−1 + ~µm,

where ~Zm−1 is a vector of m− 1 independent standard normally distributed random

variables, and Cm×(m−1) is some matrix of rank m− 1 such that

Cm×(m−1)Cᵀ
m×(m−1) = Km×m. For m = 1, K1×1 = 0 and it is not necessary to find any

matrix to decompose it into, and C1×0 can be left undefined. The Cholesky decomposition

of Km×m allows us to find one such matrix by taking the nonzero columns of the

decomposition; that is

L =
(
Cm×(m−1) ~0m

)

is lower triangular and LLᵀ = Cm×(m−1)Cᵀ
(m−1)×m = Km×m. Now, the Cholesky algorithm

(in which one column is computed at each step) shows that the first column of the

decomposition is 
√

m−1
m

−
√

1
m(m−1)

~1m−1


and that the input matrix for the second step of the algorithm8 is

 1 ~0ᵀ
m−1

~0m−1 I(m−1)×(m−1) − 1
m−1

~1m−1~1ᵀ
m−1


Thus, we see that the matrix Cm×(m−1) can be written as:

Cm×(m−1) =


√

m−1
m

~0ᵀ
m−2

−
√

1
m(m−1)

~1m−1 C(m−1)×(m−2)

 (95)

8 It may be noted that the algorithm that produces the matrix in the lower right block is the same as the

one used to compute the covariance matrix of a vector of random variables conditioned of the first

component.
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and, in extenso, it is 

√
m−1
m

0 0

−
√

1
m(m−1)

. . .

. . .
√

m−k
m−k+1

−
√

1
(m−k)(m−k+1)

. . . 0

. . .
√

1
2

−
√

1
m(m−1) −

√
1

(m−k)(m−k+1) −
√

1
2



(96)

Therefore, we can construct C(n−1)×(n−2) as in expression (96), taking m = n− 1,

such that

n
√

1− ρ0 C(n−1)×(n−2) ~Zn−1 −
x

n− 1
~1n−1, (97)

where ~Zn−1 are independently distributed standard normal variables, have the same

distribution as nK−(n−1)×n
~θn conditioned on nθ1 −

∑n
k=1 θj = x. Based on expression (97),

we can compute

Pr
(
nK−(n−1)×n

~θn ≤ nc~1n−1

∣∣∣nθ1 −
n∑
k=1

θj = x

)
=

∫ b1

a1
· · ·
∫ bk

ak

· · ·
∫ bn−1

an−1

n−2∏
j=1

ϕ(zj) d~zn−2,

(98)

where

b1 =
√
n− 1
n− 2

[
c√

1− ρ0
+ x

n(n− 1)
√

1− ρ0

]

bk =

√
n− k

n− k − 1

 c√
1− ρ0

+ x

n(n− 1)
√

1− ρ0
+
k−1∑
j=1

√
1

(n− j)(n− j − 1)zj

 ,
k = 2, . . . , (n− 2)

(99)

and

ak = −(n− k − 1)bk, k = 1, . . . , (n− 2). (100)

By replacing expression (98) into (94), and and by a change of variables, we obtain
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that the generic expression for the Rejection rates is:

Pr(Reject) =
∫ b0

a0

∫ b1

a1
· · ·
∫ bk

ak

· · ·
∫ bn−2

an−2
ϕ(x)

n−2∏
j=1

ϕ(zj) d~zn−2dx, (101)

where the limits of integration are:

b0 = nc− (n− 1)µ1

σE1

b1 =
√
n− 1
n− 2

[
nc+ µ1

n
√

1− ρ0
+ σE1x

n(n− 1)
√

1− ρ0

]

bk =
√

n− k
n− k − 1

 nc+ µ1

n
√

1− ρ0
+ σE1x

n(n− 1)
√

1− ρ0
+

k−1∑
j=1

√
1

(n− j)(n− j − 1)zj

 ,
k = 2, . . . , (n− 2),

(102)

and

a0 = −(n− 1)nc+ µ1

σE1

ak = −(n− k − 1)bk, k = 1, . . . , (n− 2).
(103)

To compute RRTP, σ2
E1 becomes (n− 1)[(n− 1)(σ2 − 2σρ1 + ρ0) + (1− ρ0)] for TP

arrays, and to find RRTA, it simplifies to n(n− 1)(1− ρ0).

To derive the Hit and the False Alarm Rates, we proceed similarly. First, we note

that En×n~θn has a multivariate normal distribution with mean vector (104) and covariance

matrix (105) given by

µ1

n− 1

~1n−1

 (104)

ΣNC
n×n =

 σ2
E1

σ2
E1

n−1
~1ᵀ
n−1

σ2
E1

n−1
~1n−1 (1− ρ0)I(n−1)×(n−1) + aFC~1n−1~1ᵀ

n−1

 (105)

Next, we see that M(n−1)×n~θn conditioned on nθ1 −
∑n
j=1 θj = x has a multivariate

distribution with mean
x

n− 1
~1n−1

and covariance matrix

(1− ρ0)K(n−1)×(n−1).
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From the computations for the Rejection Rate above, it is apparent that

M(n−1)×n~θn conditioned on nθ1 −
∑n
j=1 θj = x can be expressed as

√
1− ρC(n−1)×(n−2) ~Zn−2 + x

n− 1
~1n−1 (106)

where ~Zn−2 are independently distributed standard normal variables. Similarly to the

Rejection Rate, we arrive at expression

Pr

M(n−1)×n~θn > ~0n−1

∣∣∣∣∣nθ1 −
n∑
j=1

θj = x

 =
∫ b1

a1
· · ·
∫ bn−2

an−2

n−2∏
j=1

ϕ(zj) d~zn−2 (107)

where

a1 = − x√
(n− 1)(n− 2)(1− ρ0)

ak = −

√
n− k

n− k − 1

 x

(n− 1)
√

1− ρ0
−
k−1∑
j=1

√
1

(n− j)(n− j − 1)zj

 ,
k = 2, . . . , (n− 2)

(108)

and

b1 = (n− 2) x√
(n− 1)(n− 2)(1− ρ0)

bk = −(n− k − 1)ak, k = 1, . . . , (n− 2).
(109)

Thus, after a change of variables, the Hit rate for the Ensemble model is computed

as:

HR =
∫ ∞
a0

∫ b1

a1
· · ·
∫ bn−2

an−2
ϕ(x)

n−2∏
j=1

ϕ(zj) d~zn−2dx, (110)

where

a0 = nc− (n− 1)µT
σE1

a1 = − σE1x+ (n− 1)µT√
(n− 1)(n− 2)(1− ρ0)

ak = −
√

n− k
n− k − 1

 σE1x

(n− 1)
√

1− ρ0
+ µT√

1− ρ0
−

k−1∑
j=1

√
1

(n− j)(n− j − 1)zj

 ,
k = 2, . . . , (n− 2)

(111)

and

bk = −(n− k − 1)ak, k = 1, . . . , (n− 2), (112)
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with σ2
E1 equal to (n− 1)[(n− 1)(σ2 − 2σρ1 + ρ0) + (1− ρ0)] since HR is computed for TP

arrays. The False alarm rate is similarly computed, but with simplified limits of

integration:

a0 = nc√
n(n− 1)(1− ρ0)

a1 = −
√

n

n− 2x

ak = −
√

n− k
n− k − 1

√ n

n− 1x−
k−1∑
j=1

√
1

(n− j)(n− j − 1)zj

 ,
k = 2, . . . , (n− 2)

(113)

and

bk = −(n− k − 1)ak, k = 1, . . . , (n− 2). (114)

Restricted cases

For the restricted cases, the expressions for the Ensemble model change only the

form that the term σE1 takes for the integration limits. For the case of unequal variance

with equal covariance, σ2
E1 reduces to (n− 1)[(n− 1)(σ2 − ρ0) + (1− ρ0), and for equal

variances it further simplifies to n(n− 1)(1− ρ0).


	Author Note
	Abstract
	Models of Unforced Choice
	Multivariate geometry of n-alternative forced-choice
	Structure of the variance-covariance matrix

	Signal detection models of n-alternative unforced choice
	Data structures in unforced choice
	Model parameterization
	Independent-Observations model
	Receiver-operating characteristics

	Models of unforced choice applied to eyewitness identification
	Dependent observations model
	Integration model
	Ensemble model

	Discussion
	Model comparison
	Software for model fitting
	Conclusions
	Selectivity
	Exchangeability

	Partitioning of correlations into independent sources
	Additional constraints on the covariance matrix from the independent-dependent sources formulation

	Factor analytical decomposition
	Exchangeability
	Restricted cases
	Exchangeability
	Restricted cases
	Exchangeability
	Restricted cases
	Exchangeability
	Restricted cases


