Publications

Google scholar profile

  1. Salana, Sudheer, Haoran Yu, Zhuying Dai, PS Ganesh Subramanian, Joseph V. Puthussery, Yixiang Wang, Ajit Singh et al. “Inter-continental variability in the relationship of oxidative potential and cytotoxicity with PM2. 5 mass.” Nature Communications 15, no. 1 (2024): 5263.
  2. Cheung, Rico KY, Lu Qi, Manousos I. Manousakas, Joseph V. Puthussery, Yan Zheng, Theodore K. Koenig, Tianqu Cui et al. “Major source categories of PM2. 5 oxidative potential in wintertime Beijing and surroundings based on online dithiothreitol-based field measurements.” Science of the Total Environment 928 (2024): 172345.
  3. Yu, Haoran, Yixiang Wang, Joseph V. Puthussery, and Vishal Verma. “Sources of Acellular Oxidative Potential of Water-soluble Fine Ambient Particulate Matter in the Midwestern United States.” Journal of Hazardous Materials (2024): 134763.
  4. Bhowmik, Himadri S., Sachchida N. Tripathi, Joseph V. Puthussery, Vishal Verma, Jay Dave, and Neeraj Rastogi. “Reactive oxygen species generation from winter water-soluble organic aerosols in Delhi’s PM2. 5.” Atmospheric Environment: X 22 (2024): 100262.
  5. Subramanian, PS Ganesh, Joseph V. Puthussery, Yuqing Mao, Sudheer Salana, Thanh H. Nguyen, Ty Newell, and Vishal Verma. “Influence of Human Activities and Occupancy on the Emission of Indoor Particles from Respiratory and Nonrespiratory Sources.” ACS ES&T Air 1, no. 5 (2024): 386-396.
  6. Aghaei, Yashar, Mohammad Mahdi Badami, Ramin Tohidi, PS Ganesh Subramanian, Roberto Boffi, Alessandro Borgini, Cinzia De Marco et al. “The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM2. 5 in Milan, Italy.” Scientific reports 14, no. 1 (2024): 5996.
  7. Aldekheel, Mohammad, Ramin Tohidi, Ali Al-Hemoud, Fahad Alkudari, Vishal Verma, PS Ganesh Subramanian, and Constantinos Sioutas. “Identifying urban emission sources and their contribution to the oxidative potential of fine particulate matter (PM2. 5) in Kuwait.” Environmental Pollution 343 (2024): 123165.
  8. Wenjun Zhang, Haoran Yu, Anusha Priyadarshani Silva Hettiyadura, Vishal Verma, Alexander Laskin,
    Field evidence for enhanced generation of reactive oxygen species in atmospheric aerosol containing quinoline components, Atmospheric Environment, 2022, 291, 119406,1352-2310.
  9. Joseph V. Puthussery, Jay Dave, Ashutosh Shukla, Sreenivas Gaddamidi, Atinderpal Singh, Pawan Vats, Sudheer Salana, Dilip Ganguly, Neeraj Rastogi, Sachchida Nand Tripathi, and Vishal Verma; Effect of Biomass Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative Potential of Fine Ambient Particulate Matter in Delhi, India, Environmental Science & Technology 2022 56 (20), 14605-14616
  10. Yixiang Wang, Sudheer Salana, Haoran Yu, Joseph V. Puthussery, and Vishal Verma; On the Relative Contribution of Iron and Organic Compounds, and Their Interaction in Cellular Oxidative Potential of Ambient PM2.5, Environmental Science & Technology Letters 2022 9 (8), 680-686
  11. Kumar, V., Giannoukos, S., Haslett, S.L., Tong, Y., Singh, A., Bertrand, A., Lee, C.P., Wang, D.S., Bhattu, D., Stefenelli, G., Dave, J.S., Puthussery, J.V., Qi, L., Vats, P., Rai, P., Casotto,R., Satish, R., Mishra, S., Pospisilova, V., Mohr, C., Bell, D.M., Ganguly, D., Verma, V., Rastogi, N., Baltensperger, U., Tripathi, S.N., Prevot, A.S.H, Slowik, J.G., 2022. Real-time chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-2021-103.
  12. Verma, V., Salana, S., 2022. AS&T virtual collection: Toxicity of ambient particulate matter impact of chemical composition, emission sources and atmospheric processes. Aerosol Science and Technology, https://doi.org/10.1080/02786826.2022.2051960.
  13. Wang, Y., Puthussery, J.V, Yu, H., Liu, Y., Salana, S., Verma, V., 2022. Sources of cellular oxidative potential of water-soluble fine ambient particulate matter in the Midwestern United States. Journal of Hazardous Materials, 425, 127777, 1-14.
  14. Salana, S., Wang, Y., Puthussery, J.V., Verma, V., 2021. A Semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter. Atmospheric Measurement Techniques, 14, 75797593.
  15. Yu, H., Puthussery, J.V., Wang, Y., Verma, V., 2021. Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the midwestern United States. Atmospheric Chemistry and Physics, 21, 16363-16386.
  16. Ruzic, D.N., Oh, C., Puthussery, J.V., Patel, D., Jeckell, Z., Verma, V., Nguyen, T.H., 2021. A plasma-generating N-95 respirator decontamination unit created from a microwave oven. Plasma Medicine, 11 (3), 1-18.
  17. Zeng, Y., Yu, H., Zhao, H., Stephens, B., Verma, V., 2021. Influence of environmental conditions on the oxidative potential of size-resolved indoor particulate matter of ambient origin. Atmospheric Environment, 255, 118429, 1-9.
  18. Oh, C., Araud, E., Puthussery, J.V., Bai, H., Clark, G., Wang, L., Verma, V., Nguyen, T.H., 2020. Dry heat as a decontamination method for N95 face respirator reuse. Environmental Science and Technology Letters, 7, 677-682.
  19. Molina, C., Andrade, C., Manzano, C.A., Toro, A. R., Verma, V., Leiva-Guzman, M.A, 2020. Dithiothreitol-based oxidative potential for airborne particulate matter: an estimation of the associated uncertainty. Environmental Science and Pollution Research, 27, 29672-29680
  20. Wang, Y., Puthussery, J.V., Yu, H.,Verma, V., 2020. Synergistic and antagonistic interactions between the organic and metallic components of the ambient particulate matter (PM) for the cytotoxicity measured by Chinese Hamster Ovary cells. Science of Total Environment, 736, 139511, 1-9.
  21. Puthussery, J.V., Singh, A., Rai, P., Bhattu, D., Kumar, V., Vats, P., Furger, M., Rastogi, N., Slowik, J.G., Ganguly, D., Prevot, A.S.H, Tripathi, S.N., Verma, V., 2020. Real-time measurements of PM2.5 oxidative potential using dithiothreitol (DTT) assay in Delhi, India. Environmental Science and Technology Letters, 7, 504510.
  22. Yu, H, Puthussery, J.V., Verma, V., 2019. A semi-automated multi-endpoint reactive oxygen species activity analyzer (SAMERA) for measuring the oxidative potential of ambient PM2.5 aqueous extracts. Aerosol Science and Technology, 54 (3), 304320.
  23. Wei, J., Yu, H., Wang, Y., Verma, V., 2019. Complexation of iron and copper in ambient particulate matter and its effect on the oxidative potential measured in a surrogate lung fluid. Environmental Science and Technology, 53, 1661−1671.
  24. Bates,J.T., Weber, R.J., Verma, V., Fang,T., Ivey, C., Liu, C., Sarnat, S.E., Chang, H.H., Mulholland, J.A., Russell, A.G., 2018. Source impact modeling of spatiotemporal trends in PM2. 5 oxidative potential across the eastern United States. Atmospheric Environment, 193, 158-167.
  25. Puthussery, J.V., Zhang, C., Verma, V., 2018. Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay. Atmospheric Measurement Techniques, 11, 5767-5780.
  26. Wang, Y., Mukherjee, U. K., Plewa, M. J., and Verma, V., 2018. Assessing the cytotoxicity of ambient particulate matter using Chinese hamster ovary (CHO) cells and its relationship with the chemical composition and oxidative potential. Atmospheric Environment, 179, 132-141.
  27. Yu, H., Wei, J., Cheng, Y., Subedi, K., and Verma, V., 2018. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species. Environmental Science and Technology, 52, 2261-2270.
  28. Shirmohammadi, F., Lovett, C., Sowlat, M. H., Mousavi, A., Verma, V., Shafer, M. M., Schauer, J. J., and Sioutas, C., 2018. Chemical composition and redox activity of PM0.25 near Los Angeles international airport and comparisons to an urban traffic site. Science of Total Environment, 610, 1336-1346.
  29. Xiong, Q., Yu, H., Wang, R., Wei, J., Verma, V., 2017. Rethinking dithiothreitol-based particulate matter oxidative potential: measuring dithiothreitol consumption versus reactive oxygen species generation. Environmental Science and Technology, 51, 6507-6514.
  30. Abrams, J. Y., Weber, R. J., Klein, M., Samat, S. E., Chang, H. H., Strickland, M. J., Verma, V., Fang, T., Bates, J. T., Mulholland, J. A., Russell, A. G., and Tolbert, P. E., 2017. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits. Environmental Health Perspectives, 125 (10), 107008, 1-9.
  31. Vreeland, H., Weber, R.J., Bergin, M., Greenwald, R., Golan, R., Russell, A.G., Verma, V., Sarnat, J., 2017. Oxidative potential of PM2.5 during Atlanta rush hour: measurements of in-vehicle dithiothreitol (DTT) activity. Atmospheric Environment, 165, 169-178.
  32. Gao, D., Fang, T., Verma, V., Zeng, L., Weber, R.J., 2017. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmospheric Measurement Technology, 10, 2821-2835.
  33. Fang, T., Zeng, L., Gao, D., Verma, V., Stefaniac, A., Weber, R.J., Guo., 2017. Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: contrast between soluble and insoluble particles. Environmental Science and Technology, 51 (12), 6802-6811.
  34. Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., Weber, R.J., 2017. Highly acidic ambient particles, soluble metals and oxidative potential: A link between sulfate and aerosol toxicity. Environmental Science and Technology, 51 (5), 2611-2620.
  35. Shirmohammadi, F., Wang, D., Hasheminassab, S., Verma, V., Schauer, J.J., Sioutas, C., 2016. Oxidative potential of on-road fine particulate matter (PM2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies. Atmospheric Environment, 148, 102-114.
  36. Vreeland, H., Schauer, J.J., Russell, A.G., Marshall, J.D., Fushimi, A., Jain, G., Sethuraman, K., Verma, V., Tripathi, S.N., Bergin, M.H., 2016. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India. Atmospheric Environment 147, 22-30.
  37. Tuet, W., Foka,S.,Verma, V., Rodriguez, M., Grosberg, A., Champion, J.,Ng, N.L., 2016. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition. Atmospheric Environment, 144, 335-344.
  38. Fang, T., Verma, V., Bates, J.T., Abrams, J., Klein, M., Strickland, M.J., Sarnat, S.E. Chang, H.H., Mulholland, J., Tolbert, P.E., Russell, A.G., Weber, R.J., 2016. Oxidative potential of ambient water-soluble PM2.5 measured by dithiothreitol (DTT) and ascorbic acid (AA) assays in the southeastern United States: contrasts in sources and health associations. Atmospheric Chemistry and Physics, 16 (6), 3865-3879.
  39. Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Klein, M., Matthew Strickland, Sarnat, S., Fang, T., Chang, H., Mulholland, J., Tolbert, P., Russell, A., 2015. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environmental Science and Technology, 49, 13605-13612.
  40. Fang, T., Verma, V., Bates, J., Abrams, J., Weber, R.J., 2015. PM 2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmospheric Chemistry and Physics, 15, 11667-11682.
  41. Verma, V., Wang, Y., El-Afifi, R., Fang, T., Russell, A.J., Weber, R.J., 2015. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity – assessing the importance of quinones and atmospheric aging on particulate matter toxicity. Atmospheric Environment, 120, 351-359.
  42. Verma, V., Fang, T., Lu, X., Nga, N. L., Peltier, R., Russell, A.J., Weber, R.J., 2015. Organic aerosols associated with reactive oxygen species (ROS) generation. Environmental Science and Technology, 49 (7), 4646-4656.
  43. Verma, V., Fang, T., Guo, H., King, L., Edgerton, E., Peltier, R., Russell, A.J., Weber, R.J., 2014. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States – spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 14, 12915-12930.
  44. Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J., 2014. A Semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern center for air pollution and ppidemiology (SCAPE). Atmospheric Measurement Techniques, 8, 471-482.
  45. Budisulistiorini, S.H., Canagaratna, M.R., Croteau, P.L., Baumann, K., Edgerton, E.S., Kollman, M.S., Ng, N.L., Verma, V., Shaw, S.L., Knipping, E.M., Worsnop, D.R., Jayne, J.T., Weber, R.J., Surratt, J.D., 2014. Intercomparison of an aerosol chemical speciation monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia, Atmospheric Measurement Technique, 7, 1929-1941.
  46. Verma, V., Rico-Martinez, R., Kotra, N., Rennolds, C., King, L., Liu, J., Snell, T., Weber, R.J., 2013. Estimating the toxicity of ambient fine aerosols using freshwater rotifer Brachionus calyciflorus (Rotifera: Monogononta). Environmental Pollution, 182, 379-384.
  47. Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T., Weber, R.J., 2012. Contribution of water-soluble and insoluble species and their hydrophobic/hydrophilic sub-fractions in the ROS generating potential of ambient atmospheric aerosols. Environmental Science and Technology, 46 (20), 11384-11392.
  48. Verma, V., Shafer, M.M., Schauer, J.J. and Sioutas, C., 2010. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmospheric Environment, 44 (39), 5165-5173.
  49. Verma, V., Pakbin, P., Cheung, K.L., Cho, A.K., Schauer, J.J, Shafer, M.M, Kleinman, M.T., and Sioutas, C., 2010. Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere. Atmospheric Environment, 45 (4), 1025-1033.
  50. Moore, K.F., Verma, V., Minguillon, M.C., Sioutas, C., 2010. Inter- and intra-community variability in continuous coarse particulate matter (PM10-2.5) concentrations in the Los Angeles area. Aerosol Science and Technology, 44 (7), 526-540.
  51. Verma, V., Ning, Z., Cho, A.K., Schauer, J.J., Shafer, M.M., Sioutas, C., 2009. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmospheric Environment, 43 (40), 6360-6368.
  52. Biswas, S., Verma, V., Schauer, J.J., Cassee, F.R., Cho, A.K., Sioutas, C., 2009. Oxidative potential of semi-volatile and non-volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environmental Science and Technology, 43 (10), 3905-3912.
  53. Verma, V., Polidori, A., Schauer, J.J., Shafer, M.M., Cassee, F.R., Sioutas, C., 2009. Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires. Environmental Science and Technology, 43 (3), 954-960.
  54. Biswas, S., Verma, V., Schauer, J.J., Sioutas, C., 2009. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits. Atmospheric Environment, 43 (11), 1917-1925.
  55. Biswas, S., Hu, S.H., Verma, V., Herner, J.D., Robertson, W.H., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NOx emission control technologies. Atmospheric Environment, 42 (22), 5622-5634.