
Providing Cloud Resiliency:

Fault Localization using Message Flow

Reconstruction and Targeted Fault

Injection

M

a
rc

h

2
0
1
4

Zbigniew Kalbarczyk

Cuong Pham, Ravi Iyer

Information Trust Institute and

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

1

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Outline

• Motivation

• Approximate Fault Localization (AFL)

– Concept

– Approach

• Framework overview

• Targeted fault injection to generate failure profiles

• Evaluation

• Conclusions

2

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Motivation

Cloud Computing is
becoming mainstream

but its Reliability

and Security

… remain
an increasing concerns

* Gartner, Hype Cycle for Cloud Computing, 2011 David Mitchell Smith Publication , 27 July 2011

Image source: Google Trends for Searches

2008 2009 2010 2011 2012 2013 2014

2008 2009 2010 2011 2012 2013 2014

2008 2009 2010 2011 2012 2013 2014

How often people “google”…

3

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Achieving Resilient Cloud Computing

• Runtime failures inevitable

– accidental errors

– software bugs

– malicious attacks

• Need efficient monitoring, detection, and recovery from

runtime failures

• Need accurate failure diagnosis to enable system and

application fixes

• This talk introduces a low-cost approach for approximate

fault localization (and hence, failure diagnosis) in a

distributed computing infrastructure such as cloud

4

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Fault Localization/Failure Diagnosis

Manual inspection

Automated (exact) fault

localization

X – root cause location 5

• Diagnosing a problem starts

from certain locations

indicated by failure profiles

(e.g., error messages, a call

stack)

• Trace backward through the

execution flows to identify

the origin of the problem

• Attempt to identify exact

fine-grained locations (e.g.,

at program statement level)

of failure’s root causes

• Prohibitively expensive,

particularly in large

distributed systems, such as

cloud infrastructure

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Approximate Fault Localization: Concept

Assumption: Similar failure profiles imply similar faults

Fault

Injection

New reported

failure

Logging

Diagnosing

Query

Failure

Database

Candidate

fault

locations

6

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Approximate Fault Localization: Approach

• Upon a failure in a system collect a failure profile
– e.g. in terms of sent and received messages

• Process failure profile to

reconstruct an end-to-end

processing flow corresponding

to the failure

– a sequence of system events across distributed components invoked to

process a user/application request

• Use the reconstructed processing flow to query against a pre-

constructed failure profiles stored in Failure Profiles Database

– Use “string edit distance” metric to identify similar flows and

“pinpoint” the fault location

7

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Message Flow Reconstruction and Comparison

• Need to represent

event flows so to enable

fast identification of

similar flows

• Event flows translated

into event strings

– an event in a string represented

as a letter that corresponds to

the source component of this event, e.g., BBABCABCB

– event order based on timestamps

• Compare flows using String Edit Distance

– the minimum number of insertion, deletion, or replacement

of a letter required for changing one string into the other

B

SEND

SEND

RECEIVE

RECEIVE

RECEIVE

RECEIVE

SEND

SEND

A C
RECEIVE B

B
A
B
C

A
B

C
B

8

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Example: Edit Distance

Run 2 BBABCCCBAB
Edit Distance = 5

SEND

SEND

RECEIVE

RECEIVE

RECEIVE

RECEIVE

SEND

SEND

A B C
RECEIVE

RECEIVE

B

B
A
B
C
C

A
B

C
B

Run 1 BBABCABCB

RECEIVE

SEND A
B

RECEIVE
SEND C

B

Message

fragmentation

Message

reordering

Clock

skew

9

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Enabling Techniques

• Distributed Events Tracing

record system events (e.g.,
syscall, library call) in
distributed systems

• Message Flow

Reconstruction and

Comparison

quantify the dissimilarity

between failure profiles

• Targeted Fault Injection

deterministically inject faults

at exact locations in the

execution flow of

a distributed system

 10

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Framework Overview

Profiling

Generating FI

Campaign Specification

Conducting Targeted FI

Campaign

Failure Profile

Collection

Processing of Failure

Profiles

Failure

Profile

Database

Failure Database Construction

Import

to DB

Import

to DB

Failure Report

Collecting Failure

Profile

Processing Failure

Profile

Querying FPDB

Candidate Root

Causes

Fault Localization Process

Cluster/Ranking

11

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

• Collected end-to-end flows must be cleaned up to remove

non-deterministic events

– system noise, i.e., periodic messages such as heartbeats

– message fragmentation,

– out-of-order messages

• Non-determinisms in the processing flows make trace

comparison non-trivial

• In order to automate the diagnosis we assume that

– processing of a request is deterministic

Data Cleanup

12

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Targeted Fault Injection

• Allows inserting faults precisely at the intended location
– Based on the processing flow of each request as the request traverses

multiple components

• Minimize side effects to target systems
– Non-intrusive - no source code modification required

– Fast and light weigh communication between FI components

• Precise tracking and synchronization of event sequences
– Catch system level events (e.g., libc function calls)

– Global synchronization when an event is captured

• Easy to use
– Compact, reusable specification to define FI experiments

13

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Targeted Fault Injection Approach

Inserting faults at precisely

specified execution points

Pre-Injection

Analysis

Fault Injection

Campaign
Results

Profile the system under

workloads to identify

injection points and

causal event sequences

FI Specification

A specification for

defining precise

fault injection

scenarios

Execution of automated

FI experiments

Failure profile database,

Reliability assessment

14

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Example Processing Flow and Fault Injection

On creating VM request, before the request state changes to

“networking”, inject a crash to the nova-network process

nova-api nova-conductor nova-network

Create VM

…

…

recv(POST*)

write(*task_state=‘networking’*)

Crash

process

… …

write(*task_state=‘buiding’*)

write(*task_state=‘scheduling’*

)

15

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

System Architecture

• Target Applications: multiple processes across multiple nodes

• Each node: One Local Controller

• Each process: One Injector (libfi), one Flow Tracer

• FI Central Controller operates in an event-driven fashion to

drive the injection

Per Node Per Node Per Target Node

Per Process Per Process Per Target Proc FI Central

Controller

FI Specification

FI Runtime System

Flow Tracer

Lib fault

injection (libfi)

Local

Controller

Log Collector

Log Aggregation

16

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Evaluation

• Target: OpenStack, an open source distributed cloud

management system

• Validation

– Do similar failure profiles imply similar faults?

• Evaluation of AFL Accuracy

– Identification of fault type and affected component(s)

– Fault distance between the determined fault location and

the actual injected fault (Top-K nearest faults)

• fault distance measured as the number of libc calls between the

determined approximate fault location and the actual fault location

in the end-to-end flow of fault-free execution

17

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Construction of Failure Profile Database (FPDB)

• The FPDB is constructed for VM Provision (nova boot)

requests

• Five failure profiles collected for each fault

• Fault models:

– Contained faults: Process crash, deadlock (within a process)

– Propagated faults: Message corruption

18

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Do Similar Failure Profiles Imply Same faults?

0%

20%

40%

60%

80%

100%

0
.0

%

<
0
.5

%

<
1
.0

%

<
1
.5

%

<
2
.0

%

<
2
.5

%

<
3
.0

%

<
3
.5

%

<
4
.0

%

<
4
.5

%

<
5
.0

%

<
5
.5

%

<
6
.0

%

<
6
.5

%

<
7
.0

%

C
D

F

Failure Profile Distance (relative to profile size)

Process Crash

Message
Corruption

Deadlock

More than 80% of all the injected faults, across all three fault

models, result in less than 4% of the failure profile variation

19

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

OpenStack Error Reporting

1%

99% 99%

48%
64%

Sheduler Conductor Network Compute API

E
rr

o
r

re
p
o
rt

e
d
/I

n
je

c
ti

o
n
s Error Message Coverage

1530
2210

3120
3980

2250

Sheduler Conductor Network Compute API

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

li
b
c

c
a
ll
s

to
 d

e
te

c
t

a
 f

a
il
u
re

Crashed Nova components during VM provisioning

Error Dection Latency

20

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

94.2%

93.1% 88.2% 87.5%

98.3%
98.4% 99.5% 99.1%

79.7%

74.4%

100.0% 100.0%

94.2% 93.0%

72.4% 71.6%

98.3%
98.4%

60%

80%

100%

Known Faults Unknown
Faults

Known Faults Unknown
Faults

Known Faults Unknown
Faults

Process Crash Message Corruption Deadlock

Fault Type Query Accuracy Targeted Component Query Accuracy Both

Accuracy of AFL: Determining Fault Type and

Affected Component(s)

Known fault: a fault that has at least one failure profile in failure database

Unknown fault: a fault that does not have any failure profile in failure database
21

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

40%

60%

80%

100%

0 <10 <20 <50 <100 <200 <500 <1000 <2000

P
e
rc

e
n
ta

g
e
 o

f
Q

u
e
ry

Smallest Fault Distance of Top-K Nearest Faults
Query for known faults

K=1 K=5 K=10 K=20

Accuracy of AFL: Top-K Nearest Faults

for Known Faults

50% of the Top-1 query results contain the exact fault

locations, i.e., fault distance is zero
22

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

20%

40%

60%

80%

100%

1-9 <20 <50 <100 <200 <500 <1000 <2000

P
e
rc

e
n
ta

g
e
 o

f
Q

u
e
ry

Smallest Fault Distance of Top-K Nearest Faults
Query for unknown faults

K=1 K=5 K=10 K=20

Accuracy of AFL: Top-K Nearest Faults

for Unknown Faults

Two orders of magnitude better

than OpenStack’s error reporting mechanism
23

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Conclusions

• Develop low-cost method for the approximate fault

localization

– reduce the cost of fault diagnostic while providing precision close

to the methods used for the exact fault localization

– support large complex distributed environments such as the

cloud computing

• Demonstrate effectiveness of the prototype implementation

on the OpenStack

– effective in determining (approximate) fault/error locations

– highly accurate in identifying the failure types and the affected

components

24

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | ENGINEERING AT ILLINOIS INFORMATION TRUST INSTITUTE

Sponsors and Other Collaborators

• Long Wang (IBM T. J. Watson)

• Byung Chul Tak (IBM T. J. Watson)

• Salman Baset (IBM T. J. Watson)

• Chunqiang Tang (Facebook)

• Sponsors: AFRL, NSA, NSF

• IBM

25

