Past, Present, and Future Topics in Software-Defined Networking

John Bellessa and Prof. Roy H. Campbell
Software-Defined Networking

- Basic principles
 - Decouples control plane and data plane
 - Centralizes view/control of the network
 - Makes network programmable

- Concept of Network “Operating System” emerges
NetODESSA:
Dynamic Policy Monitoring with Inference
Dynamic Policies

• Modern networking environments are increasingly dynamic

• Network policies should be highly expressive without requiring explicit rules
 – Should not require admin intervention
 – Should be able to *infer* explicit rules
Inference-based Dynamic Policies

- Define general *base policies* as logical assertions
- Monitor and report events that occur in the network
- Use inference engine to determine whether assertions are violated
 - As system observes events, inference engine generates *refined policy*
 - In order to ensure compliance, *actions* are generated
Base Policy:
Anonymous hosts can’t use SSH

Event:
Anonymous host A joins the network

Refined Policy:
Anonymous host A can’t use SSH

Refined Policy:
Anonymous host A can’t use SSH

Event:
Anonymous host A tries to use SSH

Action
SSH flow blocked
Results

- CPU Utilization (%)
- Resident Memory (MB)
- Log. (CPU Utilization (%))
- Log. (Resident Memory (MB))

- Flows per second
- Number of Rules
Dynamic Network Virtualization
SDN-based Network Virtualization

• Goal: Dynamic virtualization infrastructure
 – Single, domain-wide configuration
 – User-based access control
 – Flow-based enforcement

• Effectively the same functionality as VLANs, but...
 – Simplified deployment, less prone to error, and easier to debug
 – Management becomes less difficult to reason about
 – Rapid/automated deployment of behavior alterations
System Architecture

- vNetManager application
- OpenFlow Controller monitors physical network and pushes flows to switches
- Database stores configuration and network state
- Tunnel endpoints within each domain
vNetManager

- Implemented as a REST service in Python

- Exposes REST API using the Flask framework
 - Authenticate user
 - Deauthenticate user
 - List allowed networks
 - Join network
 - Leave network

- Changes in network state invoked by user actions
Database

- Implemented in MySQL
- Stores domain-wide configuration
 - Virtual network configurations
 - User access control
- Maintains network state
 - Switch graph
 - Physical host information
 - Virtual host bindings
 - Active users
System Operation

- When hosts become active, the controller notes their location.

- Users log-in and join “virtual networks” via client-side application that communicates with vNetManager.

- Flows are installed to ensure connectivity among hosts on the same virtual networks.
System Operation

- Leverages OpenFlow 1.1’s multi-table processing feature
- Flows are calculated and pushed to switches when users join virtual networks
- Paths determined using Dijkstra’s single-source shortest path algorithm
What Lies Ahead?
New SDN Lab

• Established with support from HP and Matrix Integration

• Infrastructure
 – 13 Switches (all support OpenFlow 1.3)
 • 2x HP 12900 series
 • 2x HP 5900 series
 • 3x HP 5406 series
 • 4x HP 3800 series
 • 2x HP 2920 series
 – 4x HP MSR3024 routers
 – 3x HP 830 WAPs

HP FlexFabric 12900 Core Switch
New SDN Lab

• Will enable new research
 – Datacenter and inter-datacenter simulation
 – Inter-domain control systems
 – High-performance benchmarking
 – Controller scalability stress testing
 – Advanced OpenFlow features at line rate
New SDN Lab

• Challenges/Opportunities
 – Allocating resources and access
 – Enabling rapid experimentation
 – Ensuring reproducibility
 – Ensuring experimental isolation
 – Exposing switch-level logging and debugging
New SDN Lab

• Next steps
 – Understanding capabilities and limitations of HP VAN SDN Controller and Open Daylight
 • Built-in virtualization
 • Controller chaining
 – Deploy SDN applications
 – Generate traffic
Future Topics

• Elasticity-promoting Abstractions
 – Decouple distributed services from underlying resources
 – Use network addresses to identify services rather than hosts on which services run
 – Allows elastic allocation of resources to services with requiring updates to clients
Future Topics

• SDN-Based Load Balancing
 – Is the concept viable?
 – Do existing solutions meet requirements at scale?
 – Is it always necessary to defer to controller?
 – May offer a more “holistic” approach
Future Topics

• Network “Context Switching”
 – Treat network like a CPU: preempt network operation with different configuration and restore state
 – If implemented properly, and with the cooperation of network hosts, this would allow multiple experiments to make progress without interfering with one another.
 – This would present significant challenges such as saving and restoring state across the network between context switches.
Future Topics

• High-Scale Rule Consistency
 – A well-known challenge in SDN is rule consistency.
 – When controllers are making system-wide control decisions in large networks, inconsistent rule states may result in transient errors or leave the network susceptible to failure.
 – One area of research is determining strategies to guarantee high degrees of consistency among switches and controllers
Thank You!