
A Simulation Framework to Evaluate Virtual CPU Scheduling Algorithms
Cuong Pham, Qingkun Li, Zachary Estrada, Zbigniew Kalbarczyk, Ravishankar K. Iyer

University of Illinois at Urbana-Champaign
{pham9, qli19, zestrad2, kalbarcz, rkiyer}@illinois.edu

Abstract — Virtual CPU (VCPU) scheduling algorithms that
efficiently manage processing-resource at the machine
virtualization layer are key to facilitate resource sharing and
workload consolidation in Clouds. Such algorithms are mostly
inherited from pre-virtualization designs, thus need to be
revamped and re-evaluated. This paper presents a simulation
framework based on SAN model to rapidly evaluate Virtual
CPU scheduling algorithms. The paper also demonstrates an
evaluation of three VCPU scheduling algorithms using this
framework.

Keywords: Cloud Computing, VCPU, Scheduling, Simulation

I. INTRODUCTION
Virtualization is one of the enabling technologies for Cloud
Computing. It facilitates resource sharing and workload
consolidation, allowing for better resource utilization, as
well as energy and cost savings. Achieving this goal
requires implementing highly efficient resource scheduling
algorithms. This paper focuses on VCPU scheduling
algorithms. These algorithms deal with the problem of
assigning physical CPUs (PCPUs) to Virtual Machines
(VMs) in a balanced way.
Empirical evaluation of VCPU scheduling algorithms is
difficult and requires significant effort. As Virtualization
technology is becoming more mature, the code base of the
hypervisors is growing (e.g. the 3.3 version of the XEN
hypervisor has 300K line of code). In addition, scheduling is
often implemented at the system level, which requires deep
understanding of the hardware architecture, as well as
proficiency in low-level programming and debugging.
Furthermore, the proposed algorithms are sometimes
affected by the existing hypervisor architecture. For
example, when evaluating the balance scheduling algorithm
for KVM, Sukwong el at. [1] had to tweak the algorithm to
make it work above the Linux kernel’s process scheduling.
In order to address this problem, this paper presents a model
of the virtualization environment, with an open interface for
users to define their VCPU scheduling algorithms. The
model then can be simulated to evaluate the performance of
the defined algorithm. The model is built on top of
Stochastic Activity Network (SAN) model [5], using
Mobius simulation tool [9]. It allows:
• assembling a complete virtualization system with

flexible configurations, e.g., an arbitrary number of VMs
with an arbitrary number of VCPUs;

• plugging in any VCPU scheduling algorithm in the form
of C functions;

• automating and accelerating simulation experiments to
evaluate the plugged in algorithms.

Although the framework’s components are constructed
using the SAN model, the users of the framework are not
required to know SAN or its underlining concepts. All they
need is to use Mobius’s GUI interface to drag and drop
components, draw connections (e.g. from a VCPU
component to a VM component), type in parameters (e.g.
workload distribution), and write a C function to express the
scheduling function. We believe that the ease of use and fast
evaluation process of this approach significantly boosts the
preliminary evaluations of VCPU scheduling algorithms.

II. BACKGROUND AND RELATED WORK

A. SAN Model and Mobius Overview
SAN model [5] is a higher abstraction of Petri Nets. SAN
has been demonstrated to be a convenient and effective
model to evaluate system’s characteristics related to
performance and dependability [6].
Informally, the basic constructs of SANs are the following:
Place : a place contains a natural number of tokens and
can represent a possible state of the modeled system.

Activity : an activity indicates transitions between places.
It expresses how long a transition takes to complete, and it
can be described as a random variable. This construct can
have a set of cases, which are used to model the possible
outcomes of a transition.

Input gate : input gates enforce a condition for an
activity to be enabled.

Output gate : output gates allow the execution of a
function after the completion of an activity. Output gates
can be used to update the state of the model.
Composed model: Multiple SAN models can be combined
into a composed model using Replicate and Join operations.
Composed models are often used to simplify the model and
mitigate the state explosion problem.
Once constructed, a model can be solved either
analytically/numerically or by simulation, as provided by
the Mobius tool. Our framework utilizes the simulation
infrastructure of Mobius.

B. VCPU Scheduling Algorithms
VCPU scheduling remains a challenge for Virtualization
technologies, especially with hypervisors starting to host
symmetric multiprocessing (SMP) VMs.
A naïve, yet popular, implementation is to use a simple
Round-Robin algorithm when assigning processor resources

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

978-0-7695-5023-7/13 $25.00 © 2013 IEEE

DOI 10.1109/ICDCSW.2013.61

138

to each VCPU. This option is available in most hypervisors.
Sometimes it is the only option, e.g. in KVM or Virtual Box
hypervisors. This approach can cause additional
synchronization latency for guest VMs due to VCPU
preemption. For example, most critical sections in an OS
kernel are non-preemptible as they are designed to finish
quickly and reduce the wait time of other threads. However,
VCPU scheduling is usually unaware of guest preemptions,
due to a problem called semantic gap, it may preempt a
VCPU, which is in a middle of executing a critical section.
This causes other threads, which is waiting on the same lock
in other VCPUs, wait additional time.
In order to eliminate this synchronization latency, VMWare
applies a co-scheduling algorithm [3], which uses a concept
similar to gang scheduling [4]. The idea of co-scheduling is
as follows: the scheduler forces all the VCPUs of a VM to
start (co-start) and stop (co-stop) at the same time. Such an
algorithm helps to avoid the synchronization latency, as
both the waiting VCPUs and the lock-holding VCPU are
preempted and resumed at the same time. This “strict” co-
scheduling approach, however, introduces a fragmentation
problem. A VCPU can only be scheduled after the
hypervisor gathers enough resources to execute all other
VCPUs in the same VM.
VMWare later implemented a ‘relaxed’ co-scheduling
algorithm [2] in their ESX 3 and 4 versions. This algorithm
makes its best effort to perform co-starts and co-stops when
resources are available. In case there are not enough
resources to perform a co-start, it allows a single VCPU to
be scheduled. The scheduler maintains a cumulative skew
for each VCPU, compared to the rest of VCPUs in the same
VM. When the skew of a VCPU grows above a certain
threshold, it is forced to schedule in the “co-start” manner
only (until the skew drops below a pre-defined threshold).
This relaxed co-scheduling mitigates the CPU fragmentation
problem, but it introduces synchronization latency as a
trade-off. Sukwong el at. argued in [1] that synchronization
latency significantly increases when the sibling VCPUs (the
VCPUs in the same VM) are scheduled in the run-queue of
the same physical CPU. They called this scenario the
VCPU-stacking problem. Following that observation, they
introduced the balance-scheduling algorithm, which
attempts to avoid the VCPU-stacking problem.

C. Related Work
Different kinds of VCPU scheduling algorithms [2, 3, 6]
have been discussed in Section I. For the scheduler
modeling, [7] applies a mathematical model to analyze and
compare proportional share, co-proportional share
scheduling strategies, and then they proposes a scheduling
framework implemented on Xen. Study [7] empirically
compares XEN’s three built-in VCPU scheduling
algorithms. Our simulation framework can be used to
compare the algorithms. More importantly, it provides a
convenient infrastructure to quickly examine new (e.g.,
idea-based) algorithms.

III. VM SIMULATION FRAMEWORK
This section describes the design and implementation of a
complete virtualization model, which allows users to
conveniently construct virtualization systems and exercise
any VCPU scheduling algorithm.

A. Framework Overview
A virtualization system consists of hardware resources (e.g.
CPU cores, memories, hard-disks), a hypervisor, and one or
more VMs. Each VM has at least one VCPU, and at most
the same number of VCPUs as the number of physical
cores. Each VM is responsible for executing one workload,
which is distributed evenly on its VCPUs. The hypervisor is
responsible for assigning physical CPU resource to VCPUs.
The proposed framework mimics this architecture by
allowing users to construct VM models (e.g. defining
number of VCPUs and workload characterizations), define
VCPU scheduling functions (in form of a C function), and
configure the number of physical CPUs, and put them all
together to run simulations. Figure 1 illustrates this structure.
A VM model is composed of a workload generator sub-
model, several VCPU sub-models, and a job scheduler sub-
model to evenly distribute the workload to the VCPUs. The
number of VCPUs in each VM is configurable: users can
plug in as many VCPU sub-models to the composed VM
model as they need to. The workload sub-model randomly
generates workloads (represented by load duration – the
amount of time it requires a VCPU to process) and
synchronization points (the barrier that stops the workload
generation until all the preceding jobs are completed). A
VCPU sub-model has an interface to connect to the job
scheduler (inside the VM) and another interface to connect
to the VCPU scheduler (inside the hypervisor).
In order to support user-defined scheduling functions, the
defined VCPU scheduler model exports a C function call
interface, which passes the states of the VCPUs and PCPUs,
to an outside library. Users implement their C/C++ VCPU
scheduling function in this interface.
For the purpose of evaluating VCPU scheduling algorithms,
our framework considers physical CPU cores as the only
hardware resource.

Figure 1: Structural model of a virtualization system

139

B. Framework Components
This section describes the sub-models of this framework.
These are pluggable components with pre-defined joining
places between models to guide the construction of
virtualization systems.

1) Job Scheduler of a VM
This model is the hub of each VM. It takes inputs from a
workload generator model via the Workload place. Based
on the state of all the VCPUs, represented by VCPUx_slot
places (x=1..8), the function of input gate Scheduling
decides which VCPUs to pass the workloads to. Each
VCPUx_slot is later joined with one VCPU model. The
Scheduling event is fired when (i) there is a pending
workload and (ii) there is at least one READY VCPU. The
Blocked place is enabled when a synchronization point is
blocking the VM from processing requests. This place is
shared across all sub-models in a VM.
Figure 3 shows the SAN model of the Job Scheduler. In this
figure, eight VCPU slots are statically defined to allow at
most eight VCPU models to be plugged. In order to support
bigger VMs, more VCPU slots can easily be added.

2) VCPU
Figure 4 shows the SAN model of this component. The
VCPU model connects with the Job Scheduler model via the
VCPU_slot place, which consists of the following fields:
• remaining_load: the remaining time to complete the

current load.

• sync_point: if the value is 1, it represents a
synchronization point. Otherwise (if the value is 0), this
workload does not require synchronization.

• status: the status of the VCPU. A VCPU can be:
o READY: assigned a PCPU, but no workload assigned.
o BUSY: assigned a PCPU and processing a workload.
o INACTIVE: not assigned to any PCPU. Note that this

VCPU can be in the middle of processing a workload
(reflected by the remaining_load field), or even
holding a lock (reflected by the sync_point field).

When a VCPU is in the BUSY state, at each time unit
(triggered by the Clock activity described later) the
Processing_load output gate reduces the
remaining_load by 1. When the remaining_load
reaches 0, the status of the VCPU is changed to READY, and
Num_VCPUs_ready gets increased by 1. Both the BUSY and
READY states can be implicitly considered as ACTIVE states.
The VCPU model also connects with the Virtual CPU
scheduler via the Schedule_Out and Schedule_In
places. The Schedule_In place notifies the VCPU that it
has been assigned a PCPU. Meanwhile the Schedule_Out
place notifies the VCPU that it has to relinquish the
assigned PCPU, thus transit to INACTIVE state.

3) Workload Generator
Figure 5 shows the SAN model of this component. This sub-
model generates a workload when two conditions are met:
(i) there is at least one READY VCPU, and (ii) the VM is not
blocked (due to synchronization points). Each generated
workload consists of two fields:

Figure 3: SAN model of Job Scheduler

Figure 4: SAN model of VCPU

Figure 5: SAN model of Workload Generator

Figure 2: Composed model of a two VCPUs VM

TABLE 1: JOIN PLACES* IN VIRTUAL MACHINE MODEL
State Name Sub-model Variables

Blocked

Workload_Generator->Blocked
VM_Job_Scheduler->Blocked
VCPU1->Blocked
VCPU2->Blocked

Num_VCPUs_ready

Workload_Generator->Num_VCPUs_ready
VM_Job_Scheduler->Num_VCPUs_ready
VCPU1->Num_VCPUs_ready
VCPU2->Num_VCPUs_ready

VCPU1_slot
VM_Job_Scheduler->VCPU1_slot
VCPU1->VCPU_slot

VCPU2_slot
VM_Job_Scheduler->VCPU2_slot
VCPU2->VCPU_slot

Workload
Workload_Generator->Workload
VM_Job_Scheduler->Workload

*Note: Common names are join places

140

• load: the time it takes for a VCPU (with an assigned
PCPU) to process the workload

• sync_point: represents synchronization primitives. For
this project, we only consider barrier synchronization.
This means that synchronization points require all the
preceding jobs to be completed before the next job can
be assigned. The content of this field is passed to the
sync_point field in VCPU_slot of the VCPU that this
workload is assigned.

 The generation of load and sync_point is configurable
to any distribution and rate. The generations happen in
output gate WL_Output. One important parameter is the
ratio of number of synchronization points to the number of
workloads. For example, the 1:5 ratio means that for five
workloads there is one synchronization point. This ratio
affects the efficiency of synchronization latency solutions,
such as strict co-scheduling and relaxed co-scheduling.

4) Virtual Machine
The Virtual Machine model is a composed model that
consists of a Workload Generator, a Job Scheduler, and
several VCPU sub-models. Users can adjust the number of
VCPU sub-models. Figure 2 illustrates a Virtual Machine
model with two VCPUs. The join places of this model are
presented in TABLE 1.

5) Virtual CPU Scheduler
The VCPU Scheduler model consists of the following
components:
• Clock: fires at every time unit to regulate the operation

of the scheduling function (inside Scheduling_Func
output gate) and computes the remaining timeslice of
each ACTIVE VCPU.

• VCPU places: each VCPU place represents one possible
VCPU in the system. A place is enabled only when it is
connected with a VCPU model via the Schedule_In
and Schedule_Out fields. An place consists of the
following fields:
o Schedule_In and Schedule_Out: used to connect

with a VCPU model. As explained in Section
III.B.2), the scheduling function uses Schedule_In
and Schedule_Out to notify the VCPU when a
PCPU is assigned and unassigned, respectively.

o Last_Scheduled_In: this field stores the time
stamp when the VCPU was last assigned a PCPU.

This information is needed by scheduling algorithms
to determine the next VCPUs that get PCPUs.

o Timeslice: when a PCPU is assigned to a VCPU, a
timeslice is also assigned to the VCPU to specify
how long the VCPU can keep the PCPU. The
timeslice decreases as Clock fires until it reaches 0
and the VCPU must relinquish the PCPU. A
Schedule_Out event will be sent to the VCPU
model.

• Num_PCPUs: users use this place to configure the
number of PCPUs in the system.

• PCPUs array: each element of this array contains the
state of a PCPU (IDLE or ASSIGNED).

• Scheduling function (defined as the function of
Scheduling_Func output gate): this function is
essentially a connector to user-defined scheduling
functions. We defined a standard function call interface
that can be used to call virtually any scheduling function:
bool schedule(VCPU_host_external* vcpus, int
num_vcpu, PCPU_external* pcpus, int num_pcpu,
long timestamp)

Where:
o VCPU_host_external: a data structure that has the

same layout as the VCPU place;
o The pointer *vcpus: points to an array of

VCPU_host_external elements. This array is used
as both input and output of the function;

o num_vcpu: the number of VCPUs in the system;
o PCPU_external: a data structure that contains the

state of a PCPU in the system;
o The pointer *pcpus: points to an array of

PCPU_external elements. Similar to the vcpus
array, this array is used as both input and output to
reflect the state of PCPUs before and after the
execution of the scheduling function;

Figure 6: SAN model of VCPU Scheduler

Figure 7: Composed model of a

virtualization system with two VMs

TABLE 2: JOIN PLACES IN VIRTUAL SYSTEM MODEL
State Variable Name Sub-model Variables
Schedule_In1_1

VM_2VCPU_1->Schedule_In1
VCPU_Scheduler->VCPU1->Schedule_In

Schedule_In1_2
VM_2VCPU_1->Schedule_In2
VCPU_Scheduler->VCPU2->Schedule_In

Schedule_Out1_1
VM_2VCPU_1->Schedule_Out1
VCPU_Scheduler->VCPU1->Schedule_Out

Schedule_Out1_2
VM_2VCPU_1->Schedule_Out2
VCPU_Scheduler->VCPU2->Schedule_Out

* Shown join places are between the first VM_2VCPU_1 model and
VCPU_Scheduler model. Join places of the second VM_2VCPU_2 are omitted
due to space limit.

141

o num_pcpu: the number of PCPUs in the system;
o timestamp indicates the system time.

Figure 6 shows the SAN model of VCPU scheduler. Note
that the model statically defines 16 VCPU slots, which
allows for 16 VCPU sub-models. The slots that do not have
plugged in VCPU sub-models are not enabled. In order to
support bigger virtualization systems, more VCPU slots can
be easily added to the model.

6) Virtual System
Virtual System model is a composed model consisting of a
VCPU scheduler and several pluggable Virtual Machine
sub-models. The number and settings of Virtual Machine
sub-models are user-configurable. Figure 7 shows a Virtual
System with two VMs, each VM having two VCPUs. The
join places of this model are presented in TABLE 2.

IV. EVALUATION
We use the simulation framework to compare three VCPU
scheduling algorithms: Round-Robin Scheduling (RRS),
Strict Co-Scheduling (SCS) [3], and Relaxed Co-Scheduling
(RCS) [2].

A. Verifying the Fairness of Scheduling Algorithms
In the first set of simulations, we compared the scheduling
fairness of the three algorithms. Fairness reflects the ability
of scheduling algorithms to guarantee that all VCPUs
receive resources in a balanced way. In order to quantify
fairness, we define a metric called VCPU Availability. This
metric reflects the average portion of time that a VCPU is in
the ACTIVE state during a simulation. A 100% VCPU
Availability means that the VCPU is always in ACTIVE
state (e.g., there are more PCPUs than VCPUs). This metric
is obtained by using a reward variable (in the SAN model)
that monitors the state transition of each VCPU. The setup
of the experiment is as follows:
• Three VMs: one 2-VCPU VM (VCPU1.1 and VCPU1.2)

and two 1-VCPU VM (VCPU 2.1 and VCPU3.1);
• The synchronization rate is 1:5;
• The number of PCPUs is varied from 1 to 4.
Figure 8 presents the result of the simulation (with 95%
confidence level and <0.1 confidence interval). The results

show that RRS always achieves scheduling fairness
regardless of the resource. In our setup, the two co-
scheduling algorithms achieve poorer fairness than RRS.
For example, in the one PCPU setup, SCS cannot schedule
the 2-VCPUs VM due to the strict requirement of VCPU co-
start – the number of PCPUs is always smaller than the
number of required VCPUs. In the same setup, RCS is able
to schedule the 2-VCPU VM, thanks to the relaxed
requirement of co-start. However, due to the skew-threshold
constraint, the VCPUs of these 2-VCPU VM receive less
PCPU resources than the VCPUs of 1-VCPU VMs (which
are not constrained by the skew-threshold). The fairness of
the two co-scheduling algorithms improves as the number of
PCPUs increases. RCS generally achieves better fairness
than SCS. They achieve balanced scheduling (i) for the VM
that have the same configuration and (ii) when the number
of VCPUs is not greater than the number of PCPUs.

B. Physical CPU Utilization
In this set of simulations, we evaluated the PCPU utilization
of the three scheduling algorithms with different VM
configurations. PCPU utilization measures the portion of
time that a PCPU is assigned to VCPUs during a simulation.
This metric also reveals the CPU fragmentation problem of
the co-scheduling algorithms. In order to obtain the
averaged utilization of all the PCPUs, we defined a reward
variable (in the SAN model) that monitors the state
transition of all the PCPUs. The setup of the experiment is
as follows:
• Three sets of VMs: (set 1) each VM had two VCPUs;

(set 2) the first VM has two VCPUs and the second VM

Figure 9: The averaged PCPU Utilization (of four PCPUs) in

different VM setups (95% confidence level)

Figure 10: The averaged VCPU Utilization with four PCPUs in

different VM setups (95% confidence level)

Figure 8: The availability of four VCPUs in three VMs
(2VCPUs + 1 VCPU + 1 VCPU) (95% confidence level)

142

had three VCPUs; (set 3) the first VM had two VCPUs
and the second VM had four VCPUs;

• The synchronization rate is 1:5;
• The number of PCPUs is four across all simulations.
Figure 9 presents the simulation results (with 95%
confidence level and <0.1 confidence interval). The results
show that when the number of VCPUs is larger than the
number of PCPUs, the two co-scheduling algorithms cannot
fully utilize the PCPUs. This is caused by the CPU
fragmentation problem mentioned in Section II.B. The
results also show that the relaxed co-scheduling
significantly mitigates this problem, as it can always achieve
more than 90% PCPU utilization.

C. Virtual CPU Utilization
In this set of simulations, we evaluated the VCPU utilization
resulting from the three scheduling algorithms with different
VM setups. VCPU utilization measures the portion of time
that a VCPU is used to process workloads during the
simulation. This metric reveals the synchronization latency,
as we configured the workload generation to be interrupted
only when synchronization points block the VMs. In order
to obtain the average utilization of all the VCPUs, we
defined a reward variable (in the SAN model) that monitors
the READY and BUSY states of all the VCPUs. The setup
of the experiment is as follows:
• Three sets of VMs: (set 1) each VM had two VCPUs;

(set 2) the first VM had two VCPUs and the second VM
had three VCPUs; (set 3) the first VM had two VCPUs
and the second VM had four VCPUs;

• The synchronization rate is varied from 1:5 to 1:2;
• The number of PCPUs is four across all simulations.
Figure 10 presents the results of the simulation (with 95%
confidence level and <0.1 confidence interval). When the
number of VCPUs is the same as the number of PCPUs
(with the first set of VMs), the VCPU utilization is high and
we do not see any difference among the scheduling
algorithms. However, when the number of VCPUs is greater
than the number of PCPUs (with the second and third set of
VMs), the results show the co-scheduling algorithm
reducing synchronization latency. The strict co-scheduling
achieves the highest VCPU utilization, followed by relaxed
co-scheduling. Due to the relaxed requirement of the co-
start, the VCPU utilization of RCS is slightly lower than
that of SCS. According to the PCPU utilization
measurement presented in Section IV.B, SCS archives much
better PCPU utilization when compared to SCS. These
measurements demonstrate that RCS is better than SCS.
Round-Robin scheduling, on the other hand, is significantly
affected by the synchronization rate. As the synchronization
rate increases, VCPU utilization quickly degrades.

V. DISCUSSION
This is a flexible simulation framework that aids in the
evaluation of VCPU scheduling algorithms. However, the
framework at this current state still has several limitations:

The Workload model is still primitive. It needs
improvements in order to (i) include other resource
requirements, such as memory, network bandwidth, and (ii)
represent more synchronization mechanisms.
The model cannot be used to debug problems, which impact
the correctness of guest operation. For example, some
people suspect that the long synchronization latencies
caused by VCPU scheduling could violate the assumptions
of some locking mechanisms (e.g. spinlocks assuming that
the critical sections are short).
Evaluating the fidelity of the model. At this state, we did our
best to simulate the virtualization environment. But more
thorough evaluation is needed to validate our model.

VI. CONCLUSION
We have presented the design and construction of a
simulation framework for evaluating VCPU scheduling
algorithms. The framework is built upon SAN models and
the Mobius tool, making the framework easy to understand
and configure for various virtualization setups. We
demonstrate the usefulness of the framework by evaluating
three VCPU scheduling algorithms: Round-Robin, Strict
Co-Scheduling, and Relaxed Co-Scheduling.

ACKNOWLEDGEMENT
This work was supported in part by NSF grant CNS 10-
18503 CISE the Department of Energy under Award
Number DE-OE0000097, the Air Force Office of Scientific
Research, under agreement number FA8750-11-2-0084,
the Defense Threat Reduction Agency under award no.
HDTRA1-11-1-0008, Boeing Corporation, and Infosys Ltd.

REFERENCES
[1] O. Sukwong, and H. Kim. "Is co-scheduling too expensive for SMP

VMs?" In Proc. of the 6th conf. on Computer systems, ACM, 2011.
[2] VMWare Inc., “VMware® vSphere™: The CPU Scheduler in

VMware ESX® 4.1”, Techincal Report.
[3] VMWare Inc., “Co-scheduling SMP VMs in VMware ESX Server”,

http://communities.vmware.com/docs/DOC-4960
[4] U. Schwiegeishohn and R. Yahyapour. "Improving first-come-first-

serve job scheduling by gang scheduling." In Job Scheduling
Strategies for Parallel Processing, Springer Berlin/Heidelberg, 1998.

[5] W. Sanders, and J. F. Meyer. "Stochastic Activity Networks: Formal
Definitions and Concepts." Lectures on Formal Methods and
Performance Analysis (2001): 315-343.

[6] W. Sanders, and J. F. Meyer. "A unified approach for specifying
measures of performance, dependability, and performability." Ann
Arbor 1001 (1991): 48109.

[7] C. Weng, et al., “The hybrid scheduling framework for virtual
machine systems,” in Proc. of the 2009 ACM SIGPLAN/SIGOPS intl’
conf. on Virtual execution environments, New York, NY, USA, 2009.

[8] L. Cherkasova, et al., "Comparison of the three CPU schedulers in
Xen." Performance Evaluation Review 35, no. 2 (2007): 42.

[9] Clark, Graham, Tod Courtney, David Daly, Dan Deavours, Salem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick Webster.
"The Mobius modeling tool." In Proc. Petri Nets and Performance
Models, 2001.

143

