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Smaller Is Better (When Sampling From the Crowd Within):
Low Memory-Span Individuals Benefit More From Multiple
Opportunities for Estimation

Kathleen L. Hourihan and Aaron S. Benjamin
University of lllinois at Urbana-Champaign

Recently, Vul and Pashler (2008) demonstrated that the average of 2 responses from a single subject to
general knowledge questions was more accurate than either single estimate. Importantly, this reveals that
each guess contributes unique evidence relevant to the decision, contrary to views that eschew proba-
bilistic representations of the evidence-gathering and decision-making processes. We tested an implica-
tion of that view by evaluating this effect separately in individuals with a range of memory spans. If
memory span is the buffer in which retrieved information is assembled into an evaluation, then multiple
estimates in individuals with lower memory spans should exhibit greater independence from one another
than in individuals with higher spans. Our results supported this theory by showing that averaging 2
guesses from lower span individuals is more beneficial than averaging 2 guesses from higher span
individuals. These results demonstrate a rare circumstance in which lower memory span confers a relative

advantage on a cognitive task.
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Several recent articles have provided strong evidence that there
are probabilistic processes underlying how people estimate values
(Herzog & Hertwig, 2009; Vul & Pashler, 2008). Research in the
estimation literature has examined estimates about Bernoulli
events (e.g., Ariely et al., 2000), estimates of values (Vul &
Pashler, 2008) or of dates (Herzog & Hertwig, 2009; Yaniv &
Milyavsky, 2007), and even estimations of the strength of relation
between two factors (e.g., Hirt & Markman, 1995). Extensive
research in these areas has focused on the fact that averaging
estimates across individuals improves accuracy relative to individ-
val estimates (e.g., Wallsten & Diederich, 2001), but only recently
has research examined the potential benefits of averaging esti-
mates within an individual or how individual differences might
affect any potential benefits.

According to one view, estimates of real-world values (e.g.,
“The area of the USA is what percent of the area of the Pacific
Ocean?”; Vul & Pashler, 2008) are made via a retrieval-inference
cycle (e.g., Brown, 2002), in which three processes are executed
sequentially and iteratively. First, relevant information is retrieved
from memory: if the true value can be retrieved, then the process
terminates. If the true value cannot be retrieved, then related
information is retrieved (the approximate area of the United States,
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the fact that the Pacific Ocean is the largest ocean, etc.), and this
information initiates a plausible inference of the value based on
this information. Finally, the inference is evaluated for its likely
accuracy, and the process either terminates with production of an
estimate, or the cycle begins again with retrieval of additional
information. In this view, information retrieved from memory
serves to set an appropriate range and magnitude for the value to
be estimated.

Similarly, real-world judgments may be made via a probabilistic
mental model (PMM; Gigerenzer, Hoffrage, & Kleinbdlting,
1991). When individuals are faced with a forced choice task (e.g.,
choosing which of two cities has a larger population), Gigerenzer
et al. (1991) proposed that they first attempt to create a local
mental model that contains the correct answer, retrieved from
memory. If retrieval fails, then a PMM is generated to solve the
task with inductive inference. The PMM consists of a reference
class of objects (e.g., the two cities in question in addition to other
related cities) and a variable set of cues, each with an associated
validity. Cues consist of facts relevant to making the choice (e.g.,
whether a city is a capital, presence of an international airport) and
vary in their usefulness for making the choice (cue validity). In
making the choice, the individual generates cues and tests them in
order of cue validity (with cues that are more likely to be useful
generated first); thus, each cue has a certain probability of being
tested. When a valid cue is found, the choice is made on the basis
of that cue; if no valid cue is found, then the choice is considered
to be random.

Research examining how individuals estimate the probability of
an outcome suggests that estimates are based on a covert set of
processes, yielding a latent variable that is perturbed in some
subset of those processes by random error (e.g., Wallsten &
Diederich, 2001; Wallsten & Gonzdlez-Vallejo, 1994). According
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to Wallsten and Gonzilez-Vallejo’s (1994) stochastic judgment
model (SIM), the accuracy with which the validity of a statement
is evaluated depends on the statement itself, the strategic manner
in which an individual searches memory for knowledge relevant to
the statement (cf. Benjamin, 2008), and random variations in how
the individual searches memory. The random element in this
theory represents the fact that individuals may rely on different
underlying knowledge each time a statement is judged and that the
judgments will not always be consistent across estimation oppor-
tunities. In the SIM account, knowledge about the validity of a
statement is represented as a set of relevant evidence and a latent
distribution of corresponding values that information is sampled
from in a probabilistic manner when a person judges the validity of
a fact or estimates a probability. Wallsten and Diederich (2001)
have extended this model to account for the improvements in
accuracy when judgments of different individuals are averaged.

These theoretical perspectives, all of which emphasize probabi-
listic aspects of the stages involved in retrieval and decision
making, suggest that the opportunity to average over multiple
judges or judgments has the potential to increase accuracy. And,
indeed, numerous studies have shown that averaging probability
judgments or estimates across individuals is beneficial (i.e., re-
duces error). This result is known as the “wisdom of crowds”
effect (e.g., Ariely et al., 2000; Hogarth, 1978; Surowiecki, 2004).
When an individual is asked to make a guess about a particular
factual value, the average error of the individual’s response is
greater than the error of the average of the responses of all
individuals in the group (e.g., Wallsten, Budescu, Erev, & Died-
erich, 1997). This occurs when the error of each individual is at
least partially statistically independent of the error of other indi-
viduals, which will always be the case when some of that error is
purely random.

Despite the substantial evidence that averaging estimates across
individuals reduces error, there was, until recently, little evidence
to suggest that such a benefit could be obtained when averaging
estimates within individuals. Ariely et al. (2000) proposed that an
analogous crowd within effect should obtain and would be evi-
denced when the average of two estimates from a single individual
was more accurate than either single estimate on its own. This
would be possible only if estimates were based on information
drawn probabilistically (and in a somewhat independent manner)
from an internal knowledge set. Although they observed the typ-
ical benefit in accuracy when averaging probability estimates
across individuals, Ariely et al. found no benefit to averaging
repeated estimates within individuals.

However, Ariely et al. (2000) averaged responses within indi-
viduals who were providing probability estimates, which generally
tend to be biased toward extreme values. Recent studies have
detected benefits of averaging within individuals when requiring
subjects to estimate non-Bernoulli events, such as values (Vul &
Pashler, 2008) or dates (Herzog & Hertwig, 2009). In these tasks,
averaging two estimates from the same individual should produce
a more accurate value than either estimate on its own to the extent
that the estimates are based on probabilistically drawn samples.
However, if individuals simply use the best information (such as
the most easily simulated outcome; cf. Hirt & Markman, 1995)
when estimating values, then averaging two estimates should not
provide an improvement over the initial (best) estimate.
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Lewandowsky, Griffiths, and Kalish (2009) used an iterated-
learning paradigm to demonstrate that individuals have wise
crowds within. The subjects in Lewandowsky et al.’s study were
required to make a series of predictions in various general-
knowledge domains, for values initially chosen by the experi-
menter, but then randomly selected from a range based on the
subject’s response on the first trial. For example, subjects were
asked to make multiple estimates of the lifespan (i.e.., age at time
of death) of a male given that that male had already reached a
particular age. The set of estimates provided in a given domain was
then used to construct group distributions based on the last 10
estimates in a given series. Lewandowsky et al. found that these
distributions not only differed depending on the particular domain
in question but also closely replicated the shape of the true distri-
bution. Their results indicate that people can appropriately use
their knowledge of prior distributions to make a reasonable esti-
mate, given a particular value. It is important that their results also
indicate that people provide their estimates based on samples
drawn from that known distribution, resulting in the correct dis-
tribution shape when estimating repeatedly: wisdom of the crowd
within.

In their experiment examining the crowd within, Vul and
Pashler (2008) asked subjects to make a guess about a series of
world knowledge facts (e.g., “What percent of the world’s roads
are in India?”), and then unexpectedly asked them to make a
second guess about the same facts either immediately or following
a 3-week delay. They found that the error of the average of
individuals® two guesses was significantly lower than the error
of either guess on its own. This finding suggests that the act of
estimation involves probabilistic sampling of remembered facts
from long-term memory and that repeated estimates each contrib-
ute independent information (i.e., unique facts not previously
retrieved) to the average. The value of averaging two guesses from
the same individual was equivalent to approximately 1.11 (when
the second guess was made immediately following the first) or
1.32 (when the second guess was delayed by 3 weeks) guesses
from independent estimators.

Working Memory and the Estimation Process

One view of how the estimation process takes place is that
individuals sample relevant bits of information (e.g., world knowl-
edge facts) from long-term memory and then compile that infor-
mation into a single estimate. By this view, the probabilistic aspect
of the process lies in the sampling of evidence (i.e., which of many
relevant facts are retrieved) rather than noise in the translation
between evidence and estimate (cf. Wallsten & Diederich, 2001).
Given a particular distribution of knowledge, a single large sample
of information will obviously contain more information than a
single small sample of information. However, when a second
sample is drawn from the same distribution, a small sample is less
likely than a large sample to contain bits of information that
overlap with the information drawn in the first sample, simply
because more information was already sampled the first time with
a large sample. Therefore, two smaller samples should be more
likely to contain information that is independent from one sample
to another, relative to two larger samples, particularly when the
distribution of relevant knowledge is relatively small. We reasoned
that working memory span (e.g., Conway et al., 2005) could be a
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relevant factor in determining the size of the memory sample and
consequently influence the relative independence of an individu-
al’s two guesses in this task. We propose that individuals with
lower memory span should show a greater benefit of averaging,
relative to their population, than individuals with a higher memory
span. Because low-span individuals’ samples should be relatively
smaller, they should be less likely to overlap and therefore con-
tribute relatively more independent knowledge to the average of
the estimates.

Although it is almost invariably the case that “more is better” in
terms of information-processing capacity, we are proposing that
low memory-span individuals benefit more from averaging multi-
ple estimates than do high memory-span individuals. Benefits for
lower memory span have been proposed in other domains as well,
such as language acquisition, decision making, and covariation
detection (Hertwig & Todd, 2003). In the realm of covariation
detection, Kareev (2000; Kareev, Lieberman, & Lev, 1997) pro-
posed that low-span individuals are able to detect large correla-
tions faster than high-span individuals and to make use of that
knowledge sooner. This effect is also based on logic regarding how
memory span affects the size of samples one can consider: Be-
cause the sampling distributions of correlations are skewed,
smaller samples from the population will lead to a more skewed
(more extreme) sample correlation than will larger samples. Low-
span individuals therefore perceive the correlation as more ex-
treme and are thus able to detect it sooner than high-span individ-
vals. However, this effect and the theoretical motivation
underlying it are under debate (e.g., Cahan & Mor, 2007; Juslin &
Olsson, 2005; see also Gaissmaier, Schooler, & Rieskamp, 2006,
for evidence that low- and high-span individuals may be employ-
ing different strategies in correlation detection), so it is uncertain
exactly how memory span might affect covariation detection.

Nevertheless, in a similarly counterintuitive vein, we propose
that low-span individuals will benefit more from averaging two
guesses from the same individual (relative to two guesses from
different individuals) than will high-span individuals. It is impor-
tant to note that we are not predicting any memory span differ-
ences in overall accuracy in estimating the values. If one group has
privileged knowledge that the other group does not, then we would
clearly expect that group to exhibit more accurate estimates in the
first place, but such an effect would be outside the purview of our
theoretical claim. We make no assumptions about the actual
knowledge that each population possesses and can sample from
when collecting relevant knowledge to form an estimate, only that
the amount of knowledge that can be sampled at one time differs
with memory span. We consider below the effects of memory span
on overall estimation accuracy, but we focus on the relation
between memory span and the relative benefit of averaging two
guesses.

We conducted a computer simulation of the effects of memory
span size on averaging two guesses. As detailed in Appendix A,
this simulation generated two guesses based on sampling a finite
memory store. We assumed for the sake of parsimony that the
validity of knowledge does not vary systematically with memory
span (though it does randomly, across individuals) and that the
distributions that govern values drawn from that information base
center approximately on the true (to-be-predicted) values. Given
these assumptions, it is to be expected that larger samples from that
population of knowledge should lead to more accurate single
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estimates and that lower estimation error should be associated with
higher memory span. However, as we demonstrate shortly, the
magnitude of such an effect is predicted to be quite small relative
to the relation between memory span and the benefit provided by
averaging two guesses. This disparity arises because whereas the
first correlation includes the noise introduced by individual differ-
ences in knowledge, the second correlation—which is based on a
within-subject difference score—does not.

The simulation successfully demonstrates that smaller samples
do indeed lead to a relatively greater advantage of averaging of
two guesses, and this result does not depend on any particular set
of assumptions about the relative accuracy of knowledge in indi-
viduals with differing memory spans. Specifically, we found that
the benefit of averaging (relative to the best single guess) corre-
lated negatively with sample size. Thus, our simulation produced
results in line with our prediction: Low-span individuals benefit
more from averaging their own two guesses than do high-span
individuals.

Method

We asked 181 undergraduates at the University of Illinois to
make their best guesses on the same general knowledge questions
used by Vul and Pashler (2008). They were unexpectedly asked to
“make a second, different guess” for each question during the same
1-hr session. Subjects also completed the Automated Operation Span
task (OSPAN; Unsworth, Heitz, Schrock, & Engle, 2005) as a mea-
sure of memory span during the same session. Most (n = 130) of the
subjects made the second guess immediately following the first guess,
whereas some subjects (n = 51) made the first guess at the beginning
of the session and the second guess at the end of the session (with the
OSPAN task and another, unrelated task taking place between
the guesses). This procedural difference did not have any impact on
the data, so it is not examined further. Five subjects were removed
because they failed to follow directions; data from a further six
subjects were removed because their errors on either Guess 1 or Guess
2 were more than three standard deviations from the mean. The mean
square error of the average was computed by first averaging an
individual’s two raw guesses for a particular question and then com-
puting their mean square error for the averaged guesses across the
eight questions (i.e., the mean square error of the average is not simply
the average of mean square error for Guess 1 and mean square error
for Guess 2).

Results

We replicated the result of Vul and Pashler (2008) that the mean
square error of the average of the two guesses from one individual
(M = 484, SE = 18) was lower than the error for either Guess 1
(M =502, SE = 20), 1(169) = 2.15, p = .03, or Guess 2 (M = 565,
SE = 21), 1(169) = 7.89, p << .001. Next, on a per-subject basis,
we selected the lower mean square error of either Guess 1 or Guess
2 to be that subject’s best guess. We then computed the benefit of
averaging by subtracting the mean square error of the average of
Guess 1 and Guess 2 from the mean square error of the best guess
and correlated this benefit with individuals” OSPAN scores. The
result was a significant negative correlation (r = —.16, p << .05),
indicating that as memory span increases, the benefit of averaging
decreases.
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For illustrative purposes, we also conducted a median split
based on OSPAN scores to create low- and high-span groups, and
calculated the number of between-person guesses to which the
average was equivalent for each group (see Appendix B for de-
tails). We found that averaging two guesses within a low-span
individual is equivalent to averaging approximately 1.07 guesses
from different low-span individuals; the same benefit was signif-
icantly lower for high-span individuals: only 1.04 guesses.

Although we made no assumptions about whether knowledge
might differ at various memory span levels, we previously men-
tioned the possibility of a relation between memory span and
estimation accuracy. That is, larger samples are more likely to
yield a mean close to the average of a common distribution than
are small samples. This view thus predicts a negative correlation
between memory span and mean square error on a single guess. To
investigate this possibility in our data, we computed the correlation
between memory span and mean square error on a per question
basis for Guess 1. This correlation was indeed negative for four of
the eight questions, but it was positive for the other four questions,
with none of the correlations exceeding .09 in magnitude. The
average correlation was slightly negative but not significantly
different from 0 (r = —.01).

However, it is important to note that the correlation between
memory span and mean square error includes relatively large
between-subject variance. In contrast, the correlation between
memory span and the benefit of averaging capitalizes on relatively
small within-subject variance because the benefit is a difference
score computed on a per-subject basis. Thus, the observed null cor-
relation may reflect the differential influence of between-subject vari-
ance on these two measures. To assess the validity of these ideas, we
evaluated the two correlations for the simulated data presented in
Appendix A. There one can see that this explanation has merit:
correlations between memory span and mean square error are much
lower in magnitude than correlations between span and the benefit
score. In fact, the actual data values both fall within approximately
one standard deviation of the means of their respective simulated
distributions.

Finally, we wanted to rule out the possibility that the likelihood
of remembering and using the first guess while making the second
guess was increased for higher memory-span individuals. We
calculated the number of questions for which an individual pro-
vided the same response for both Guess 1 and Guess 2 (M = 1.67,
SE = 0.15), and this value did not correlate significantly with
OSPAN scores (r = .08, p = .1). This number also did not differ
between span groups based on a median split of OSPAN scores,
1(168) = —0.16, p = .1, suggesting that low- and high-span
individuals were equally likely to remember and re-use their first
estimate when providing the second estimate.

Discussion

If individuals do possess a crowd within and make estimates of
values based on samples probabilistically drawn from a large knowl-
edge base, then the samples are likely to be drawn somewhat inde-
pendently. It is for this reason that either delaying the second estimate
(Vul & Pashler, 2008) or instructing subjects to retrieve alternative
information (Herzog & Hertwig, 2009) increases the degree to which
the average of two guesses is superior to the first guess. Replicating
Vul and Pashler (2008), we have shown this to be the case. Moreover,

we predicted that individuals with a lower memory span would enjoy
more independent samples across multiple opportunities because the
smaller sample size would decrease the amount of overlap across
samples.

This hypothesis was supported: Averaging two guesses from indi-
viduals with lower memory span was relatively more beneficial than
averaging two guesses from individuals with higher memory span.
These results fit well with an interpretation of the SIM (Wallsten &
Gonzdlez-Vallejo, 1994) in which working memory span controls the
size of the sample of information that can be obtained from long-term
memory. Assuming that long-term memory contains some finite
quantity of relevant facts that is sampled from in a probabilistic
manner, larger samples from memory are more likely than smaller
samples to contain bits of information that overlap with one another.
The second guess should therefore provide less independent informa-
tion, relative to a single sample, to the estimation process. Note that a
straightforward prediction of this view is that a secondary task re-
quirement that burdens working memory somewhat should have a
similar effect.

One alternative possibility is that subjects with a higher memory
span are more likely to remember their first estimate when making
the second estimate. When the individual estimates a second time, the
estimation is simply made on the basis of the value provided in the
first estimate, rather than resampling relevant information from mem-
ory. However, subjects did not know in advance that they would be
making a second guess, and it seems unlikely that they were attempt-
ing to remember their responses in this manner. Critically, we found
that there was no difference between low- and high-span individuals
in the likelihood of providing the same value for both guesses (nor did
the number of questions for which this occurred correlate with
OSPAN score), so it seems highly unlikely that our results can be
explained by differential remembering of the first guess.

It is also possible that low- and high-span groups in general do
differ in the amount of relevant knowledge from which they can
sample when estimating these values. It may be that high-span indi-
viduals have superior knowledge (i.e., use different, more valid cues;
Gigerenzer et al., 1991), but averaging their estimates suffers from
redundancy in sampling caused by the larger samples they may use.
In contrast, low-span individuals may have less knowledge, but av-
eraging their estimates benefits from the relatively greater indepen-
dence in information sampling and therefore results in the observed
advantage. It is not possible to conclude definitively from our data
whether the two groups share the same quantity or quality of relevant
knowledge or whether one group possesses superior knowledge.

Our results support the claim that information gathering from
long-term memory is indeed a probabilistic process. Moreover, we
have revealed a circumstance in which the generally negative effects
of low memory span are partially mitigated by the greater indepen-
dence of memory sampling that it affords.
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Appendix A

Simulation of the Estimation Process

The process by which we simulated the sampling and estimation
procedure has three distinct parts. Each simulated individual (total
N = 170; 34 per span group) 7 had a finite distribution of knowl-
edge (20 values) sampled from a Gaussian distribution with mean
1; and standard deviation o;. Values in this information set were
capped at 0 and 100. The parameters p; and o; for an individual
were sampled from two Gaussian parent distributions with means
of 50 and 30 and standard deviations of 36 and 10, respectively.

Once an individual’s set of knowledge was established, an estimate
of the true value, 50, was provided by sampling s values from that set
of knowledge, where s was set to 2, 3, 4, 5, or 6 to represent a range
of working memory spans. These values were selected to approximate
the range of error-free set sizes completed on the OSPAN task
(Unsworth et al., 2005) by our real subjects. The average of the
sampled values provided the first estimate. Seven additional samples
were drawn to simulate estimating eight values. The sampling proce-
dure was then repeated for the second estimate (with replacement).
The entire simulation process was replicated 1,000 times to obtain a
distribution of simulated data. We then compared our real data against
this distribution to assess its likelihood of having been generated
under the assumptions of our simulation. Values reported are the
average value across these 1,000 simulations.

As predicted, the mean square error of the average (M = 766) was
lower than that for either Guess 1 (M = 824) or Guess 2 (M = 825).
Next, the benefit of averaging relative to an individual subject’s best
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guess (either Guess 1 or Guess 2, whichever produced the lowest
mean square error) was correlated with the sample size. A negative
correlation (r = —.12) was obtained, indicating that higher spans
benefit less from averaging than do lower spans.

Finally, we compared our real data to the distributions of sim-
ulated data. We first assessed the likelihood of our observed
correlation between span and benefit of averaging of —.16 (see the
Results section) being generated by the simulation. In the distri-
bution of 1,000 correlations simulated, —.16 falls approximately in
the 30th percentile (see Figure A1, left panel). This indicates that
our simulation reasonably replicates the observed relation between
benefit of averaging and memory span.

We also examined the correlation between sample size (memory
span) and mean square error, averaged across the eight questions. As
stated previously, one might expect higher span individuals to have
access to more relevant knowledge than lower span individuals, and
therefore memory span should correlate negatively with estimation
error (i.e., higher spans tend to be associated with lower error). In our
simulated data, the correlation between sample size and mean square
error was indeed found to be negative (r = —.08). In the distribution
of 1,000 correlations simulated, our observed correlation of —.01 (see
the Results section) falls approximately in the 85th percentile (see
Figure Al, right panel), again indicating that our simulation reason-
ably replicated the observed data.
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Histograms of the distributions of simulated correlations between sample size and the benefit of

averaging (left panel) and between sample size and mean square error (right panel). The correlations obtained

from the real data are displayed as reference points.

(Appendices continue)
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Appendix B

Value of Averaged Guesses for Low- and High-Span Groups

Table B1

Mean Square Errors (MSEs) for Guess 1, Guess 2, and
Averaged Guesses, and Derived Value of Averaged Guesses, for
Low and High Memory Span Groups

Value Low-span group High-span group
Guess | MSE 483 521
Lower bound 95% CI 430 464
Upper bound 95% CI 535 578
Guess 2 MSE 540 591
Lower bound 95% CI 485 530
Upper bound 95% CI 594 653
Average MSE 460 508
Lower bound 95% CI 411 455
Upper bound 95% CI 509 561
Estimated value of average 1.07 1.04
Lower bound 95% CI 1.05 1.02
Upper bound 95% CI 1.09 1.06
Function parameters
C 152.14 173.04
a —6.30 X 1077 —-195 x 107*
b 3.09 X 1077 3.06 X 1077

We based our analytic procedure on that used by Vul and
Pashler (2008), which acts to reparameterize the mean square error
for two within-person guesses as an equivalent number of
between-person guesses. Low-span (n = 86) and high-span (n =
84) groups were based on a median split of absolute OSPAN score.
These two groups did not differ significantly on Guess 1 or Guess
2, or on the average (all ps > .18). The group mean square errors
are displayed in Table B1.

First, values of average mean square error across a range of
between-person guesses were computed by taking all n-tuples (n =
1 to 5) from the Guess 1 population and computing the mean
square error for the average of those guesses. The average for all
n-tuples for a given n provides the estimate for the mean square
error for the average of n independent guesses. As argued by Vul
and Pashler (2008), the relation between n and MSE,, is assumed to
be hyperbolic with a nonzero asymptote:

1

MSER = C+m‘

(1
where a and b are free parameters and C was fixed for each
memory span group by averaging Guess 1 across all individuals in
that group (i.e., the mean square error across, rather than within,
individuals). This function was estimated separately for each mem-
ory span group using least squares estimation.

Algebraic manipulation yields the equation to solve for the
number of between-person guesses (n,) to which the average of
two within-person guesses is equivalent:

1 a

fle = b (MSEmvmge_wimjn - C) a b (2)

This value was estimated for each group on the basis of the
parameters estimated for the two memory span groups. As de-
scribed above, the value of two within-person guesses was esti-
mated as the number of between-person guesses that would yield
an equivalent mean square error for that population. Data points
for the function were generated by taking all possible pairs, trip-
lets, quadruplets, and quintuplets of subjects and evaluating the
average error displayed by this combination of one to five subjects
(using their Guess 1 values). Hyperbolic functions fit the data (i.e.,
the estimated mean square errors for the across-subject averaging
of samples of size 1 to 5 for the two populations) nearly perfectly,
as they had in the Vul and Pashler (2008) data (R* = 1.00 and .998
for the low- and high-span groups, respectively). Parameters for
the functions are indicated in Table B1. The resulting values were
1.07 and 1.05 for the low- and high-span groups, respectively.'
These values represent the number of guesses from different
people in that population that would need to be averaged together
to obtain the same error as the averaged within-person guesses.

To determine whether the observed value of averaging two
guesses was reliably larger for the low-span group than for the
high-span group, we derived sampling distributions for the two
groups’ value scores by bootstrapping (Efron, 1982). In our pro-
cedure, we drew 1,000 random samples, with replacement, of size
n (where n is equal to the number of subjects in that group), of
subjects from each memory span group. For each of the 1,000
samples, we computed that sample’s estimated value of averaging
(n, in Equation 2) using the appropriate parameters (a, b, and C;
see Table B1) for that group and the sampled subjects’ actual mean
square errors for Guess 1, Guess 2, and the average, resulting in a
sampling distribution of the estimated value of averaging within-
person (relative to averaging across-person) for both of the
memory-span groups. We then computed 95% confidence inter-
vals for the estimated value of average scores using the variance of
this bootstrapped distribution. As can be seen in Table B1, the two
confidence intervals overlap by only 16%. Viewed in terms of
significance testing, the two means can be considered to be sig-
nificantly different, with p << .05 (cf. Cumming & Finch, 2005).
Individuals in the low-span group benefited more from adding a
second guess to their average, relative to their population, than did
individuals in the high-span group.

' We also computed the value of averaging two guesses from the same
individual using Vul and Pashler’s (2008) linear interpolation method. We
found estimated values to be 1.17 for the low-span group (95% CI [1.15,
1.19]) and 1.14 for the high-span group (95% CI [1.12, 1.16]).
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