A Quantitative Approach to Security Monitor Deployment

Uttam Thakore

PI: William H. Sanders
Problem

• Intrusion detection requires adequate monitoring
 • Monitors must collect sufficient information about intrusions
 • Should support intrusion detection even when monitors are taken out

• Current approaches to monitor deployment do not allow for deployment based on intrusion detection goals
 • Tough to compare different deployment approaches
Another problem

• Monitoring is expensive!
 • Price of monitors
 • NIKSUN NetDetector/NetVCR 2005 – DPI, analytics, and alerting appliance
 Price: $10,000 to $100,000\(^1\)
 • Data storage costs
 • Large enterprises can generate hundreds of GBs of logs \textit{per day}
 • Cost of data analysis and response
 • Average salary of a network security administrator: $65,000\(^2\)
 • Salary of a computer forensic analyst: upwards of $80,000\(^3\)

Our contribution

• A **cost-effective** methodology for monitor deployment that **meets** intrusion detection goals
Our approach

Domain expert knowledge

Model System

Detect intrusions & change model parameters

Optimally Deploy Monitors

Calculate Monitoring Metrics
Guiding principles

• Monitors and computing assets can be compromised
 • Monitor compromise can affect ability to detect intrusions
• Monitors should be deployed with redundancy such that the effect of compromise is mitigated
Simplifying assumptions

• Monitors are independent
• Monitors and assets are not currently compromised, but could be compromised in the future
• Monitor costs are independent and additive
 • I.e., cost of deploying n monitors $= \Sigma$ cost of deploying each monitor
• Intrusion detection is ideal
Outline

Domain expert knowledge

Model System

Optimally Deploy Monitors

Calculate Monitoring Metrics
Model: System model

- **Assets**: computing components in the system to protect
 - E.g., host machines, servers, virtual machines, applications, network hardware

- **Monitors**: sensors that can be deployed in the system to provide information about intrusions
 - E.g., Snort, Bro, sshd log, Apache request log, MySQL query log

- **Asset-asset dependence**: directed physical dependency between assets, such that correct operation of the second asset relies on correct operation of the first
 - E.g., hypervisor → tenant VMs

- **Monitor-asset dependence**: dependence relationship between monitors and assets, where compromise of the asset would result in compromise of the monitor
 - E.g., Apache server process → Apache request log
Model: System model illustration

- Assets
- Asset-asset dependence
- Monitors
- Monitor-asset dependence
Model: System model (cont’d)

• **Truthfulness of monitors**: what proportion of a monitor’s output can be trusted
 • Measure of compromisability of monitors or the assets on which they depend

• **Resource costs of assets**: monetary cost of dedicating computing resources on an asset to monitoring
 Resource types:
 • CPU utilization
 • Memory utilization
 • Disk storage
 • Network communication
Model: Data model

• **Indicators**: primitives representing semantic information provided by monitors about events in the system
 • Generated by monitors
• **Events**: occurrences in the system that are symptomatic of an attack or intrusion or are attacks themselves
 • Events can be detected by observing sets of indicators (similar to an IDS signature)
• **Detectability**: an event is *detectable* if at least one of its indicator sets is observable given the set of deployed monitors
Model: Data model illustration

- Events can map to multiple sets of indicators

Model accounts for coordinated intrusion detection and digital forensics
Model: Terminology

- \(V = \) set of assets
- \(M = \) set of deployable monitors
- \(E_S = \) set of asset-asset dependence relationships
- \(E_M = \) set of monitor-asset dependence relationships
Model: Terminology

- \(\mathbb{C} \) = set of events \(\dot{A}_i \) that we wish to detect
- \(I \) = set of observable indicators
- \(\circ(m) \) = set of indicators that monitor \(m \) can generate
- \(\neg(\dot{A}) \) = set of indicator sets that can be used to detect event \(\dot{A} \)
- \(\pm(\dot{A}, M_d) = 1 \) iff an event is detectable given the monitors in \(M_d \)
Outline

Domain expert knowledge

Model System

Optimally Deploy Monitors

Calculate Monitoring Metrics
Monitor deployment metrics

- **Goal of metrics**: quantify utility and cost of monitors in supporting intrusion detection

- Three monitor utility metrics:
 - Coverage
 - Redundancy
 - Confidence

- One cost metric:
 - Monitor cost

- Developing other metrics for specific analyses
Metrics: Coverage

- **Definition**: overall fraction of events of importance that can be detected given a set of monitors

\[
\text{Coverage}(\Phi, M_d) = j\{\hat{\Phi} : \pm(\hat{\Phi}, M_d) = 1\} \leq j\Phi
\]

\[
\text{Coverage}([\Phi_1, \Phi_2, \Phi_3], \{m_2, m_3\}) = 67\%
\]
Metrics: Redundancy

• **Definition:** the number of ways an event can be detected given a set of monitors

\[
\text{Redundancy}(\Phi, \{m_1, m_2\}) = 2
\]

\[
\text{Redundancy}(\Phi_2, \{m_1, m_2\}) = 1
\]

\[
\text{Redundancy}(\Phi_3, \{m_1, m_2\}) = 0
\]

\[
\text{Redundancy}(\hat{\Delta}, M_d) = \sum_{\Phi}^{\Delta} 2^{-\Phi} (\hat{\Delta}, \pm(\Phi M_d) = 1 \min_{\| 2^{\Phi} \} \{m : m \in M_d, \| 2^{\Phi} \} (m)}
\]
Metrics: Confidence

- **Definition**: belief in the ability of the monitors to detect events accurately, even when monitors are compromised

Confidence(\hat{A}, M_d) = $\max_{\gamma_2} -\gamma_2 \min_{\|2, 3\|} \psi (\bigcup M_d)$
Metrics: Cost model

• Each asset has resource costs per unit of use per unit time for each resource type:
 • CPU utilization (e.g., per CPU core per hour)
 • Memory utilization (e.g., per GB per hour)
 • Disk storage (e.g., per TB per hour)
 • Network communication (e.g., per GB)

• Each monitor has:
 • A long-term average resource consumption rate for each resource type
 • An amortized purchase price and recurring maintenance cost per unit time
 • A monitor-asset relationship that describes where monitor data is stored
 • E.g., remote logging
Metrics: Cost

- **Definition:** overall value of the computing resources consumed by monitors that are deployed in the system

\[
\text{Cost}(M_d) = \sum_{m \in M_d} (\text{product sum of resource utilization costs} + \text{purchase/maintenance costs})
\]

\[
\text{Cost}(m_1) = \$1.86/\text{hr}
\]

\[
\text{Cost}(m_2) = \$1.53/\text{hr}
\]

\[
\text{Cost}(m_3) = \$0.72/\text{hr}
\]

\[
\text{Cost}(\{m_1, m_2, m_3\}) = \$4.11/\text{hr}
\]
Outline

- Domain expert knowledge
- Model System
- Calculate Monitoring Metrics
- Optimally Deploy Monitors
Optimal deployment methodology

• **Goal**: to be able to use methodology to answer a variety of monitor deployment questions
 • What is the minimum set of monitors that can detect a given attack/set of attacks?
 • Under cost constraints, what is the best set of monitors to deploy to maximize detection of a set of attacks?
 • Under cost constraints, what set of monitors will maximize my ability to detect a high-priority attack?
Optimal deployment methodology

• 0-1 integer nonlinear programming problem
• Monitors are input variables
• Utility metrics → objective functions to maximize
 • Parameterized by user-specified weight parameters w
• Cost metric → cost function to minimize

Given:
System model, data model
$8 \leq 2^C, w_{\text{Redundancy}} \in \mathbb{R}$
$w_{\text{Confidence}} \in \mathbb{R}$
$maxCost \in \mathbb{R}$

Maximize:
$$\sum_{\mathcal{A}} w_{\text{Redundancy}} \cdot \text{Redundancy}(\mathcal{A}, M_d) + w_{\text{Confidence}} \cdot \text{Confidence}(\mathcal{A}, M_d)$$
$$\text{Coverage}(\mathcal{C}, M_d)$$

Subject to:
$\text{Cost}(M_d) \cdot \text{maxCost}$
Monitor deployment vector $M_d \in \{0,1\}^n$
Evaluation

• Using CAPEC attack taxonomy to define representative attack set on web service architecture

• Indicators defined per monitor
 • E.g., SSH logs:
 • Invalid username used
 • Authentication failures > threshold
 • Access from unexpected geo-region

• Defining event-indicator mapping by running attacks individually and observing indicators generated by monitors

• Demonstrating utility of model for various intrusion detection scenarios
Conclusions

- We define a monitor deployment model that allows us to:
 - Model monitors and intrusion detection requirements
 - Compute utility and cost metrics for monitors
- We define a methodology for deploying monitors that allows us to compute optimal monitor deployment under constraints
- Our optimization problem is very expressive
Ongoing and Future Work

- Evaluation
- Metrics that establish the effect of monitor compromise on detection ability on a per-monitor basis
- Accounting for probabilistic fusion algorithms
- Dealing with unknown attacks
- Quantification of dependence of monitors
 - Effect on intrusion detection
- Completion of the deployment loop
 - Accounting for uncertainty in system state
Backup Slides
Evaluation: Experiment

Web service architecture

Attacker VM
- Running: Kali Linux
- Launching attacks

Ingress Switch
- “Internet”

Firewall
- Running: Ubuntu 12.04 LTS Server
- iptables as firewall
- sshd
- Monitors: iptables (firewall) logs, sshd logs, Network tap → Snort

Internal Switch
- “Intranet”

Webserver
- Running: Ubuntu 12.04 LTS Server
- apache2
- sshd
- Monitors: apache logs, includes php logs, sshd logs, Network tap → Snort

Database Server
- Running: Ubuntu 14.04 LTS Server
- mysqld
- sshd
- Monitors: mysql logs, sshd logs, Network tap → Snort