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Where Is the Criterion Noise in Recognition? (Almost) Everyplace You
Look: Comment on Kellen, Klauer, and Singmann (2012)

Aaron S. Benjamin
University of Illinois at Urbana-Champaign

Recent articles, including Benjamin, Diaz, and Wee (2009), have argued that recognition memory may be
better understood if consideration is given to sources of noise in the decisions, as well as to those in the
representations, underlying recognition judgments. They based that conclusion on a wide consideration of
persisting mysteries in recognition research as well as a new experimental paradigm involving ensemble
recognition. Kellen, Klauer, and Singmann (2012) reanalyzed Benjamin et al.’s data and introduced their own
new experimental paradigm to this debate. They concluded that criteria do not vary much from trial to trial
in recognition testing and, thus, that decision noise in recognition is small or nonexistent. However, their
alternative interpretation of Benjamin et al.’s data relies on a questionable conclusion to reject all models in
which the locations of criteria are restricted to be the same across ensembles and a mela-assumption that a
model should be rejected as false if it yields unconventional parameters. In addition, their experimental logic
relies on the assumption that ranking tasks are always bias-free. Here, I question these assumptions and

suggest avenues for reconciliation between these contrasling claims.

Keywords: recognition, criterion noise, decision noise, signal detection, recognition memory

Ever since a set of landmark articles by Egan (1958), Parks
(1966), and Banks (1970), the theory of signal detectability (TSD;
Green & Swets, 1966; Macmillan & Creelman, 2005) has been a
dominant framework for understanding the processes involved in
the recognition memory task. In that task, subjects evaluate
whether individual test stimuli were experienced previously in a
particular delimited context. The most prominent contribution of
that framework is the explicit superposition of a statistical point of
view onto the cognitive task of recognition. That is, the theory is
guided in part by a consideration of sources of noise in memory.

TSD postulates specifically that trials vary randomly in the
amount of evidence they yield to the decision maker. In the case of
perceptual or attention tasks, this noise is presumed to arise from
physical and perceptual fluctuations in signal transmission. In the
case of recognition memory, in which repeated trials invariably
involve different stimuli, the amount of noise also reflects the
idiosyncratic history that each unique stimulus and an individual’s
history with that stimulus bring to bear.

More recently, it has been suggested that the decision pro-
cess—in which evidence is evaluated by reference to a criterion—
may itself be a source of noise. Theories of recognition (Benjamin,
Diaz, & Wee, 2009; Wickelgren, 1968; Wixted & Stretch, 2004)
and perception (Bonnel & Miller, 1994; Durlach & Braida, 1969;
Mueller & Weidemann, 2008; Nosofsky, 1983) that incorporate a
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role for criterion noise have been developed and applied to theo-
retical problems in those domains.

Benjamin et al. (2009) reviewed a large set of persisting theo-
retical puzzles in recognition memory research and suggested that
a consideration of criterion noise might aid theoretical develop-
ment. In addition, they gathered data from a new experimental task—
the ensemble recognition task—in which it was possible to decom-
pose the separate contributions of representational noise and criterion
noise. They concluded that criteria exhibited approximately the same
variability across trials as did stimuli and, thus, that decision noise
contributed nontrivially to recognition judgments.

Kellen, Klaver, and Singmann (2012) re-analyzed Benjamin et
al.’s (2009) data and reached the opposite conclusion—that crite-
rion noise made no meaningful contribution to performance. They
also conducted an experiment using another new task—the
k-alternative ranking task—that supported their conclusion. In this
commentary, | raise questions about the logic they applied to their
re-analysis and to their new experimental procedure. In addition, 1
briefly review evidence from the literature indicating that criterion
noise is ample and meaningfully influences recognition performance.
However, aspects of Kellen et al.’s conclusions and results clearly
pose difficulties for the noisy decision theory of signal detection
(ND-TSD) proposed by Benjamin et al., and I conclude by suggesting
empirical avenues for reconciliation between these opposing views.

Criterion Noise in Ensemble Recognition

The keystone results on which Benjamin et al.’s (2009) and
Kellen et al.’s (2012) groups differ are the ensemble recognition
data reported by Benjamin et al. In that task, subjects were asked
to endorse ensembles of one, two, or four previously studied items
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and reject ensembles composed of new items. If each ensemble
invites comparison to only one criterion (or set of criteria, in the
rating task), then ensemble size should be related to stimulus noise
but not to criterion noise.

In our original report, we compared the performance of a num-
ber of models, some of which varied in whether (a) they permitted
the presence of criterion noise and (b) the locations of decision
criteria were allowed to vary freely across ensemble conditions.
The first variable provided the critical test of the assumption of
criterion noise—the central hypothesis of the article. The second
variable was included because the conditions under which recog-
nizers shift criteria across conditions are unclear and an object of
much current research (e.g., Benjamin, 2001, 2005; Benjamin &
Bawa, 2004; Morrell, Gaitan, & Wixted, 2002; Stretch & Wixted,
1998; Verde & Rotello, 2007), and we wished to remain agnostic
with respect to the criterion-setting process in the ensemble rec-
ognition task.

Kellen et al. (2012) evaluated the same models (and an addi-
tional one in which an alternative assumption about the combina-
tion of evidence across an ensemble was implemented). Both
Benjamin et al. (2009) and Kellen et al. found that the best fitting
model was one in which criterion noise was present and in which
criteria were not free to vary across the ensemble conditions. It was
this result that was the basis for the conclusion by Benjamin et al.
that criterion noise was present and ample in recognition memory.

This result notwithstanding, Kellen et al. (2012) expressed skep-
ticism over the winning criterion-noise models. They noted several
concerning aspects of the fits of the model. First, the superior fit of
the criterion-noise models did not generalize to an analysis in
which the aggregated data were modeled. Second, the fits to
individual subjects revealed a larger number of anomalous param-
eter estimates in the conditions in which criteria were fixed across
ensemble size than conditions in which they were not, which they
took to indicate instability in the model fits.

Kellen et al. (2012) noted that, among the subset of models in
which the criterion-shift restriction was not implemented, the best
fitting model did not include criterion noise. On the basis of further
analysis of the criterion-shift restriction assumption, and of the
unconventional parameter values of stimulus and criterion noise
that were apparent in the best models, they concluded that the
criterion-shift restriction should be rejected. They thus concluded
from the subset of models still under consideration that criterion
noise is nonexistent or trivial, and they argued that Benjamin et al.
(2009) reached the incorrect conclusion because they considered a
set of models that were fundamentally flawed.

Fits to Aggregated Data

Benjamin et al. (2009) did not consider how the models fared
with respect to fitting the aggregated data, because they considered
those data misleading with respect to the central question of the
presence of criterion noise. At the heart of the analyses here is the
question of whether criteria vary randomly from trial to trial. This
determination is difficult and is rendered only possible, in fact,
because the ensemble recognition task provides a means for sep-
arating decision-based and representation-based sources of noise.
Detecting the presence of decision noise against a background that
additionally includes individual-difference sources of variation
makes accurate estimation more, not less, difficult. Though there

are good reasons why aggregate data should be considered under
some circumstances (Cohen, Sanborn, & Shiffrin, 2008), cases in
which the group data clearly introduce variation in a parameter
(e.g., the locations of criteria) that may or may not be present in
individual data—and are the central variable under investiga-
tion—seem poor candidates for such an approach (Estes & Mad-
dox, 2005).

Fits to Individual Subjects

The anomalous results from individual fits of the models with
restricted criteria are a potential source of concern. In fact, one
common approach in model fitting is to require the model-fitting
algorithm to limit its search to acceptable parameter values, typi-
cally by placing boundaries on those values. Benjamin et al. (2009)
chose not to pursue this approach because it was not clear to us
exactly what would constitute a reasonable value. Allowing
criterion noise in detection-theoretic models is a sufficiently
major theoretical change that it seemed shortsighted to bring
our intuitions to bear on what the appropriate range of param-
eters should be.

Kellen et al. (2012) made the decision to not consider models
that employed the criterion-shift restriction for three reasons. First,
those models make the prediction that the proportion of high-
confidence response should increase with ensemble size. This
prediction is clearly wrong in our data and, thus, does indeed speak
against the plausibility of the criterion-shift restriction as imple-
mented by Benjamin et al. (2009). Below, I consider alternatives to
the strong version of this assumption that might allow the model to
circumvent this problem.

Second, they reported a likelihood-ratio test in which models
with and without the restriction were compared. Here, the evidence
is less convincing. To start with, the restriction was rejected for
less than one third of the subjects for the winning model of Kellen
et al. (2012)—hardly a basis for rejecting the assumption out of
hand for the entire sample. The only other evidence brought to bear
here is the fact that the criterion-shift restriction was rejected by
likelihood-ratio test in the aggregate data, which is unconvincing
for the reasons reviewed earlier. Even if this evidence were con-
vincing, there should be some concern about the contrasting results
of hypothesis-testing approaches and goodness-of-fit approaches
to quantifying a model’s performance. I certainly agree with the
authors that fit statistics, such as Akaike information criterion
(AIC),. and Bayesian information criterion (BIC), should not be
taken as the ultimate arbiter of a model’s merit, but trading the
occasional vagaries of fit statistics for the Pandora’s box of con-
ceptual difficulties associated with null hypothesis significance
testing seems risky. This seems particularly true in this case, where
the fit statistics tell a different story than G*: for the criterion-noise
models, AIC, and BIC are lower for the models with the criterion-
shift restriction than the ones without. In fact, the magnitude of the
advantage is such that only a small portion of the effect can be
attributed to the lesser penalty due to extra parameters paid by the
models without the restriction. This result indicates that the re-
stricted models are doing a better job of fitting the data, even if that
restriction is rejected by the standards of null-hypothesis signifi-
cance testing within a subset of subjects.

Finally, Kellen et al. (2012) appealed to the values of the
parameters yielded by the winning model as evidence for its
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failure. At the heart of the final conclusion by Kellen et al. to not
consider those models with restricted criteria is the following
logic: If a model yields unusual parameters, even if it fits the data
well, it should be rejected. That is, the anomalous parameter values
are taken to indicate a failing of the model, rather than the
difficulty of fitting that model to a limited set of data. Such an
action seems unwarranted. Again, | agree that the superior fit of
the criterion noise models with restricted criteria should not be
taken as the final word on that model’s correctness. However, it
seems equally shortsighted to take the unconventional fits of some
individuals as ironclad evidence for its falsity.

Certainly, we can imagine cases in which illogical or uninter-
pretable parameter values could be used to veto the outcome of a
comparison of fit statistics, like when those parameters violate
known capacities of biology or physics. However, this is not the
case here. Estimates of o (the parameter that measures criterion
noise, scaled in standard deviation units of the noise representa-
tion) range in Benjamin et al.’s (2009) results from 0.6 to 7.2.'
Interestingly, the parameters governing the distance between the
evidence distributions (p) and the standard deviation of the signal
representation (o) are highly correlated with o (r = .86: .58),
indicating some parameter mimicry.

Because the parameters in TSD are measured by reference to
variance in the noise distribution, which is fixed to an arbitrary
value, all scaling is also completely arbitrary. One could just as
easily fix a different parameter, like o, and estimate the other
parameters with reference to it. One way of appreciating the
common factor underlying values of ., o, and o is to fix one of
those values and then rescale the other parameters relative to it.
This is done in the middle panels of Figure 1 for two groups of
subjects: those with lower (and thus more “traditional™) values of
o (see Panel C), and those with higher values of o (see Panel
D).? These same parameters are shown without rescaling (i.e., by
using the original estimates with fixed o) in Panels A and B.

What is apparent here is that the “anomalous™ values of o
evident in Panels A and B are not actually revealing of anything
strange about criterion noise. Because p, o, and o all scale
together, another interpretation is that the o, estimate is the value
that exhibits the most variability between these two groups of
subjects. That is, those subjects that yielded high estimates of
criterion noise are actually ones that exhibit low variability in
strength values for unseen items on the recognition test. Note that
the other parameters look roughly the same between Panels C
and D.

This reconceptualization—one that would not have been possi-
ble had the fitting algorithm used a constrained search of o values
or if the criterion-shift restriction been rejected out of hand—
suggests an alternative understanding of the unexpected variability
in the o parameter. For some subjects, the range of evidence
values for unstudied items is small, yielding a response profile that
is more threshold-like in form. This can be seen in Panel E, which
plots the isodiscriminability functions for both groups when the
role of criterion noise is ignored. The low-o group evidences a
traditional function that is clearly curvilinear and with greater mass
on the low end. The high-o- group exhibits a function that is
roughly linear throughout much of its range, much like a function
based on thresholds would look like (Egan, 1958; Krantz, 1969;
Luce, 1963). Of course, because we generated the function, we

BENJAMIN

know that there are no thresholds—that is, there is nonzero like-
lihood for both noise and signal throughout the evidence range.

When criterion noise is added to the mix, as shown in Panel F,
the threshold-like behavior of the high-o. group is no longer
apparent. The isosensitivity functions shown there are ones that
would be easily accommodated in the extant literature without
concern. So there is nothing particularly concerning about the
parameter values that yielded this behavior, even though the higher
function represents a subset of subjects with the most extreme
values of the very parameter presumed by Kellen et al. (2012) to
be anomalous. We should not dismiss a model simply because of
unconventional parameter values without a thorough consideration
of how those estimates might reveal entrenched biases in our
conceptualization of the task.

Evidence From the k-Alternative n-Response Task

Kellen et al. (2012) introduced to this debate a very clever new
task in which subjects evaluate k items and rank n of them with
respect to evidence for oldness (Kellen & Klauer, 2011). Using the
four-alternative forced-choice with two rankings (4AFC-2R) ver-
sion of this task, they were able to estimate traditional detection-
theoretic parameters under forced-choice responding conditions.
Forced-choice response conditions are thought to be free of the
need to establish and maintain criteria and, consequently, provide
a “base rate” of variability against which estimates from the yes/no
procedure could be compared.

Using this task, Kellen et al. (2012) found that criterion noise
was not necessary to explain the discrepancies in performance
between the rating task and the forced-choice task—that is, the
forced-choice task did not yield substantively lower estimates of
stimulus variance than the yes—no task (in which criterion noise
would be included.) However, there are two major concerns about
how their task might not yield entirely accurate parameter esti-
mates.

Bias in Forced-Choice Responding

Green (1964) was the first to note a strong theoretical relation-
ship between performance in forced-choice tasks and performance
on yes—no tasks. This relationship is based on the assumption that
forced-choice responding is criterion free—that is, that recogniz-
ers choose the alternative with the higher amount of evidence
without comparing that amount of evidence to a criterion value.
One consequence of such criterion-free decision making is that
response biases should not be evident.

Evidence in support of this relationship has been spotty at best,
however, within studies of recognition memory (Green & Moses,
1966). Of the subset of studies that used the unequal-variance
version of signal detection theory now favored by most researchers
(Wixted, 2007), the only articles that have confirmed the relation-
ship (Jang, Wixted, & Huber, 2009; Smith & Duncan, 2004) used
confidence ratings to fit the competing models. Although forced-
choice recognition might plausibly not involve criteria, confidence

" The variance in these parameters is larger in the fits to the same data
reported by Kellen et al. (2012, Table 2).

2 This division was created by a median split within the subjects on o,
omitting the single subject in the middle of the range.
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Figure 1. Panels A and B: Estimated probability distributions of evidence and criteria for the low-o. and
high-o_ group, respectively. Panels C and D: The distributions from Panels A and B rescaled to equivalent p.
Panels E and F: The implied isosensitivity functions for the two groups with and without criterion noise,

respectively.

ratings almost certainly do—and there is no reason to think that
those ratings will be any less noisy in the forced-choice task than
in the yes—no task. Thus, the confirmed relationship between these
tasks in those articles might not reflect the absence, but rather the
presence, of criterion noise in both cases.

In addition, it has been noted that there can actually be consid-
erable bias in forced-choice responding. Wickelgren (1968) de-
scribed numerous influences that could serve to violate the
criterion-free assumption of forced-choice responding, including
position bias, correlated evidence values across intervals, variable
or fluctuating attention, and forgetting across intervals. As Kellen

et al. (2012) noted, some of these sources of bias are ones that are
of greater concern in perceptual experiments, in which a temporal
dimension is used to present the competing options in forced-
choice tasks. Recognition testing usually does not use temporal
intervals, so differential forgetting across the to-be-evaluated stim-
uli, for example, is less of a concern. However, there is no reason
to assume that the perceptual dimensions (such as left—right dis-
play) in recognition testing do not induce bias, or to assume that
stimuli are compared directly to each other rather than individually
to a criterion. On the few occasions in which bias has been
investigated within multi-alternative forced-choice testing, bias
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has been apparent (e.g., Nisbett & Wilson, 1977; as cited in Ennis
& O’Mahony, 1995; Macmillan & Creelman, 2005; as re-analyzed
by DeCarlo, 2012; see also Klein, 1991). The logic of the com-
parison between yes—no and forced-choice tasks—and, thus, the
soundness of Kellen et al.”s experimental procedure—relies criti-
cally upon unbiased responding.

In addition, there are numerous decision models that assume a
probabilistic response rule in which the probability of choosing a
specific alternative is a (positive) function of the likelihood of that
alternative with respect to the competing options (akin to the Luce
choice rule). Such a mechanism has been proposed for forced-
choice responding in theories of categorization (Maddox & Ashby,
1993; Nosofsky & Zaki, 1998), perceptual decision making (Stiit-
tgen, Yildiz, & Giintiirkiin, 2011), and memory for faces (e.g.,
Busey & Arici, 2009). The ubiquity of such a decision rule and the
widespread evidence of probability matching, in numerous do-
mains, suggest that forced-choice responding may not be as deter-
ministic and criterion-free as TSD would suggest.

Task Strategy and Interleaved-Trial Designs

Even if we are not concerned about the effects of bias on
forced-choice responding, there are aspects of Kellen et al.’s
(2012) experimental procedure that have the potential to introduce
violations of the criterion-free assumption in forced-choice re-
sponding. Specifically, trials of different types—yes/no and
forced-choice response—were interleaved in their test. This choice
to mix trials has the advantage of removing time-based confounds,
such as differential recency across conditions, from the test. How-
ever, it has the negative consequence of affecting the hypothesized
strategic approaches to the two tasks via a carryover effect.

Criterion-free responding is not the only potential approach to
solving a ranking task. In a two-alternative task, for example,
subjects can evaluate the first stimulus via the same criterion as
would be used in a yes/no task and then respond “first” if the
criterion is surpassed and “second” if not. In fact, within the
eyewitness memory literature, such an approach has been argued
to yield superior performance in lineup tasks than criterion-free
relative comparison (though it should be noted, of course, that
these eyewitness tasks have the additional complexity that the
perpetrator, or “old item,” might not be present in the lineup;
Gronlund, 2004). Kellen et al.”s (2012) task used four, rather than
only two, alternatives, but the logic is the same: Subjects may
engage in the same processes as yes—no responding for a subset of
the stimuli, rather than compare them directly to one another.

Tasks in which different trial types are interleaved exacerbate
carryover effects. In recognition memory, for example, it is evident
that subjects are reluctant to vary decision criteria across stimuli
with different strengths when those stimuli are interleaved within
a list (Morrell et al., 2002; Stretch & Wixted, 1998; Verde &
Rotello, 2007) but are apt to do so when they are manipulated
across lists (Hirshman, 1995). The concern here is that the inter-
leaved design has the potential to induce a strategic approach to the
forced-choice task in which the criterion-free assumption is vio-
lated. Under such conditions, the estimates between the two tasks
will correspond not because criterion noise is absent in yes—no
recognition, but rather because it is present in forced-choice rec-
ognition. It is also worth pointing out that Benjamin et al. (2009)
also used an interleaved design, in which ensemble sizes were

randomly intermixed at test. That design also has the possibility of
introducing strategic homogeneity across trials that might not be
evident in a between-list or between-subject design. For both tasks,
replication using alternative designs will be important for adjudi-
cating between the theoretical possibilities.

Finally, it is worth noting that the correlation between estimates
of variability across subjects for the two tasks is only r = .20. (The
values are taken from the third and sixth columns in Table 3 of
Kellen et al., 2012.) Though they concluded that a common model
for both tasks provided a superior fit to their data, the variability
estimates for the rating task and the ranking task have less than 5%
of their variance in common. If these tasks did indeed induce ideal
criterion-free responding in ranking and not in rating, and if
criterion noise was not present, one might expect this correspon-
dence to be more impressive in magnitude.

Criterion Variability in the Larger Literature
on Recognition

In cases like this where there is dispute over the appropriate
interpretation of a set of results, certainly the nearly 100 years of
literature on recognition and discrimination tasks more generally
must provide some guide. Benjamin et al. (2009; see also Benja-
min, Tullis, & Lee, in press) reviewed a large number of results
and concluded that criterion noise provided a simple and parsimo-
nious way of understanding enigmatic phenomena like nonstation-
arity (Treisman & Williams, 1984), failures to confirm the theo-
retical relationship between forced-choice and yes—no recognition
procedures (Green & Moses, 1966), variability in the slope of the
isosensitivity function across learning conditions when plotted in
normal-deviate coordinates (i.e., the zZROC; Glanzer, Kim, Hilford,
& Adams, 1999), lack of equivalence between confidence-rating
and bias-induction recognition procedures (Van Zandt, 2000),
probability matching (Lee, 1963), conservatism in response to base
rate manipulations (Healy & Kubovy, 1978), effects of aging on
the slope of the zZROC (Kapucu, Rotello, Ready, & Seidl, 2008),
and variation in the slope of the zROC for “remembered” items
(Wixted & Stretch, 2004). In addition, criterion variability has
been convincingly demonstrated in perceptual tasks (Bonnel &
Miller, 1994; Nosofsky, 1983) and plays a critical role in sampling
models of recognition (Ratcliff & Rouder, 1998).

Kellen et al. (2012) noted that “the present results do not
constitute an argument against the existence of criterion variabil-
ity” but do “constitute an argument against the claim that criterion
noise (as currently modeled) has a major influence on recognition
memory performance” (p. 475). The overwhelming majority of the
data reviewed by Benjamin et al. (2009), only a small portion of
which are cited here, come from experiments on recognition mem-
ory. To these results, Kellen et al. offered few alternatives and
addressed only one domain specifically. With respect to sequential
dependencies, they pointed out that sequential fluctuations in the
memory representation, rather than the criterion, could account for
such results (see also Malmberg & Annis, 2012). But how could
such a mechanism explain the results, for example, of Van Zandt
(2000), who found a difference between rating-scale and response-
bias procedures for measuring ROC functions? Perhaps criterion
noise is not the common thread that can tie these disparate results
together, but Kellen et al. provided no alternative and no expla-
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nation for the many mysteries that led to a search for criterion
noise in the first place.

One final result is worth noting. The theory of Benjamin et al.
(2009) makes the claim that each criterion introduces noise to
the recognition process and, thus, suggests that rating scales of
greater length should yield poorer estimates of recognition
performance than shorter scales. We have recently reported this
result (Benjamin, et al., in press)—the isosensitivity function
for responses made on an 8-option scale lies below the one for
responses made on a 4-options scale, which lies below the
single point yielded by yes—no recognition (a 2-option rating
scale). This result seems difficult to reconcile with any theo-
retical view in which individual criteria do not add noise to the
recognition decision.

Summary

The argument by Kellen et al. (2012) that criterion noise is not
present in recognition hinges upon two claims. First, although they
replicated the result of Benjamin et al. (2009) that the best fitting
model of ensemble recognition was one that included a role for
criterion noise, they argued that that model should be rejected
because it implemented a flawed assumption regarding criterion
shifts across ensembles, and because it yielded anomalous fits to
some individual subjects. I have argued here that the statistical
evidence underlying the decision to reject the criterion-shift re-
striction is unconvincing, and there is no reason to take the
reported fits as anomalous. Moreover, untraditional parameter
values do not unequivocally indicate the invalidity of a model, but
may instead reveal the difficulty of fitting that model with limited
data and parameter mimicry within models that incorporate mul-
tiple sources of noise.

Second, the comparison of forced-choice ranking and yes—no
rating tasks relies critically upon the claim that ranking is criterion
free but rating is not. The extant literature comparing these pro-
cedures has not supported this claim convincingly, and the inter-
leaved test trials in Kellen et al.’s (2012) experiment make it more
vulnerable to such violations than most.

Finally, the search for criterion noise was motivated not by an
abstract concept but rather by the mass of results that have accu-
mulated that suggest its omnipresence in recognition. Taken to-
gether, | think that the results lean very strongly in favor of the
contribution of criterion noise to recognition. However, the points
of contention between Benjamin et al. (2009) and Kellen et al.
(2012) do suggest some new avenues for empirical reconciliation.

To start with, the prediction of the criterion-shift restriction that
high-confidence response should increase in frequency with en-
semble size is provably wrong in our data. An alternative would be
to restrict the likelihood ratios rather than the location of criteria
(cf. Hirshman, 1995; Stretch & Wixted, 1998) across ensemble
conditions. Such a restriction would preserve the spirit of the idea
that recognizers are reluctant to shift criteria and still avoid the
flexibility associated with allowing the locations to vary freely
across conditions.

With respect to the experimental issues, the concerns expressed
here over the interleaved test trials in both experiments are quite
easily addressed with experiments that reduce the potential for
carryover effects. The equivalence between forced-choice and
yes—no procedures should survive a generalization to a between-

list manipulation of task, as should the results from the ensemble
recognition task.

Considering the sources of noise that influence memory judg-
ments is an important project that has both theoretical (Wixted &
Mickes, 2010) and applied (Benjamin, 2010) applications. We are
thankful to Kellen et al. (2012) for their sophisticated work on the
problem and look forward to the new data that this ongoing debate
will stimulate.
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