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Abstract — Virtual CPU (VCPU) scheduling algorithms that 
efficiently manage processing-resource at the machine 
virtualization layer are key to facilitate resource sharing and 
workload consolidation in Clouds. Such algorithms are mostly 
inherited from pre-virtualization designs, thus need to be 
revamped and re-evaluated. This paper presents a simulation 
framework based on SAN model to rapidly evaluate Virtual 
CPU scheduling algorithms. The paper also demonstrates an 
evaluation of three VCPU scheduling algorithms using this 
framework. 
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I.  INTRODUCTION 
Virtualization is one of the enabling technologies for Cloud 
Computing. It facilitates resource sharing and workload 
consolidation, allowing for better resource utilization, as 
well as energy and cost savings. Achieving this goal 
requires implementing highly efficient resource scheduling 
algorithms. This paper focuses on VCPU scheduling 
algorithms. These algorithms deal with the problem of 
assigning physical CPUs (PCPUs) to Virtual Machines 
(VMs) in a balanced way. 
Empirical evaluation of VCPU scheduling algorithms is 
difficult and requires significant effort. As Virtualization 
technology is becoming more mature, the code base of the 
hypervisors is growing (e.g. the 3.3 version of the XEN 
hypervisor has 300K line of code). In addition, scheduling is 
often implemented at the system level, which requires deep 
understanding of the hardware architecture, as well as 
proficiency in low-level programming and debugging. 
Furthermore, the proposed algorithms are sometimes 
affected by the existing hypervisor architecture. For 
example, when evaluating the balance scheduling algorithm 
for KVM, Sukwong el at. [1] had to tweak the algorithm to 
make it work above the Linux kernel’s process scheduling. 
In order to address this problem, this paper presents a model 
of the virtualization environment, with an open interface for 
users to define their VCPU scheduling algorithms. The 
model then can be simulated to evaluate the performance of 
the defined algorithm. The model is built on top of 
Stochastic Activity Network (SAN) model [5], using 
Mobius simulation tool [9]. It allows: 
• assembling a complete virtualization system with 

flexible configurations, e.g., an arbitrary number of VMs 
with an arbitrary number of VCPUs; 

• plugging in any VCPU scheduling algorithm in the form 
of C functions; 

• automating and accelerating simulation experiments to 
evaluate the plugged in algorithms. 

Although the framework’s components are constructed 
using the SAN model, the users of the framework are not 
required to know SAN or its underlining concepts. All they 
need is to use Mobius’s GUI interface to drag and drop 
components, draw connections (e.g. from a VCPU 
component to a VM component), type in parameters (e.g. 
workload distribution), and write a C function to express the 
scheduling function. We believe that the ease of use and fast 
evaluation process of this approach significantly boosts the 
preliminary evaluations of VCPU scheduling algorithms.  

II. BACKGROUND AND RELATED WORK 

A. SAN Model and Mobius Overview 
SAN model [5] is a higher abstraction of Petri Nets. SAN 
has been demonstrated to be a convenient and effective 
model to evaluate system’s characteristics related to 
performance and dependability [6].  
Informally, the basic constructs of SANs are the following: 
Place : a place contains a natural number of tokens and 
can represent a possible state of the modeled system.  

Activity : an activity indicates transitions between places. 
It expresses how long a transition takes to complete, and it 
can be described as a random variable. This construct can 
have a set of cases, which are used to model the possible 
outcomes of a transition. 

Input gate : input gates enforce a condition for an 
activity to be enabled. 

Output gate : output gates allow the execution of a 
function after the completion of an activity. Output gates 
can be used to update the state of the model. 
Composed model: Multiple SAN models can be combined 
into a composed model using Replicate and Join operations. 
Composed models are often used to simplify the model and 
mitigate the state explosion problem.  
Once constructed, a model can be solved either 
analytically/numerically or by simulation, as provided by 
the Mobius tool. Our framework utilizes the simulation 
infrastructure of Mobius. 

B. VCPU Scheduling Algorithms 
VCPU scheduling remains a challenge for Virtualization 
technologies, especially with hypervisors starting to host 
symmetric multiprocessing (SMP) VMs. 
A naïve, yet popular, implementation is to use a simple 
Round-Robin algorithm when assigning processor resources 
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to each VCPU. This option is available in most hypervisors. 
Sometimes it is the only option, e.g. in KVM or Virtual Box 
hypervisors. This approach can cause additional 
synchronization latency for guest VMs due to VCPU 
preemption. For example, most critical sections in an OS 
kernel are non-preemptible as they are designed to finish 
quickly and reduce the wait time of other threads. However, 
VCPU scheduling is usually unaware of guest preemptions, 
due to a problem called semantic gap, it may preempt a 
VCPU, which is in a middle of executing a critical section.  
This causes other threads, which is waiting on the same lock 
in other VCPUs, wait additional time. 
In order to eliminate this synchronization latency, VMWare 
applies a co-scheduling algorithm [3], which uses a concept 
similar to gang scheduling [4]. The idea of co-scheduling is 
as follows: the scheduler forces all the VCPUs of a VM to 
start (co-start) and stop (co-stop) at the same time. Such an 
algorithm helps to avoid the synchronization latency, as 
both the waiting VCPUs and the lock-holding VCPU are 
preempted and resumed at the same time. This “strict” co-
scheduling approach, however, introduces a fragmentation 
problem. A VCPU can only be scheduled after the 
hypervisor gathers enough resources to execute all other 
VCPUs in the same VM.  
VMWare later implemented a ‘relaxed’ co-scheduling 
algorithm [2] in their ESX 3 and 4 versions. This algorithm 
makes its best effort to perform co-starts and co-stops when 
resources are available. In case there are not enough 
resources to perform a co-start, it allows a single VCPU to 
be scheduled. The scheduler maintains a cumulative skew 
for each VCPU, compared to the rest of VCPUs in the same 
VM. When the skew of a VCPU grows above a certain 
threshold, it is forced to schedule in the “co-start” manner 
only (until the skew drops below a pre-defined threshold). 
This relaxed co-scheduling mitigates the CPU fragmentation 
problem, but it introduces synchronization latency as a 
trade-off. Sukwong el at. argued in [1] that synchronization 
latency significantly increases when the sibling VCPUs (the 
VCPUs in the same VM) are scheduled in the run-queue of 
the same physical CPU. They called this scenario the 
VCPU-stacking problem. Following that observation, they 
introduced the balance-scheduling algorithm, which 
attempts to avoid the VCPU-stacking problem. 

C. Related Work 
Different kinds of VCPU scheduling algorithms [2, 3, 6] 
have been discussed in Section I. For the scheduler 
modeling, [7] applies a mathematical model to analyze and 
compare proportional share, co-proportional share 
scheduling strategies, and then they proposes a scheduling 
framework implemented on Xen. Study [7] empirically 
compares XEN’s three built-in VCPU scheduling 
algorithms. Our simulation framework can be used to 
compare the algorithms. More importantly, it provides a 
convenient infrastructure to quickly examine new (e.g., 
idea-based) algorithms. 

III. VM SIMULATION FRAMEWORK 
This section describes the design and implementation of a 
complete virtualization model, which allows users to 
conveniently construct virtualization systems and exercise 
any VCPU scheduling algorithm. 

A. Framework Overview 
A virtualization system consists of hardware resources (e.g. 
CPU cores, memories, hard-disks), a hypervisor, and one or 
more VMs. Each VM has at least one VCPU, and at most 
the same number of VCPUs as the number of physical 
cores. Each VM is responsible for executing one workload, 
which is distributed evenly on its VCPUs. The hypervisor is 
responsible for assigning physical CPU resource to VCPUs. 
The proposed framework mimics this architecture by 
allowing users to construct VM models (e.g. defining 
number of VCPUs and workload characterizations), define 
VCPU scheduling functions (in form of a C function), and 
configure the number of physical CPUs, and put them all 
together to run simulations. Figure 1 illustrates this structure.  
A VM model is composed of a workload generator sub-
model, several VCPU sub-models, and a job scheduler sub-
model to evenly distribute the workload to the VCPUs. The 
number of VCPUs in each VM is configurable: users can 
plug in as many VCPU sub-models to the composed VM 
model as they need to. The workload sub-model randomly 
generates workloads (represented by load duration – the 
amount of time it requires a VCPU to process) and 
synchronization points (the barrier that stops the workload 
generation until all the preceding jobs are completed). A 
VCPU sub-model has an interface to connect to the job 
scheduler (inside the VM) and another interface to connect 
to the VCPU scheduler (inside the hypervisor). 
In order to support user-defined scheduling functions, the 
defined VCPU scheduler model exports a C function call 
interface, which passes the states of the VCPUs and PCPUs, 
to an outside library. Users implement their C/C++ VCPU 
scheduling function in this interface. 
For the purpose of evaluating VCPU scheduling algorithms, 
our framework considers physical CPU cores as the only 
hardware resource.  

 
Figure 1: Structural model of a virtualization system 
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B. Framework Components 
This section describes the sub-models of this framework. 
These are pluggable components with pre-defined joining 
places between models to guide the construction of 
virtualization systems. 

1) Job Scheduler of a VM 
This model is the hub of each VM. It takes inputs from a 
workload generator model via the Workload place. Based 
on the state of all the VCPUs, represented by VCPUx_slot 
places (x=1..8), the function of input gate Scheduling 
decides which VCPUs to pass the workloads to. Each 
VCPUx_slot is later joined with one VCPU model. The 
Scheduling event is fired when (i) there is a pending 
workload and (ii) there is at least one READY VCPU. The 
Blocked place is enabled when a synchronization point is 
blocking the VM from processing requests. This place is 
shared across all sub-models in a VM. 
Figure 3 shows the SAN model of the Job Scheduler. In this 
figure, eight VCPU slots are statically defined to allow at 
most eight VCPU models to be plugged. In order to support 
bigger VMs, more VCPU slots can easily be added.  

2) VCPU 
Figure 4 shows the SAN model of this component. The 
VCPU model connects with the Job Scheduler model via the 
VCPU_slot place, which consists of the following fields:  
• remaining_load: the remaining time to complete the 

current load. 

• sync_point: if the value is 1, it represents a 
synchronization point. Otherwise (if the value is 0), this 
workload does not require synchronization. 

• status: the status of the VCPU. A VCPU can be: 
o READY: assigned a PCPU, but no workload assigned. 
o BUSY: assigned a PCPU and processing a workload. 
o INACTIVE: not assigned to any PCPU. Note that this 

VCPU can be in the middle of processing a workload 
(reflected by the remaining_load field), or even 
holding a lock (reflected by the sync_point field).  

When a VCPU is in the BUSY state, at each time unit 
(triggered by the Clock activity described later) the 
Processing_load output gate reduces the 
remaining_load by 1. When the remaining_load 
reaches 0, the status of the VCPU is changed to READY, and 
Num_VCPUs_ready gets increased by 1. Both the BUSY and 
READY states can be implicitly considered as ACTIVE states. 
The VCPU model also connects with the Virtual CPU 
scheduler via the Schedule_Out and Schedule_In 
places. The Schedule_In place notifies the VCPU that it 
has been assigned a PCPU. Meanwhile the Schedule_Out 
place notifies the VCPU that it has to relinquish the 
assigned PCPU, thus transit to INACTIVE state. 

3) Workload Generator 
Figure 5 shows the SAN model of this component. This sub-
model generates a workload when two conditions are met: 
(i) there is at least one READY VCPU, and (ii) the VM is not 
blocked (due to synchronization points). Each generated 
workload consists of two fields: 

 
Figure 3: SAN model of Job Scheduler 

 

 
Figure 4: SAN model of VCPU 

 

 
Figure 5: SAN model of Workload Generator 

 
Figure 2: Composed model of a two VCPUs VM 

TABLE 1: JOIN PLACES* IN VIRTUAL MACHINE MODEL 
State Name Sub-model Variables 

Blocked 

Workload_Generator->Blocked 
VM_Job_Scheduler->Blocked 
VCPU1->Blocked 
VCPU2->Blocked 

Num_VCPUs_ready 

Workload_Generator->Num_VCPUs_ready 
VM_Job_Scheduler->Num_VCPUs_ready 
VCPU1->Num_VCPUs_ready 
VCPU2->Num_VCPUs_ready 

VCPU1_slot 
VM_Job_Scheduler->VCPU1_slot 
VCPU1->VCPU_slot 

VCPU2_slot 
VM_Job_Scheduler->VCPU2_slot 
VCPU2->VCPU_slot 

Workload 
Workload_Generator->Workload 
VM_Job_Scheduler->Workload 

*Note: Common names are join places 
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• load: the time it takes for a VCPU (with an assigned 
PCPU) to process the workload 

• sync_point: represents synchronization primitives. For 
this project, we only consider barrier synchronization. 
This means that synchronization points require all the 
preceding jobs to be completed before the next job can 
be assigned. The content of this field is passed to the 
sync_point field in VCPU_slot of the VCPU that this 
workload is assigned.  

 The generation of load and sync_point is configurable 
to any distribution and rate. The generations happen in 
output gate WL_Output. One important parameter is the 
ratio of number of synchronization points to the number of 
workloads. For example, the 1:5 ratio means that for five 
workloads there is one synchronization point. This ratio 
affects the efficiency of synchronization latency solutions, 
such as strict co-scheduling and relaxed co-scheduling.  

4) Virtual Machine 
The Virtual Machine model is a composed model that 
consists of a Workload Generator, a Job Scheduler, and 
several VCPU sub-models. Users can adjust the number of 
VCPU sub-models. Figure 2 illustrates a Virtual Machine 
model with two VCPUs. The join places of this model are 
presented in TABLE 1. 

5) Virtual CPU Scheduler 
The VCPU Scheduler model consists of the following 
components:  
• Clock: fires at every time unit to regulate the operation 

of the scheduling function (inside Scheduling_Func 
output gate) and computes the remaining timeslice of 
each ACTIVE VCPU. 

• VCPU places: each VCPU place represents one possible 
VCPU in the system. A place is enabled only when it is 
connected with a VCPU model via the Schedule_In
and Schedule_Out fields. An place consists of the 
following fields: 
o Schedule_In and Schedule_Out: used to connect 

with a VCPU model. As explained in Section 
III.B.2), the scheduling function uses Schedule_In
and Schedule_Out to notify the VCPU when a 
PCPU is assigned and unassigned, respectively. 

o Last_Scheduled_In: this field stores the time 
stamp when the VCPU was last assigned a PCPU. 

This information is needed by scheduling algorithms 
to determine the next VCPUs that get PCPUs. 

o Timeslice: when a PCPU is assigned to a VCPU, a 
timeslice is also assigned to the VCPU to specify 
how long the VCPU can keep the PCPU. The 
timeslice decreases as Clock fires until it reaches 0 
and the VCPU must relinquish the PCPU. A 
Schedule_Out event will be sent to the VCPU 
model. 

• Num_PCPUs: users use this place to configure the 
number of PCPUs in the system. 

• PCPUs array: each element of this array contains the 
state of a PCPU (IDLE or ASSIGNED). 

• Scheduling function (defined as the function of 
Scheduling_Func output gate): this function is 
essentially a connector to user-defined scheduling 
functions. We defined a standard function call interface 
that can be used to call virtually any scheduling function: 
bool schedule(VCPU_host_external* vcpus, int 
num_vcpu, PCPU_external* pcpus, int num_pcpu, 
long timestamp) 

Where: 
o VCPU_host_external: a data structure that has the 

same layout as the VCPU place; 
o The pointer *vcpus: points to an array of 

VCPU_host_external elements. This array is used 
as both input and output of the function; 

o num_vcpu: the number of VCPUs in the system; 
o PCPU_external: a data structure that contains the 

state of a PCPU in the system; 
o The pointer *pcpus: points to an array of 

PCPU_external elements. Similar to the vcpus 
array, this array is used as both input and output to 
reflect the state of PCPUs before and after the 
execution of the scheduling function; 

 
Figure 6: SAN model of VCPU Scheduler 

 
Figure 7: Composed model of a 

virtualization system with two VMs 

TABLE 2: JOIN PLACES IN VIRTUAL SYSTEM MODEL 
State Variable Name Sub-model Variables 
Schedule_In1_1 

VM_2VCPU_1->Schedule_In1 
VCPU_Scheduler->VCPU1->Schedule_In 

Schedule_In1_2 
VM_2VCPU_1->Schedule_In2 
VCPU_Scheduler->VCPU2->Schedule_In 

Schedule_Out1_1 
VM_2VCPU_1->Schedule_Out1 
VCPU_Scheduler->VCPU1->Schedule_Out 

Schedule_Out1_2 
VM_2VCPU_1->Schedule_Out2 
VCPU_Scheduler->VCPU2->Schedule_Out 

* Shown join places are between the first VM_2VCPU_1 model and 
VCPU_Scheduler model. Join places of the second VM_2VCPU_2 are omitted 
due to space limit. 
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o num_pcpu: the number of PCPUs in the system; 
o timestamp indicates the system time.  

Figure 6 shows the SAN model of VCPU scheduler. Note 
that the model statically defines 16 VCPU slots, which 
allows for 16 VCPU sub-models. The slots that do not have 
plugged in VCPU sub-models are not enabled. In order to 
support bigger virtualization systems, more VCPU slots can 
be easily added to the model.  

6) Virtual System  
Virtual System model is a composed model consisting of a 
VCPU scheduler and several pluggable Virtual Machine 
sub-models. The number and settings of Virtual Machine 
sub-models are user-configurable. Figure 7 shows a Virtual 
System with two VMs, each VM having two VCPUs. The 
join places of this model are presented in TABLE 2.  

IV. EVALUATION 
We use the simulation framework to compare three VCPU 
scheduling algorithms: Round-Robin Scheduling (RRS), 
Strict Co-Scheduling (SCS) [3], and Relaxed Co-Scheduling 
(RCS) [2].  

A. Verifying the Fairness of Scheduling Algorithms 
In the first set of simulations, we compared the scheduling 
fairness of the three algorithms. Fairness reflects the ability 
of scheduling algorithms to guarantee that all VCPUs 
receive resources in a balanced way. In order to quantify 
fairness, we define a metric called VCPU Availability. This 
metric reflects the average portion of time that a VCPU is in 
the ACTIVE state during a simulation. A 100% VCPU 
Availability means that the VCPU is always in ACTIVE 
state (e.g., there are more PCPUs than VCPUs). This metric 
is obtained by using a reward variable (in the SAN model) 
that monitors the state transition of each VCPU. The setup 
of the experiment is as follows: 
• Three VMs: one 2-VCPU VM (VCPU1.1 and VCPU1.2) 

and two 1-VCPU VM (VCPU 2.1 and VCPU3.1); 
• The synchronization rate is 1:5; 
• The number of PCPUs is varied from 1 to 4. 
Figure 8 presents the result of the simulation (with 95% 
confidence level and <0.1 confidence interval). The results 

show that RRS always achieves scheduling fairness 
regardless of the resource. In our setup, the two co-
scheduling algorithms achieve poorer fairness than RRS. 
For example, in the one PCPU setup, SCS cannot schedule 
the 2-VCPUs VM due to the strict requirement of VCPU co-
start – the number of PCPUs is always smaller than the 
number of required VCPUs. In the same setup, RCS is able 
to schedule the 2-VCPU VM, thanks to the relaxed 
requirement of co-start. However, due to the skew-threshold 
constraint, the VCPUs of these 2-VCPU VM receive less 
PCPU resources than the VCPUs of 1-VCPU VMs (which 
are not constrained by the skew-threshold). The fairness of 
the two co-scheduling algorithms improves as the number of 
PCPUs increases. RCS generally achieves better fairness 
than SCS. They achieve balanced scheduling (i) for the VM 
that have the same configuration and (ii) when the number 
of VCPUs is not greater than the number of PCPUs.  

B. Physical CPU Utilization 
In this set of simulations, we evaluated the PCPU utilization 
of the three scheduling algorithms with different VM 
configurations. PCPU utilization measures the portion of 
time that a PCPU is assigned to VCPUs during a simulation. 
This metric also reveals the CPU fragmentation problem of 
the co-scheduling algorithms. In order to obtain the 
averaged utilization of all the PCPUs, we defined a reward 
variable (in the SAN model) that monitors the state 
transition of all the PCPUs. The setup of the experiment is 
as follows: 
• Three sets of VMs: (set 1) each VM had two VCPUs; 

(set 2) the first VM has two VCPUs and the second VM 

 
Figure 9: The averaged PCPU Utilization (of four PCPUs) in 

different VM setups (95% confidence level) 

 
Figure 10: The averaged VCPU Utilization with four PCPUs in 

different VM setups (95% confidence level) 

 
Figure 8: The availability of four VCPUs in three VMs 
(2VCPUs + 1 VCPU + 1 VCPU) (95% confidence level) 
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had three VCPUs; (set 3) the first VM had two VCPUs 
and the second VM had four VCPUs; 

• The synchronization rate is 1:5; 
• The number of PCPUs is four across all simulations. 
Figure 9 presents the simulation results (with 95% 
confidence level and <0.1 confidence interval). The results 
show that when the number of VCPUs is larger than the 
number of PCPUs, the two co-scheduling algorithms cannot 
fully utilize the PCPUs. This is caused by the CPU 
fragmentation problem mentioned in Section II.B. The 
results also show that the relaxed co-scheduling 
significantly mitigates this problem, as it can always achieve 
more than 90% PCPU utilization.  

C. Virtual CPU Utilization 
In this set of simulations, we evaluated the VCPU utilization 
resulting from the three scheduling algorithms with different 
VM setups. VCPU utilization measures the portion of time 
that a VCPU is used to process workloads during the 
simulation. This metric reveals the synchronization latency, 
as we configured the workload generation to be interrupted 
only when synchronization points block the VMs. In order 
to obtain the average utilization of all the VCPUs, we 
defined a reward variable (in the SAN model) that monitors 
the READY and BUSY states of all the VCPUs. The setup 
of the experiment is as follows: 
• Three sets of VMs: (set 1) each VM had two VCPUs; 

(set 2) the first VM had two VCPUs and the second VM 
had three VCPUs; (set 3) the first VM had two VCPUs 
and the second VM had four VCPUs; 

• The synchronization rate is varied from 1:5 to 1:2; 
• The number of PCPUs is four across all simulations. 
Figure 10 presents the results of the simulation (with 95% 
confidence level and <0.1 confidence interval). When the 
number of VCPUs is the same as the number of PCPUs 
(with the first set of VMs), the VCPU utilization is high and 
we do not see any difference among the scheduling 
algorithms. However, when the number of VCPUs is greater 
than the number of PCPUs (with the second and third set of 
VMs), the results show the co-scheduling algorithm 
reducing synchronization latency. The strict co-scheduling 
achieves the highest VCPU utilization, followed by relaxed 
co-scheduling. Due to the relaxed requirement of the co-
start, the VCPU utilization of RCS is slightly lower than 
that of SCS. According to the PCPU utilization 
measurement presented in Section IV.B, SCS archives much 
better PCPU utilization when compared to SCS. These 
measurements demonstrate that RCS is better than SCS. 
Round-Robin scheduling, on the other hand, is significantly 
affected by the synchronization rate. As the synchronization 
rate increases, VCPU utilization quickly degrades.  

V. DISCUSSION 
This is a flexible simulation framework that aids in the 
evaluation of VCPU scheduling algorithms. However, the 
framework at this current state still has several limitations: 

The Workload model is still primitive. It needs 
improvements in order to (i) include other resource 
requirements, such as memory, network bandwidth, and (ii) 
represent more synchronization mechanisms.  
The model cannot be used to debug problems, which impact 
the correctness of guest operation. For example, some 
people suspect that the long synchronization latencies 
caused by VCPU scheduling could violate the assumptions 
of some locking mechanisms (e.g. spinlocks assuming that 
the critical sections are short). 
Evaluating the fidelity of the model. At this state, we did our 
best to simulate the virtualization environment. But more 
thorough evaluation is needed to validate our model.  

VI. CONCLUSION 
We have presented the design and construction of a 
simulation framework for evaluating VCPU scheduling 
algorithms. The framework is built upon SAN models and 
the Mobius tool, making the framework easy to understand 
and configure for various virtualization setups. We 
demonstrate the usefulness of the framework by evaluating 
three VCPU scheduling algorithms: Round-Robin, Strict 
Co-Scheduling, and Relaxed Co-Scheduling. 
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