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Motivation 

Cloud Computing is 
becoming mainstream 

 
 

but its  Reliability 

 

 

 

and Security 

 

… remain  
an increasing concerns 

* Gartner, Hype Cycle for Cloud Computing, 2011 David Mitchell Smith Publication , 27 July 2011 

Image source: Google Trends for Searches 
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Achieving Resilient Cloud Computing   

• Runtime failures inevitable  

– accidental errors  

– software bugs  

– malicious attacks  

• Need efficient monitoring, detection, and recovery from 

runtime failures 

• Need accurate failure diagnosis to enable system and 

application fixes  

 

• This talk introduces a low-cost approach for approximate 

fault localization (and hence, failure diagnosis) in a 

distributed computing infrastructure such as cloud   
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Fault Localization/Failure Diagnosis 

Manual inspection 

Automated (exact) fault  

localization 

X – root cause location 5 

• Diagnosing a problem starts 

from certain locations 

indicated by failure profiles 

(e.g., error messages, a call 

stack) 

• Trace backward through the 

execution flows to identify 

the origin of the problem   

• Attempt to identify exact 

fine-grained locations (e.g., 

at program statement level) 

of failure’s root causes 

• Prohibitively expensive, 

particularly in large 

distributed systems, such as 

cloud infrastructure 
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Approximate Fault Localization: Concept 

Assumption: Similar failure profiles imply similar faults 

Fault 

Injection 

New reported 

failure 

Logging 

Diagnosing 

Query 

Failure 

Database 

Candidate 

fault 

locations 

6 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE 

Approximate Fault Localization: Approach 

• Upon a failure in a system collect  a failure profile 
– e.g. in terms of sent and received messages  

• Process failure profile to  

reconstruct an end-to-end  

processing flow corresponding  

to the failure 

– a sequence of system events across distributed components invoked to 

process a user/application request 

• Use the reconstructed processing flow to query against a pre-

constructed failure profiles stored in Failure Profiles Database  

– Use “string edit distance” metric to identify similar flows and 

“pinpoint” the fault location 
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Message Flow Reconstruction and Comparison 

• Need to represent  

event flows so to enable  

fast identification of  

similar flows 

• Event flows translated  

into event strings   

– an event in a string represented  

as a letter that corresponds to  

the source component of this event, e.g., BBABCABCB 

– event order based on timestamps 

• Compare flows using String Edit Distance 

– the minimum number of insertion, deletion, or replacement 

of a letter required for changing one string into the other  

B 

SEND 

SEND 

RECEIVE 

RECEIVE 

RECEIVE 

RECEIVE 

SEND 

SEND 

A C 
RECEIVE B 

B 
A 
B 
C 

A 
B 

C 
B 
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Example: Edit Distance  

Run 2 BBABCCCBAB 
Edit Distance = 5 

SEND 

SEND 

RECEIVE 

RECEIVE 

RECEIVE 

RECEIVE 

SEND 

SEND 

A B C 
RECEIVE 

RECEIVE 

B 

B 
A 
B 
C 
C 

A 
B 

C 
B 

Run 1 BBABCABCB 

RECEIVE 

SEND A 
B 

RECEIVE 
SEND C 

B 

Message 

fragmentation 

Message 

reordering 

Clock 

skew 
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Enabling Techniques 

• Distributed Events Tracing 

record system events (e.g., 
syscall, library call) in 
distributed systems 

• Message Flow 

Reconstruction and 

Comparison 

quantify the dissimilarity 

between failure profiles 

• Targeted Fault Injection 

deterministically inject faults 

at exact locations in the 

execution flow of  

a distributed system  
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Framework Overview 

Profiling 

Generating FI 

Campaign Specification 

Conducting Targeted FI 

Campaign 

Failure Profile 

Collection 

Processing of Failure 

Profiles 

Failure 

Profile 

Database 

Failure Database Construction 

Import 

to DB 

Import 

to DB 

Failure Report 

Collecting Failure 

Profile 

Processing Failure 

Profile 

Querying FPDB 

Candidate Root 

Causes 

Fault Localization Process 

Cluster/Ranking 

11 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE 

• Collected end-to-end flows must be cleaned up to remove 

non-deterministic events 

– system noise, i.e., periodic messages such as heartbeats  

– message fragmentation,  

– out-of-order messages  

• Non-determinisms in the processing flows make trace 

comparison non-trivial  

• In order to automate the diagnosis we assume that 

– processing of a request is deterministic 

Data Cleanup 

12 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE 

Targeted Fault Injection 

• Allows inserting faults precisely at the intended location 
– Based on the processing flow of each request as the request  traverses 

multiple components  

 

• Minimize side effects to target systems 
– Non-intrusive - no source code modification required 

– Fast and light weigh communication between FI components 

 

• Precise tracking and synchronization of event sequences 
– Catch system level events (e.g., libc function calls) 

– Global synchronization when an event is captured 

 

• Easy to use 
– Compact, reusable specification to define FI experiments 
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Targeted Fault Injection Approach 

Inserting faults at precisely  

specified  execution points  

Pre-Injection 

Analysis 

Fault Injection 

Campaign 
Results 

Profile the system under 

workloads to identify 

injection points and 

causal event sequences 

FI Specification 

A specification for 

defining precise 

fault injection 

scenarios 

Execution of automated 

FI experiments 

Failure profile database, 

Reliability assessment  
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Example Processing Flow and Fault Injection 

On creating VM request, before the request  state changes to 

“networking”, inject a crash to the nova-network process 

nova-api nova-conductor nova-network 

Create VM 

… 

… 

recv(POST*) 

write(*task_state=‘networking’*) 

Crash 

process 

… … 

write(*task_state=‘buiding’*) 

write(*task_state=‘scheduling’*

) 
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System Architecture 

• Target Applications: multiple processes across multiple nodes 

• Each node: One Local Controller 

• Each process: One Injector (libfi), one Flow Tracer 

• FI Central Controller operates in an event-driven fashion to 

drive the injection 

Per Node Per Node Per Target Node 

Per Process Per Process Per Target Proc FI Central 

Controller 

FI Specification 

FI Runtime System 

Flow Tracer 

Lib fault 

injection (libfi) 

Local 

Controller 

Log Collector 

Log Aggregation 
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Evaluation 

• Target: OpenStack, an open source distributed cloud 

management system  

• Validation  

– Do similar failure profiles imply similar faults? 

• Evaluation of AFL Accuracy 

– Identification of fault type and affected component(s) 

– Fault distance between the determined fault location and 

the actual injected fault (Top-K nearest faults) 

• fault distance measured as the number of libc calls between the 

determined approximate fault location and the actual fault location 

in the end-to-end flow of fault-free execution 
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Construction of Failure Profile Database (FPDB) 

• The FPDB is constructed for VM Provision (nova boot) 

requests 

• Five failure profiles collected for each fault 

• Fault models: 

– Contained faults: Process crash, deadlock (within a process) 

– Propagated faults: Message corruption 
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Do Similar Failure Profiles Imply Same faults? 
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Failure Profile Distance (relative to profile size) 

Process Crash

Message
Corruption

Deadlock

More than 80% of all the injected faults, across all three fault 

models, result in less than 4% of the failure profile variation 
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OpenStack Error Reporting 
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Crashed Nova components during VM provisioning 

Error Dection Latency 
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94.2% 

93.1% 88.2% 87.5% 

98.3% 
98.4% 99.5% 99.1% 

79.7% 

74.4% 

100.0% 100.0% 

94.2% 93.0% 

72.4% 71.6% 

98.3% 
98.4% 

60%

80%

100%

Known Faults Unknown
Faults

Known Faults Unknown
Faults

Known Faults Unknown
Faults

Process Crash Message Corruption Deadlock

Fault Type Query Accuracy Targeted Component Query Accuracy Both

Accuracy of AFL: Determining Fault Type and  

Affected Component(s) 

Known fault:      a fault that has at least one failure profile in failure database  

Unknown fault:  a fault that does not have any failure profile in failure database 
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Smallest Fault Distance of Top-K Nearest Faults 
Query for known faults 

K=1 K=5 K=10 K=20

Accuracy of AFL: Top-K Nearest Faults  

for Known Faults 

50% of the Top-1 query results contain the exact fault 

locations, i.e., fault distance is zero  
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Smallest Fault Distance of Top-K Nearest Faults 
Query for unknown faults 

K=1 K=5 K=10 K=20

Accuracy of AFL: Top-K Nearest Faults  

for Unknown Faults 

Two orders of magnitude better 

than OpenStack’s error reporting mechanism 
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Conclusions 

• Develop low-cost method for the approximate fault 

localization 

– reduce the cost of fault diagnostic while providing precision close 

to the methods used for the exact fault localization  

– support large complex distributed environments such as the 

cloud computing 

• Demonstrate effectiveness of the prototype implementation 

on the OpenStack 

– effective in determining (approximate) fault/error locations 

– highly accurate in identifying the failure types and the affected 

components 
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