
Quantitative Analysis of Consistency
in NoSQL Key-value Stores

Si Liu, Son Nguyen, Jatin Ganhotra, Muntasir Raihan Rahman
Indranil Gupta, and José Meseguer

February 2016

NoSQL Systems

• Growing quickly

– $3.4B industry by 2018

• Apache Cassandra

• Among top 10 most popular database engines in

February 2016

• Top 1 among all Key-value/NoSQL stores (by DB-

Engines Ranking)

• Large scale Internet service companies rely heavily on

Cassandra

- e.g., IBM, eBay, Netflix, Facebook, Instagram, GitHub 2

Predicting Cassandra

Performance...
• …Is Hard. Today’s options:

– Deploy on Real Cluster
• Many man-hours

• Non-repeatable experiments

– Prove theorems on paper
• Very hard to do for performance properties

– Simulations
• Large and unwieldy

• Take time to run

• Hard to change (original Cassandra is 345K lines of code)

3

Our Approach

1. Specify formal model of Cassandra (in Maude

language)

2. Use statistical model-checking to measure

performance of Maude model

3. Validate results with real-life deployment

4. Use model to predict performance

– First step towards a long-term goal: a library of formal executable

building blocks which can be mixed and matched to build NoSQL

stores with desired consistency and availability trade-offs

4

How we go about it

We use:

1. Maude

- Modeling framework for distributed systems

- Supports rewriting logic specification and programming

- Efficiently executable

2. PVeStA

- Statistical model checking tool

- Runs Monte-Carlo simulations of model

- Verifies a property up to a user-specified level of confidence

• Cassandra is deployed in data centers

• Each key-value pair replicated at multiple servers

• Clients can read/write key-value pairs

• Read/write goes from client to Coordinator, which

forwards to replica(s)

• Client can specify how many replicas

need to answer

• Consistency Level

• E.g., One, Quorum, All

Apache Cassandra Overview

• The distributed state of Cassandra model is a “multiset” of

Servers, Clients, Scheduler and Messages

Cassandra Model in Maude:

Reads & Writes

Cassandra Model in Maude: Requests

crl [COORD-FORWARD-READ-REQUEST] :

< S : Server | ring: R, buffer: B, ...>

{T, S <- ReadRequestCS(ID,K,CL,A)}

=>

< S : Server | ring: R, buffer:

insert(ID,fac,CL,K,B), ... > C

if generate(ID,K,replicas(K,R,fac),S,A) => C .

rl [GENERATE-READ-REQUEST] :

generate(ID,K,(A’,AD’),S,A)

=>

generate(ID,K,AD’,S,A)

[D, A’ <- ReadRequestSS(ID,K,S,A)]

with probability D := distr(...)

Validating Performance

• We measure Cassandra and an alternative

Cassandra-like design’s satisfaction of various

consistency models

• strong consistency (SC), read your writes (RYW),

monotonic reads (MR), consistent prefix (CP), causal

consistency (CC)

• We answer two questions:

1. How well does our Cassandra/alternative design’s model

satisfy those consistency models?

2. How well do these results match reality (i.e.,

experimental evaluations from a real Cassandra

deployment on a real cluster)?

9

How experiments go from two sides

• Statistical Model Checking of Consistency

- design scenario for each property (e.g., SC)

- formally specify each property (e.g., SC)

- run statistical model checking

op sc? : Address Address Config → Bool .

eq sc?(A, A’, < A : Client | history : ((O, K, V, T), …), … >

< A’ : Client | history : ((O’, K, V, T’), …), … > REST) = true .

eq sc?(A, A’, C) = false [owise] .

• Implementation-based Evaluation of Consistency

- deploy Cassandra on a single Emulab server

- use YCSB to inject read/write workloads

- run Cassandra and YCSB clients (20,000 operations per client) and log the results

- calculate the percentage of reads that satisfy various consistency models

10

(O)

(O’)

Performance: Strong Consistency

• (X axis =) Issuing Latency = time difference between the given read request and the

latest write request

• (Y axis =) Probability of a request satisfying that model

• Conclusion: Statistical Model Checker is reasonably accurate in predicting low

and high consistency behaviors; both sides show Cassandra provides high SC

especially with QUORUM and ALL reads.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
. o

f
sa

ti
sf

yi
n

g
SC

Issuing latency L (time unit)

TB-QUORUM TB-ALL

TB-ONE

Real-deployed cluster

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

b
. o

f
sa

ti
sf

yi
n

g
SC

Issuing latency L2 (time unit)

TB-ONE TB-QUORUM TB-ALL

Statistical Model Checker

Performance: Read Your Writes

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P

ro
b
.

o
f
s
a
ti
s
fy

in
g
 R

Y
W

Issuing latency L (time unit)

OO OQ/QO/QQ

Real-deployed cluster

• Conclusion: Statistical Model Checker is reasonably accurate (to within

10-15%) in predicting consistency behaviors; high RYW consistency is

achieved as expected.

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
.

o
f
s
a
ti
s
fy

in
g
 R

Y
W

Issuing latency L (time unit)

OO OQ QO

Statistical Model Checker

Performance: Monotonic Reads

• Conclusion: Statistical Model Checker is reasonably accurate (to within

10-15%) in predicting consistency behaviors w.r.t. consistency level comb;

high MR consistency is achieved as expected.

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
. o

f
sa

ti
sf

yi
n

g
M

R

Issuing latency L (time unit)

TB-OO TB-OQ TB-QO TB-QQ

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P

ro
b

. o
f

sa
ti

sf
yi

n
g

M
R

Issuing Latency L (time unit)

TB-QQ TB-QO TB-OO TB-OQ

Statistical Model Checker Real-deployed cluster

Performance: Causality

• Conclusion: Statistical Model Checker is reasonably accurate (to within

10-15%) in predicting consistency behaviors w.r.t. consistency level comb;

high CC is achieved as expected.

Statistical Model Checker Real-deployed cluster

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

C

Issuing latency L (time unit)

TB-OO TB-OQ TB-OA TB-QO

0.8

0.9

1

1.1

1 2 3 4 5 6

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

C
Issuing Latency L (time unit)

TB-OO TB-OQ TB-OA TB-QO

Alternative Strategy Design & Comparison

• Timestamp-based Strategy (TB) (Cassandra’s Original

Strategy)

- uses the timestamps to decide which replica has the

latest value

• Timestamp-agnostic Strategy (TA) (Alternative Strategy)

- uses the values themselves to decide which replica has

the latest value

• Compare TA and TB in terms of various consistency

models both by statistical model checking and

implementation-based evaluation
15

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
. o

f
sa

ti
sf

yi
n

g
SC

Issuing latency L (time unit)

TB-QUORUM TB-ALL

TA-QUORUM TA-ALL

TB-ONE TA-ONE

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

b
. o

f
sa

ti
sf

yi
n

g
SC

Issuing latency L2 (time unit)

TB-ONE TB-QUORUM

TB-ALL TA-ONE

TA-QUORUM TA-ALL

Comparison: Strong Consistency

Statistical Model Checker Real-deployed cluster

• Conclusion: Both TA and TB provide high SC, especially with QUORUM

and ALL reads.

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
. o

f
sa

ti
sf

yi
n

g
R

YW

Issuing latency L (time unit)

TB-OO TB-OQ TB-OA
TA-OO TA-OQ TA-OA

Comparison: Read Your Writes

Statistical Model Checker Real-deployed cluster

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
. o

f
sa

ti
sf

yi
n

g
R

YW

Issuing latency L (time unit)

TB-OO TA-OO TA/TB-OQ/QO/QQ

• Conclusion: Both TA and TB offer high RYW consistency as expected; TA

provides slightly lower consistency for some points, even though TA’s

overall performance is close to TB’s.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

P

Issuing latency L (time unit)

ONE Writes

TB-OO TB-OQ

TB-OA TA-OO

TA-OQ TA-OA

Comparison: Consistent Prefix

Statistical Model Checker Real-deployed cluster

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

P
Issuing Latency L (time unit)

ONE Writes

TA-OA TA-OQ

TB-OA TB-OQ

• Conclusion: TB gains more CP consistency only before some issuing

latency for ALL reads.

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

C

Issuing latency L (time unit)

TB-OO TB-OQ TB-QO

TA-OO TA-OQ TA-QO

Comparison: Causality

• Conclusion: Both TA and TB achieve high CC consistency as expected;

regarding OQ, TA’s performance resembles TB’s and both surpass each

other slightly for some points.

Statistical Model Checker Real-deployed cluster

0.8

0.9

1

1.1

1 2 3 4 5 6

P
ro

b
. o

f
sa

ti
sf

yi
n

g
C

C
Issuing Latency L (time unit)

TB-OO TB-OQ TB-QO

TA-OO TA-OQ TA-QO

Comparison & Conclusion

• The resulting trends from both sides are similar, leading

to the same conclusions with respect to consistency

measurements and strategy comparisons

• Our Cassandra model achieves much higher

consistency (up to SC) than the promised EC, with

QUORUM reads sufficient to provide up to 100%

consistency in almost all scenarios

• TA is not a competitive design alternative to TB in terms

of those consistency models except CP, even though TA

behaves close to TB in most cases

- TA surpasses TB with ALL reads during a certain interval of

issuing latency

20

Summary

• First formal and executable model of Cassandra

• Captures all major design decisions

• Predicting Consistency behavior by using Statistical

Model-Checking

• Statistical Model-checking matches reality

(deployment numbers)

• Our work best to predict Cassandra Performance

• Faster than simulations

• Less work than full deployment

• Repeatable

21

Ongoing and Future Work

• Other performance metrics
- throughput, latency

• Model other NoSQL or transactional systems
- RAMP already modeled & analyzed (SAC 16’)

• Build a library of building blocks
- Mix and match to generate any NoSQL or transactional

system with desired consistency and availability trade-offs

22

