Fall 2015
Research Presentations
Monitoring Fusion for Intrusion Detection and Response

Atul Bohara
P.I. William H. Sanders
Research Overview

• Current research
 – Fusion of monitoring information
 • Convert big heterogeneous data to more relevant and concise data
 • Build system profile through data association techniques to support intrusion detection
 • Data driven fusion technique; currently using Clustering
 – Working on a testbed to collect real data and run experiments

• Plan for the year
 – Use monitoring fusion to support automatic response
 • We need to do fusion in real-time
 – Plan on publishing the work
Security Monitor Deployment to Support Intrusion Detection

Uttam Thakore
P.I. William H. Sanders
Uttam Thakore
PI: William Sanders

• Current work:
 – A **cost-effective** methodology for monitor deployment to **meet intrusion detection goals**
 • Uses quantitative metrics to capture monitor utility and cost
 • Uses integer programming to determine optimal monitor deployment based on intrusion detection goals and cost requirements

• Plans for the year:
 – Improving scalability of MS thesis research
 – Preparing submission for DSN 2015 based on thesis
 – Adaptive “learning responses” – deployment and configuration of monitors in response to detected attacker behavior to aid intrusion detection algorithms
“Hands-Off” VM Introspection

Zachary Estrada
P.I. Ravishankar K. Iyer
Virtual Machine Introspection (VMI) is used to support Hypervisor-based VM Monitoring.

- Hypervisor only has access to bits and bytes.
- Traditional VMI requires precomputing offsets and addresses for data structures—Can’t do in cloud (which is where you want VMI).
- Use architectural state to infer offsets e.g., Process IDs, address space information, etc...
- Enabling Reliability and Security as-a-Service.
Research Summary

Cuong Pham
P.I. Prof. Ravishankar Iyer,
Prof. Zbigniew Kalbarczyk
Project Summary

• Project
 – Building resilient virtual machines: protection against failures and attacks

• Approach
 – Low-cost continuous monitoring
 – Measurement-driven designs
 – Leverage virtualization
 – Examples: HyperTap, Hprobes, hShield
Progress Summary

Assessment
- **Fault/Attack Injection**
 - **CloudVal**: Virtualized SW
 - **TFI**: Cloud management
 - **HI**: Attack Hypervisor-based monitoring

Detection
- **Continuous Monitoring**
- **Hypertap/HProbes**: Reliability & Security monitoring of VMs
- **hShield**: Protect hypervisor

Recovery
- **Automated Diagnosis**
- **Failure diagnosis** of cloud management system

- Hypertap/HProbe: Reliability & Security monitoring of VMs
- hShield: protect hypervisor
Hypervisor Runtime Integrity Measurement

- **Assumption:** Hardware is trusted
 - TPM, Intel TXT are enabled
 - Physical security

Layer
- VM
- VM
- VM
- OS/Hypervisor
- Firmware/Bios
- TPM
- Intel TXT
- HyperTap
- HProbes
- hShield

Time
- Load-time
- Execution

Continuously measure hypervisor integrity
Characterization and Adaptive Control of Cost-Performance Tradeoffs for Modern Cloud Systems

Muntasir Raihan Rahman
P.I. Indranil Gupta
• **PCAP** and **GeoPCAP** (complete)
 – \((C,A,P) \rightarrow (Pr\ C, Pr\ A, Pr\ P)\), characterize which combinations impossible together
 – Defined consistency \((C)\) / latency\((A)\) SLA
 • Meet \(Pr\ C\) SLA, optimize \(Pr\ A\), and vice versa
 – Built system **PCAP** which meets **PCAP SLA** for single data-center under continuously changing data-center network conditions
 • Deployed on top of Apache Cassandra, and Basho Riak
 – Extended PCAP to multiple geo-distributed data-centers

• **AdapTive Elasticity for graph Computation (AzTEC)** (current project)
 – Propose new **graph computation SLA**
 • Meet **deadline**, optimize **cost**
 • Meet **cost**, optimize **completion time**
 – Adaptive control of scale in/out to meet SLA without oscillations
 – Challenges
 • Continuous and faithful measure of graph computation progress
 • Given current progress, find best schedule
Security and Isolation in Containers

Mohammad Ahmad, Sibin Mohan, Rakesh Bobba, P.I. Roy Campbell
Background

• Container benefits
 – Startup on the order of milliseconds
 – Packaging dependencies & portability

• Container usage
 – Platform as a Service Clouds
 – Openshift, DotCloud

• Cross container side-channel attacks shown on public clouds [1]

Secure Container Framework

• Phase 1 – Defenses against cache based side-channels
 – Scheduling-based defenses
 • Security aware scheduling
 • Cache flushing
 – Exploring hardware support
 • Intel Cache Allocation Technology to isolate tenants
 – Evaluate the performance overhead with various configurations
Cloud-Routed Overlay Networks

Chris Cai
P.I. Roy Campbell
Can we use servers publicly available from cloud providers like Amazon to build overlay network? If so, what level of performance gain can we expect?
Questions to Answer

• What percentages of users can expect to benefit from cloud-routed overlay network?

• Does the performance gain depend on the geographic location of the users?

• Are the performance gains transient or persistent over long period of time?

• What is the proper routing strategy within cloud-routed overlay network?
Toward Fabric: A Middleware Implementing High-level Description Languages on a Fabric-like Network

Sayed Hadi Hashemi
Shadi Abdellahi
John Bellessa
Roy H Campbell
• Current Work:
 – Fabric Networks: Core Network, Edge Network.
 – Stop back practice.
 – An “approximate” implementation of Fabric
 • Syntax → MPLS
 • Protocol → Shadow MACs (i.e., layer-2 labels)
 • Implementation (hardware/protocol) → OpenFlow
 – High Performance. Very Large Scaled.
 – Submitted in ACM Middleware 2015

• Plans for the year:
 – Adaptation for Mobile Computing.
 – Prepare submission to NSDI.