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Abstract 

In web based environments, a site has the ability to recommend multiple items to a customer in 

each interaction. Traditionally, rules used to make recommendations either have single items in 

their consequents or have conjunctions of items in their consequents. Such rules may be of 

limited use when the site wishes to maximize the likelihood of the customer being interested in at 

least one of the items recommended in each interaction (with multiple interactions comprising a 

session). Rules with disjunctions of items in their consequents and conjunctions of items in their 

antecedents are more appropriate for such environments. We refer to such rules as disjunctive 

consequent rules. We have developed a novel mining algorithm to obtain such rules. We identify 

several properties of disjunctive consequent rules that can be used to prune the search space 

when mining such rules. We demonstrate that the pruning techniques drastically reduce the 

proportion of disjunctive rules explored, with the pruning effectiveness increasing rapidly with 

an increase in the number of items to be recommended. We conduct experiments to compare the 

use of disjunctive rules with that of traditional (conjunctive) association rules on several real 

world datasets and show that the accuracies of recommendations made using disjunctive 

consequent rules are significantly higher than those made using traditional association rules. We 

also compare the disjunctive consequent rules approach with two other state-of-the-art 

recommendation approaches – collaborative filtering and matrix factorization. Its performance is 

generally superior to both these techniques on two transactional datasets. The relative 

performance on a very sparse click-stream dataset is mixed. Its performance is inferior to that of 

collaborative filtering and superior to that of matrix factorization for that dataset. 

Key words: Data mining, disjunctive rules, personalization, bounce rate, collaborative filtering, 

matrix factorization 
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1. Introduction 

Internet-based applications have proliferated in recent years, and firms are increasingly resorting 

to the use of personalization and recommendation services. For instance, retail web sites such as 

Amazon.com and Costco use a variety of personalization techniques to recommend books and 

gifts to their customers. Advertising servers such as Google (which owns Doubleclick) and 

Yahoo target appropriate banner advertisements to visitors on their clients’ sites. Studies have 

shown that personalized recommendations enable firms to effectively target customers with 

products and services (Häubl and Trifts 2000, Tam and Ho 2003). More recently, it has been 

reported that personalization systems are helping firms considerably boost their sales. For 

example, Cinematch, the recommender system for Netflix, has been credited with driving 60% of 

the rentals from Netflix (Thompson 2008), and  Google has witnessed a 38% increase in the 

traffic to its news website by improving its recommender system (Das et al. 2007). These reports 

point to the growing importance of personalization in e-business environments. 

 Rule-based approaches are one of the prominent techniques used to provide 

recommendations for personalization applications (Adomavicius and A. Tuzhilin, 2007). Rule-

based systems are popular for a variety of reasons. They can be used in an unobtrusive manner 

by making recommendations triggered by a customer’s actions. For example, when a customer is 

shopping at a site, then based on the contents of the customers shopping basket, a rule-based 

system can identify specific products to recommend to the customer. Similarly, if a visitor is 

traversing pages on a content provider’s site, an advertising server can identify relevant 

advertisements to show to the visitor based on the pages traversed. Importantly, rules are easy to 

understand, which appeals to marketers interested in cross-selling or product placement; 

consequently, rules can also be used to justify or explain why specific recommendations are 

being made. Finally, rules are computationally very efficient for real-time interactions, thus 

making them an excellent choice for recommendation systems.  

Rules used for target marketing applications are often called association rules. They have 

been successfully used for market basket analysis (Gordon 2008, Lewin 2009). Several firms use 

association rules based recommender systems to provide personalized recommendation to 

customers based on their past purchase history. For instance, Forsblom et al. (2009) develop a 
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mobile application for a Nokia smartphone that uses association rules to recommend retail 

products to customers. Prominent solution providers like IBM include association rule mining 

capabilities in business analytics software they develop (IBM 2009a, 2010), and specifically 

promote the use of association rules for providing online recommendations (IBM 2009b). 

Association rules are typically obtained by mining transactional data that records baskets 

of items purchased by customers (Agrawal et al. 1993). These rules are of the form C1→ C2, 

where C1 and C2 are called the antecedent and the consequent of the rule, respectively, and C1 

and C2 can comprise of either a single item or a set of multiple items. The number of possible 

combinations of the items in C1 and C2 can be extremely large, and the mining process attempts 

to identify only those rules that have a high level of confidence and, further, are supported by a 

reasonably large number of transactions. Each mined rule is characterized by a confidence 

parameter and a support parameter, where the values of these parameters must exceed minimum 

confidence and support thresholds specified by domain experts. The threshold values are used by 

mining algorithms to identify statistically meaningful rules without having to exhaustively 

explore all possible combinations of items for the antecedents and the consequents. 

An important characteristic of traditional association rules is that the consequents 

comprise of only conjunctions of items. For example, if a rule mined from a transactional 

database has two items I1 and I2 in the consequent, then the confidence of the rule will be the 

probability that both items I1 and I2 appear in a transaction when the items in the antecedent of 

the rule also appear in a transaction. We refer to such rules as conjunctive or traditional 

association rules. As we explain below, conjunctive rules may be of limited use when a site has 

the ability to recommend multiple items to a user in each interaction (an interaction refers to a 

user clicking on one of the links displayed on a web page delivered to the user).  

For illustration, consider Figure 1 which shows a snapshot of a page from Costco’s web 

site. The page shows details of a toaster, along with recommendations for three other products (a 

mini oven, an immersion hand blender, and Magnum coffee). If the user is interested in any of 

the recommended items, the user can evaluate the item in greater detail by clicking on the link 

associated with that item. When such a link is clicked, additional information about the selected 
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product is displayed, along with recommendations for more items.1 When recommending a set of 

items using traditional rules, it is implicitly assumed that either (i) the recommended set is one in 

which the items are collectively of greatest interest to the user (i.e., the user is interested in every 

item in the set as a bundle), or (ii) the set consists of those items that are individually of greater 

interest to the user than other possible items. These approaches do not consider the risk of losing 

the user if the user does not find any of the recommended items to be interesting. This issue can 

be of considerable importance to firms. As noted by Rosenberg (2001) and others (Drogan and 

Hsu 2003, Wang 2008), a goal of personalization is to deliver some piece of content (e.g., an 

advertisement, product, or piece of information) the user finds sufficiently interesting that the 

session lasts at least one more click. Considering this, we suggest an alternative objective for 

firms to consider: recommend a set of items that maximizes the probability that the user will find 

at least one of the recommended items to be interesting. Such an objective is closely related to a 

metric called the bounce rate, which has recently been identified as very important for evaluating 

the quality of pages delivered by a site. It is defined as the percentage of users who leave a web 

page without clicking on any link (Kaushik 2012). James (2011) notes the importance to a site of 

minimizing this metric in order to improve conversion rates, and goes on to observe that 

personalization should be used to reduce the bounce rate of a site. This objective is particularly 

relevant given the nature of web-based interactions, where a user is able to click on only one link 

at a time in an interaction. This is the objective we examine in this research. 

 

 
1 During a session (typically comprising multiple interactions) the user can view and purchase multiple items. 
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Figure 1: Example page from Costco’s web site 

Traditional approaches are not designed to maximize this objective. For example, in 

Figure 1, to recommend a set of three items using traditional approaches, the site could consider 

conjunctive rules with three item consequents. Alternatively, it could consider recommending 

items that appear in the consequents of three separate rules. Neither approach is very satisfactory 

as far as this objective is concerned. In the former approach, because the consequents of the rules 

are conjunctions, traditional mining algorithms can only identify rules where all of the items in 

the consequent have been viewed/bought in historical transactions. Therefore, the confidence 

associated with a conjunctive rule is the probability of a user being interested in all the items in 

the consequent of a rule. Finding rules with the desired number of items in the consequent that 

satisfy the minimum confidence threshold could be difficult in practice (e.g., in Figure 1, all the 

three items, mini oven,  immersion hand blender, and Magnum coffee, would have to appear in a 

sufficient number of transactions that include a toaster). In addition, even if enough such rules 

existed, using such a rule to make recommendations will usually be sub-optimal when the firm 

wishes to minimize the bounce rate.  

The second approach (identifying a set of items from separate association rules) may be 

preferable in this regard. Wang and Shao (2004) propose a method for multiple-item 

recommendations by considering rules with highest confidences comprising of maximal 
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antecedents,2 and then recommending the requisite number of distinct consequents of the rules 

with highest confidences. While this approach is reasonable (and more likely to be used in 

practice), it also does not attempt to maximize the probability that at least one of the 

recommended items is of interest to the user. 

While the literature on recommender systems is quite extensive,3 extant approaches have 

not considered this objective. Our research fills this gap by discovering rules that have in their 

consequents disjunctions of items (i.e., rules of the form “If I1 then I2 or I3”). The semantics of 

such rules, that we call disjunctive consequent rules (or disjunctive rules in short), model this 

objective naturally and directly. We believe such rules will be very useful to firms that wish to 

minimize bounce rates for their web pages using recommender systems, and exploit cross-selling 

opportunities in that manner. We have developed an algorithm that mines disjunctive rules from 

transactional data. The algorithm first identifies antecedents of potential rules that have a 

specified support threshold (the antecedents consist of conjunctions of items). For each such 

antecedent, the algorithm attempts to identify a rule with disjunctive consequent having the 

desired cardinality and that has a confidence higher than the specified confidence threshold. If no 

rules satisfy the confidence threshold, the algorithm returns the rule with the highest confidence. 

Similar to algorithms mining traditional rules, our algorithm is iterative in nature, identifying 

disjunctive rules with increasing cardinalities starting with single item consequents.  

An important difference between disjunctive rules and traditional association rules is that 

as we go from lower to higher cardinalities, the confidence of the mined rules increase. 

Consequently, finding disjunctive rules turns out to be inherently a harder problem as compared 

to mining traditional association rules. In mining traditional rules, rules are derived from itemsets 

(conjunctive sets of items) that meet the support constraint. As the cardinalities of itemsets 

increase, the search space reduces. This is because an itemset that is a superset of another has 

lower support than the latter, ensuring that as higher cardinality itemsets are being mined, only 

those itemsets need to be considered for which all possible subsets have been found to have the 

 
2 An antecedent is maximal if it is a subset of the visitor’s basket, but none of its supersets present as antecedents of 

other rules are a subset of the basket.  
3 Additional related works are discussed in Part II of the online supplement. 
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desired support. This property does not carry over to mining disjunctive rules, drastically 

increasing the search space and making the problem much more difficult. 

While finding disjunctive rules is a hard problem, we show that it is tractable for many 

real world applications with the help of pruning techniques we have developed. We identify 

several properties of disjunctive rules that are used to prune the search space when mining such 

rules. These pruning techniques determine bounds on the probabilities (confidences) associated 

with potential disjunctive rules, and then use these bounds to eliminate from consideration rules 

that are dominated by other ones. Experiments demonstrate that the effectiveness of the pruning 

techniques increases rapidly with an increase in the cardinality of desired rules. Our approach is 

scalable for large datasets since the complexity of our algorithm is linear in the number of 

transactions in the dataset. Nevertheless, if a site is interested in recommending a large number 

of items in each interaction, it may not be feasible to mine disjunctive rules with the desired 

cardinality. For such situations we develop an efficient approach to identify the desired number 

of items using disjunctive rules with lower cardinalities.    

We conduct experiments to compare the use of disjunctive rules with extant 

recommendation techniques on three real world datasets (two transactional and one click-

stream). Because disjunctive rules can be easily deployed in environments where traditional 

association rules are currently used, we conduct several experiments to compare these two rule-

based approaches. We find that the success rates for recommendations made using disjunctive 

rules are significantly higher than those made using traditional association rules for every 

experiment. For the most part, the improvements are greater when more items are recommended 

in an interaction. We also compare our approach with two other state-of-the-art recommendation 

approaches − collaborative filtering and matrix factorization. Its performance is generally 

superior to both these techniques on the two transactional datasets. The relative performance on 

the click-stream dataset (which is very sparse) is mixed. Its performance is inferior to that of 

collaborative filtering and superior to that of matrix factorization for that dataset. Our findings 

suggest that the disjunctive rules approach may be more suitable for market basket applications.  

We formally describe the problem in Section 2, and present our methodology to mine 

disjunctive rules in Section 3. Section 4 presents experiments conducted to examine the 

effectiveness of the mining algorithm.  Section 5 compares recommender systems implemented 
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using disjunctive consequent rules with those using traditional association rules. Section 6 

compares our approach with collaborative filtering and matrix factorization. Section 7 provides 

concluding remarks and discusses areas of future work. 

2. Problem Statement 

We first illustrate using an example the kind of rules we want to mine from transactional data 

and then define our problem formally. Consider a dataset with 12 transactions as shown in Table 

1, and a recommender system faced with deciding which two items to recommend to a customer 

who has included items I6 and I7 in her shopping basket. 

The rules of interest are those that have items I6 and I7 in the antecedent. Therefore, it is 

desirable that the recommendations are based on transactions where I6 and I7 are both present. 

The relevant transactions are 1, 2, 3, 4, 6, 8, 9 and 10 (we disregard the other transactions for this 

example subsequently). Removing items I6 and I7 from these transactions (since these are 

already in the shopper’s basket), we are left with transactions with the items as shown in Table 2. 

 

Table 1: Example Dataset 

Transaction ID Items Transaction ID Items 

1 I1 I3 I6 I7 7 I1 I4 I6 

2 I1 I3 I4 I6 I7 8 I1 I3 I6 I7 

3 I1 I5 I6 I7 9 I1 I4 I6 I7 

4 I2 I3 I6 I7 10 I2 I4 I6 I7 

5 I1 I3 I7 11 I1 I4 

6 I1 I3 I5 I6 I7 12 I2 I3 I5 

 

Table 2: Dataset for antecedent (I6, I7) 

Row ID Transaction ID Items Row ID Transaction ID Items 

1 1 I1 I3 5 6 I1 I3 I5 

2 2 I1 I3 I4 6 8 I1 I3 

3 3 I1 I5 7 9 I1 I4 

4 4 I2 I3 8 10 I2 I4 

 

The items appearing in Table 2 are I1, I2, I3, I4, and I5, and the system must choose two 

of these items to recommend. If the recommendation system used the highest confidence rule 
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with two items in its consequent, it would recommend I1 and I3 as this is the only pair of items 

that appears in four of the transactions and no pair appears in more transactions. On the other 

hand, if the recommender system were to sort rules based on their confidences and then pick the 

consequents of the top two rules (Zaïane 2002), the rules it would use are: 

• R1:  (I6, I7) →  I1 (confidence = 0.75), and 

• R2:  (I6, I7) →  I3 (confidence = 0.625). 

Again, the recommender system would recommend I1 and I3 since they appear as the 

consequents of rules with the highest confidences. 

However, when a firm is interested in finding the two items such that the probability of 

the customer choosing at least one of them is maximized in the next interaction (given the 

antecedent with items I6 and I7), the system should recommend I1 and I2, because at least one of 

them is present in all 8 transactions, i.e., the probability is 1 that one of these two items would be 

chosen by the customer. On the other hand, if the system had recommended items I1 and I3 (as 

would be the case when using extant approaches) the probability that at least one of these items 

would be chosen is only 0.875. 

The problem is to find, from a given database, rules whose antecedents are conjunctive 

and consequents are disjunctive. We call these rules disjunctive consequent rules, and refer to the 

set of items in the consequent as a unionset. Antecedents having items x1 to xm are denoted as 

(x1,…,xm), or alternatively as ∧𝑗=1
𝑛 𝑥𝑗 . A unionset with items y1 to yn is denoted as (y1,…,yn) (or 

equivalently, ∨𝑗=1
𝑛 𝑦𝑗). The cardinality of an antecedent (consequent) is the number of items 

present in it. We use modified notions of support and confidence as measures of interestingness 

for disjunctive rules. Our definition of support is as provided by Rastogi and Shim (2002), which 

is the probability the antecedent of a rule appears in a transaction. Our confidence measure, 

disjunctive confidence, is defined as the probability that one or more items in the consequent 

appears in a transaction in which the antecedent also appears. Mathematically, a rule is: 

⋀𝑗=1
𝑚 𝑥𝑗 ⇒ ⋁𝑗=1

𝑚 𝑦𝑗, with support and disjunctive confidence as shown below. 

Support = P(⋀𝑗=1
𝑚 𝑥𝑖) = 

Number of transactions(∧𝑗=1
𝑚 𝑥𝑖)

Total Number of transactions
, and  

Disjunctive confidence = 
𝑃((∧𝑗=1

𝑚 𝑥𝑗)⋀(∨𝑗=1
𝑛 𝑦𝑗))

𝑃(∧𝑗=1
𝑚 𝑥𝑗)

 = 
Number of transactions ((∧𝑗=1

𝑚 𝑥𝑗)⋀(∨𝑗=1
𝑛 𝑦𝑗))

Number of transactions (∧𝑗=1
𝑚 𝑥𝑗)

, 
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where x1,…,xm, y1,…,yn  I. 

Analogous to mining traditional rules, we use specified values of minimum support and 

minimum disjunctive confidence to direct the mining approach. These thresholds are obtained 

from domain experts. In addition, the experts also need to provide the maximum number of items 

the system is expected to recommend in an interaction which corresponds to the cardinality of 

the consequents of mined rules. The mining process first identifies all the itemsets that meet the 

desired support threshold. These itemsets become potential antecedents for disjunctive rules. For 

each such itemset, the mining process identifies unionsets that meet the desired disjunctive 

confidence threshold given the cardinality constraint (i.e., the number of items to recommend).  

An important difference between mining traditional association rules and disjunctive 

consequent rules is if a unionset is a superset of another unionset, the disjunctive confidence 

associated with the former is higher than that associated with the latter. Thus, as the cardinality 

of mined unionsets increases, the disjunctive confidence associated with such rules also 

increases. This can eventually lead to an enormous number of such rules if the cardinality is 

high. Therefore, the goal is to obtain, for each mined antecedent, at least one rule that reaches the 

disjunctive confidence threshold given the cardinality. If no such rule is available, our procedure 

identifies the rule with the highest disjunctive confidence. 

3. Disjunctive Consequent Rule Mining  

Disjunctive rules are mined in two main steps: (i) finding the relevant antecedents, and (ii) for 

each antecedent finding a unionset that satisfies the disjunctive confidence threshold. First, we 

find all the antecedents which meet the minimum support threshold. Any existing itemset mining 

algorithm (e.g., Apriori) can be used for this purpose. Then, for each antecedent we generate a 

new dataset from the original dataset that includes those transactions that contain all the 

antecedent items. We remove from each transaction in this new dataset all the items in the 

antecedent; we refer to this revised dataset as the antecedent dataset. We then mine the 

antecedent dataset for a unionset that meets the confidence threshold. The confidence for a 

disjunctive rule is the proportion of transactions in the antecedent dataset that includes one or 
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more items from the unionset. This can be viewed as the support for the unionset in the 

antecedent database – we refer to this as the disjunctive support (D-Sup) for the unionset. 

The unionset mining process is iterative in nature. It starts by considering unionsets of 

size one and checking if the confidence threshold is met. This involves finding the support for 

each item that appears in the antecedent dataset. If no unionset of size one meets the confidence 

threshold, unionsets of cardinality two are generated to determine if any of them meet the 

threshold. To verify this, the disjunctive supports for such unionsets are obtained. This process is 

repeated by gradually increasing the cardinalities of unionsets considered until either the 

maximum cardinality threshold is exceeded or the confidence threshold is satisfied by a unionset. 

If the former condition applies, we are left with the unionset with maximum disjunctive 

confidence, which is less than the threshold. 

An important part of this process is the computation of the disjunctive supports for 

unionsets with cardinalities greater than one. In principle, the supports for such unionsets can be 

exhaustively enumerated by using the support of the subsets of the itemsets that correspond to 

the items in the unionset. For example, for the unionset (y1, y2, y3), we have:  

D-Sup((y1, y2, y3)) = Support(y1) + Support(y2) + Support(y3) - Support((y1,  y2)) -         

Support((y2, y3)) – Support( (y1, y3)) + Support((y1, y2, y3)). 

This procedure can be very time intensive because of the large number of itemsets to consider for 

each unionset. For example, if there are 3000 items in an antecedent dataset, we have to 

enumerate around three trillion itemsets to determine the supports of all cardinality four 

unionsets. Such a scheme will not scale well for large datasets and high cardinality unionsets. To 

reduce computational effort, we do the following. First, we use an FP tree representation (Han et 

al. 2004) to compactly represent the antecedent dataset (the FP Tree creation process is detailed 

in Part III of the online supplement). We then develop a technique to generate unionsets that are 

likely to maximize the disjunctive support and compute the disjunctive support of such unionsets 

using the FP tree. Finally, we identify several pruning rules that reduce the number of unionsets 

that need to be generated and checked.  
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3.1. Finding the Disjunctive Support of a Unionset from an FP Tree  

Figure 2 shows the FP Tree. Every path starting from the root of the FP tree represents a set of 

transactions. At each node, the count represents the number of transactions in which that item is 

present within the set of transactions represented by the path. For each node, its parent 

corresponds to an item that co-occurs in at least one transaction and has equal or higher support 

than the child node.  
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Figure 2: FP tree representation of the antecedent dataset 

 

The main intuition behind the algorithm to determine the disjunctive support of a 

unionset is to eliminate the possibility of double-counting transactions in which two or more 

items from the unionset appear. Figure 3 presents the algorithm for a unionset Y= (y1, y2,…yi), 

where items in Y are arranged in decreasing order of their (individual) supports.  

Proposition 1: Algorithm “FindDisjunctiveSupport” provides the disjunctive support of the 

unionset. (All proofs appear in the online supplement.)  

To illustrate, we calculate the support of the unionset (I1, I3, I2). Initially, the support 

counter s is set to zero. We start with item I1, which is present only at node 2 of the FP tree. 

Since only the root node is an ancestor of I1, we add the count of I1 to s resulting in s = 6. Next 

we consider item I3 which appears at nodes 3 and 6. Node 3 has I1 as an ancestor, therefore it is 
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disregarded. Node 6 does not have any item from the unionset as an ancestor. Therefore, the 

count for this node (i.e., 1) is added to s resulting in s = 7. We next proceed to I2 which is present 

at nodes 7 and 11. Node 7 has I3 as an ancestor, hence this node is disregarded. However, node 

11 does not have any item from the unionset as an ancestor. Therefore, the count for this node 

(i.e., 1) is added to s resulting in s = 8. We are left with a disjunctive support of 8 for the 

unionset, which is easily verified from Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Algorithm to find the disjunctive support for an unionset using the FP tree 

3.2. Generating Unionsets and Strategies for Pruning  

The idea is to generate and check the disjunctive supports for the unionsets as sparingly as 

possible. To generate the unionsets, we start with cardinality one, creating a list of unionsets (that 

are individual items at this stage) with their associated supports.4 We create a list of these items 

(i.e., unionsets of cardinality one) arranged in decreasing order of support and denote this list as 

Z. To consider unionsets of cardinality i, we generate sets of i items in order of individual 

supports. This order can help identify unionsets with high disjunctive supports sooner. For 

 
4 For cardinality one unionsets, the disjunctive supports are the same as traditional supports. 

Algorithm FindDisjunctiveSupport 

Given: Unionset (y1,…,yi)  and FP tree 

1. Create a support counter s and initialize it to zero. 

2. For j = 1 to i, repeat step 3. 

3. For each node in the FP tree where yj appears, repeat step 4. 

4. Traversing upwards towards the root, check for nodes corresponding to other items that 

are in the unionset. Because of the construction of the tree, a node corresponding to an 

item with higher support can only be an ancestor node. 

4.a. If no such items are found, add the count of the node to support counter s. 

4.b.If an item in the unionset is found in the path to the root, disregard that 

occurrence of yj. 

5. The final value of the counter s is the disjunctive support for the unionset. 
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example, if the list Z is {I1, I3, I4, I2}, the unionsets of cardinality three are generated in the 

following sequence: 

(I1, I3, I4), (I1, I3, I2), (I1, I4, I2), ( I3, I4, I2). 

If all unionsets of cardinality i were considered, it would require generating and finding 

supports of a very large number of unionsets. To reduce the search effort, before determining the 

disjunctive support of each generated unionset of size i, several pruning rules are used to 

determine if there is any possibility that the unionset’s support will exceed the minimum 

confidence threshold. If not, that unionset need not be explored further. To achieve that, the 

pruning rules use a lower bound for the disjunctive support of all feasible unionsets. This lower 

bound is defined as the value of the highest disjunctive support achieved at the current stage of 

the pruning process and gets updated as the mining proceeds. The pruning rules check whether 

the upper bound for the disjunctive support of an unionset (which is the disjunctive confidence of 

the associated rule) is greater than the overall lower bound. If the upper bound for an unionset is 

lesser, the unionset is pruned along with other unionsets dominated by the pruned unionset (an 

unionset dominates another unionset when the former’s confidence is higher than the latter’s). 

This helps eliminate many feasible unionsets while ensuring the rules with highest confidences 

are never pruned. If the upper bound for a unionset is greater than the overall lower bound, the 

disjunctive support for that unionset is calculated and stored along with the unionset in a list we 

callV  (V is a subset of the set of all possible unionsets of cardinality i).  

The overall lower bound value is updated whenever the support of a newly generated 

unionset is higher than the current lower bound. When the value of the lower bound crosses the 

confidence threshold, we stop the mining process for that antecedent. If the lower bound does not 

cross the minimum threshold even after considering all the unionsets of cardinality i, unionsets 

of cardinality i+1 are considered. Before starting the mining process for unionsets of cardinality 

i+1, the unionsets in V are copied into a list Ui (the explored unionset list of cardinality i) and V 

is emptied. Unionsets in Ui are used to prune the unionsets of cardinality i+1. 

To improve the efficiency of the process, it is important to obtain a good lower bound as 

quickly as possible. To achieve this, we first generate all cardinality i supersets of the unionset of 

cardinality i-1 with highest support (if there are more than one such unionsets, we generate all 
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their cardinality i supersets as well). For example, if Y is a cardinality i-1 unionset with highest 

support, we consider cardinality i unionsets of the form ((Y, v)) where vY. These candidate 

unionsets are also generated in order of individual item supports and pruned wherever possible. 

When we are finished with exploring all potential supersets of the cardinality i-1 unionset with 

highest support, we continue by generating cardinality i unionsets from Z as described earlier. 

3.2.1 Pruning Rules 

We next describe the pruning rules. We define max-supi-1 as the maximum support achieved by a 

unionset of cardinality i-1. W= (w1,…,wi ) is a unionset of cardinality i, 1<i ≤k, where k is some 

pre-specified maximum cardinality. Items in W are arranged in order of decreasing individual 

disjunctive support. LBi is the current lower bound of disjunctive support for unionsets of 

cardinality i. It is initialized to max-supi-1 when unionsets of cardinality i are to be mined, and is 

updated whenever a better solution is obtained. 

Rule 1a: If max-supi-1 + Support(wi) < LBi, then D-Sup(W) < LBi, and W can be pruned.  

Rule 1b: If Rule 1a holds for W and Support(v) ≤  Support(wi), then D-Sup(X) < LBi for any X 

where vX. Hence, all such X can be pruned.  

Rule 1a identifies the first condition under which the disjunctive support for W cannot be 

more than LBi, and therefore the support of W need not be calculated. Rule 1b states that W 

dominates all those unionsets which contain at least one item with support less than or equal to 

wi. Hence all such dominated unionsets also cannot have disjunctive support more than the lower 

bound and can be pruned. 

Rule 2a: If ∑ Support(𝑤𝑗) < 𝐿𝐵𝑖
𝑖
𝑗=1 , then D-Sup(W) < LBi, and W can be pruned. 

Rule 2b: If Rule 2a holds for W and Support(v) ≤  Support(wi), then D-Sup(X) < LBi for any X 

where vX and W-wi = X-v. Hence, all such X can be pruned.  

Rule 2a identifies the second condition under which the disjunctive support for W cannot 

be more than LBi. If the sum of the individual supports of items in W is less than LBi, then the 

disjunctive support for W must be less than LBi. Analogous to Rule 1b, Rule 2b also identifies 

unionsets that W dominates. These dominated unionsets also cannot have disjunctive support 

more than the lower bound. 
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Rule 3a: If there exists some j such that Y = W-wj and D-Sup(Y) + Support(wj) ≤  LBi, then       

D-Support(W) < LBi, and W can be pruned. 

Rule 3b: If Rule 3a holds for a W such that j = i, and Support(v) ≤  Support(wi), then D-Sup(X) < 

LBi for any X where X = ((Y,v)). Hence, all such X can be pruned. 

Rule 3a considers each sub-unionset of W (say Y) of cardinality i-1, and searches the list 

Ui-1 to check if D-Sup(Y) has been calculated earlier. If we have at least one Y such that D-Sup(Y) 

+ D-Sup(W-Y) is less than the lower bound, then the disjunctive support of W can never exceed 

LBi. Further, for such a Y,  if (W-Y) is the last item of W, then W dominates all those unionsets 

which differ from W only in the last item and that item has a lower individual support than the 

last item in W. All such dominated unionsets can also be pruned. Otherwise, only W is pruned. 

Proposition 2: If the conditions for any of the three rules are satisfied for a unionset W, then the 

disjunctive support for that unionset is less than the current lower bound.  

We note that Rules 1a and 2a are subsumed by Rule 3a. Rule 1a is subsumed because if W is 

pruned by Rule 1a then max-supi-1+ Sup(wi) < LBi. We know that all sub-unionsets of W of 

cardinality i-1 have support less than or equal to max-supi-1. Thus, if Rule 1a holds, Rule 3a must 

also hold. Rule 2a is subsumed by Rule 3a because if W is pruned by Rule 2a, then 

∑ Sup(𝑤𝑗)𝑖
𝑗=1  < LBi. That implies ∑ Sup(𝑤𝑗)𝑖

𝑗=1,𝑗≠𝑙 + Sup(wl) < LBi. We know that D-Sup(W-wl) 

≤ ∑ Sup(𝑤𝑗)𝑖
𝑗=1,𝑗≠𝑙 , hence D-Sup(W-wl)+ Sup(wl) < LBi. Hence Rule 3a also holds.  

From the above discussion, Rule 1 and Rule 2 could be viewed as redundant. However, 

Rules 1 and 2 are very easy to check whereas Rule 3 requires searching the sub-unionsets of W in 

list U. Further, Rules 1 and 2 enable us to easily identify a large number of dominated unionsets. 

Therefore, for computational efficiency we evaluate Rules 1 and 2 before Rule 3.  

As each of the rules can prune more than one unionset, the unionset generation scheme 

needs to implement a mechanism to recognize and skip the pruned unionsets. Initially, before 

any unionset is generated, we set a flag at the last item of the list Z. When a unionset is pruned 

by Rule 1, we check whether the support of the last item of the unionset is greater than the 

support of the flagged item. If so, we reset the flag to the item in Z that appears as the last item of 

the pruned unionset. Thereafter, we do not consider any unionset that includes an item with 

support less than the flagged item. Similarly, when Rule 2 prunes a unionset, we again check 
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whether the support of the last item of the pruned unionset is greater than the support of the 

flagged item. If that is the case, we reset the flag to the item in Z which appears last in the pruned 

unionset. The flag set by rule 2 is reset back to the last item of Z when we change the (i-1)th item 

of the unionset. An example illustrating how the pruning rules are used is provided in Part IV of 

the online supplement. 

As mentioned earlier, we have introduced a process to improve the lower bound before 

generating unionsets from the list Z. We use the pruning rules during this process also. The 

sequence of using the rules remains the same, except that Rule 2 is not required for these checks. 

This is because Rule 2 is subsumed by Rule 1 for the unionsets under consideration. The reason 

is as follows. We consider the unionsets with highest support from list U. Let Y be a unionset 

with highest support among all unionsets of cardinality i-1 where YU. The sum of supports of 

individual items of Y is greater than or equal to max-supi-1 and therefore if Rule 2a were to hold 

for any unionset (Y,v), Rule 1a must hold as well. Consequently, Rule 1b also subsumes Rule 

2b for these unionsets.  

After exploring all potential unionsets of cardinality i, we proceed to cardinality i+1. For 

a given antecedent, mining stops when either we have found a unionset having disjunctive 

support more than the minimum threshold, or we have explored/pruned all unionsets of 

cardinality k. In the former case if i is less than k, adding any item to the unionset ensures that its 

support is more than the threshold.  

3.3. Complexity of the Algorithm 

We first show that the problem of determining disjunctive rules belongs to the class of NP-Hard 

problems. We then show that while our algorithm is exponential in the cardinality of the desired 

unionset, it is linear in the size of the dataset.  

Proposition 3: Finding a unionset of cardinality less than or equal to k and disjunctive support 

greater than a threshold t is NP-Hard. 

To obtain the unionset for each identified antecedent, we create an antecedent dataset, 

generate an FP Tree for the antecedent dataset, and find either (i) a disjunctive consequent with 

confidence more than the threshold confidence or (ii) the disjunctive consequent with highest 

confidence given the desired cardinality. The complexity for generating the FP Tree is 
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O(T×n×log(n)) where T is the number of transactions and n is the number of items. In the worst 

case (when no pruning occurs), the number of unionsets generated is O(nk) where k is the 

maximum cardinality of the unionsets. The complexity of determining the disjunctive support of 

an unionset using the FP Tree is O(n×T). Hence, the worst-case complexity of our algorithm is 

O(nk+1×T). Thus, the algorithm is linear in the number of transactions, and exponential in the 

number of items to be recommended. The former implies that the approach can scale well for 

mining large datasets, something that is very desirable. The latter, on the other hand, indicates 

the approach is limited to mining rules with a modest number of items in the consequent. On 

examining several retailers’ web sites that provide recommendations (e.g., Costco, Sam’s Club, 

Bed Bath and Beyond, Target, and Kohl’s), we find that most of these sites recommend between 

two to four items to a visitor in each interaction. Thus, since k is small for many sites, the 

algorithm is quite widely applicable. For sites that would like to include a larger number of items 

in their recommendation list, we discuss in Section 5.1 an approach to combine disjunctive rules.   

4. Computational Performance of the Algorithm 

We conducted experiments on three real world datasets Retail, BMS-POS, and BMS-2 to 

analyze the computational performance of the algorithm. The datasets are publicly available at 

the FIMI repository (http://fimi.cs.helsinki.fi/data/).  The dataset Retail is a market basket dataset 

collected from a Belgian store (Brijs et al. 1999). BMS-POS is a point of sales dataset from a 

large electronics retailer. BMS-2 is a click-stream dataset from an e-commerce web site. The 

dataset characteristics are shown in Table 3. 

 

Table 3: Characteristics of the datasets 

Dataset Characteristics Retail BMS-POS BMS-2 

Total number of items 16,470 1,657 3,340 

Total number of transactions 88,162 515,597 77,512 

Average transaction length 10.3 6.5 4.6 

 

To mine rules from the three datasets, we used a support threshold of 0.5%, disjunctive 

confidence threshold of 90%, and maximum cardinality for consequents of size four. For mining 
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the antecedents, we used a publicly available implementation of Apriori.5 Table 4 shows the 

statistics summarizing the characteristics of the rules we find after employing the disjunctive 

consequent rule mining algorithm on the three datasets.  The first row shows the number of 

antecedents obtained after using the Apriori implementation. The second row shows the number 

of antecedents whose consequents have confidence more than the disjunctive confidence 

threshold. The third row shows the average time taken per antecedent for the three datasets.  

 

Table 4: Summary statistics for mining disjunctive consequent rules  

Results Retail BMS-POS BMS-2 

No. of antecedents generated using Apriori 

(support threshold 0.5%) 
580 4,240 408 

No. of antecedents for which the rules achieved 

disjunctive confidence threshold of 90% 
106 3,494 220 

Average time taken per antecedent (in seconds6) 5.2  231  7.16  

 

The number of antecedent itemsets generated for the dataset BMS-POS is much higher 

than that for Retail and BMS-2. This is expected since the number of transactions is much higher 

in BMS-POS as compared to the other two, whereas the number of items is relatively small (the 

reason for this is that BMS-POS records category level data in each transaction instead of item-

level data and is therefore denser than the other datasets). Therefore, the potential number of 

itemsets that can cross the support threshold is also very high in BMS-POS. The average time 

taken to find the unionsets in BMS-POS is also higher than that for the other two datasets.  

Akin to traditional rules, disjunctive rules will also be mined offline in practice. Hence, 

the average time taken for mining a rule will usually not be a critical limitation for large real 

world datasets (unless it is in the order of days or more). Furthermore, mining disjunctive rules 

for different antecedents can be performed in parallel which can reduce the overall elapsed 

mining time drastically. 

 

 
5 http://www.cs.bme.hu/~bodon/en/apriori/ (version 2.4.7) 
6 The time required to mine disjunctive rules depends on the machine specification. We have used a machine with 

processor speed 2.8GHz and 1.49 GB RAM. The algorithm is implemented on Java (version jre 1.6.03_03) 

allocating 700 MB for maximum heap size via command line. 
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4.1. Effectiveness of the Pruning Rules 

In order to understand how efficient the algorithm is, the dataset Retail is mined at different 

confidence levels. Specifically, we record the times taken to mine disjunctive consequent rules 

using a support threshold of 0.1%, a unionset cardinality of four, and confidence thresholds of 

50%, 60%, 70%, 80%, and 90%, respectively. The results are plotted in Figure 4. The y axis 

shows the average time taken per antecedent, and the x axis shows the disjunctive confidence 

thresholds used, for mining the rules. It is evident from the figure that the average time increases 

very little when the confidence threshold increases from 50% to 80%. However, there is a jump 

when the confidence threshold increases from 80% to 90%. This jump in average time for a 

confidence threshold of 90% is because of the difficulty, for a few of the antecedents, in finding 

a rule that meets the high threshold.  

 

 

 

 

We next examine, for each of the confidence thresholds (and a support threshold of 

0.1%), how the average mining time per antecedent changes with an increase in the maximum 

cardinality of the rules. As expected, the time taken increases with the cardinality for each 

confidence threshold. This increase is small for confidence thresholds up to 80%. For a 

confidence threshold of 90% (Figure 5), the average time taken per antecedent does not increase 
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by much when the cardinality increases from two to three; the increase is substantive when the 

cardinality increases from three to four. This is a result of the combination of two factors: the 

difficulty in finding rules that meet the high confidence threshold, and the exponential increase 

in the number of possible combinations of items with increase in cardinality from three to four. 

 

 
Figure 6: Average percentages of unionsets explored for different cardinalities 

We also examine how effective the pruning rules are in eliminating feasible unionsets 

without requiring their disjunctive confidences to be explicitly computed. Figure 6 illustrates the 

average proportion of unionsets explored while mining rules with different cardinalities when the 

confidence thresholds for mining the rules are varied from 50% to 90%.7 The five lines in the 

figure correspond to mining rules at these confidence thresholds. We notice that with an increase 

in the cardinality, the average proportion of unionsets explored reduces drastically for a given 

confidence threshold. For example, the solid line shows the decrease in the average proportion of 

explored unionsets with increase in cardinality when the disjunctive confidence threshold used is 

90%. Overall, the effectiveness of the pruning rules increases rapidly with an increase in 

cardinality, with the improvement more marked for higher confidence thresholds which are the 

more difficult problem instances. 

 
7 A unionset is considered explored if its disjunctive support is computed from the FP-Tree. The percentage of 

unionsets explored is the average over all the antecedents for a given cardinality and confidence threshold. 
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5. Comparing Disjunctive Consequent Rules with 

Traditional Association Rules 

We compare the performance of disjunctive consequent rules with that of traditional 

(conjunctive) association rules by implementing recommender systems using the two approaches 

and conducting experiments on the real-world datasets. To recommend multiple items using 

traditional association rules we consider the approach proposed by Wang and Shao (2004) – this 

is the benchmark.8 We examine four different scenarios for the number of items to be 

recommended in an interaction: two, three, four, and eight. Because it is difficult to mine 

disjunctive rules with eight items in the consequent, we develop a methodology to combine rules 

with lower cardinality consequents. We first discuss how rules are combined for the two 

approaches, and then describe the experimental setup and the results. 

5.1 Combining Rule Consequents 

The traditional association rules and the disjunctive consequent rules are mined at pre-

determined thresholds using a training dataset and stored in the respective systems for use in 

making recommendations. A list containing all items is also stored in both the systems and 

arranged in decreasing order of their supports. We refer to this list as the singleton list. This list 

is used to identify items to include for recommendation when there does not exist enough rules to 

recommend the desired number of items – this applies to both approaches.  

The benchmark recommends i items for a given basket on the lines suggested by Wang 

and Shao (2004). The system first identifies eligible rules, where a rule is eligible if its 

antecedent is maximal and the items in its consequent are not present in the basket. Then, the i 

eligible rules with highest confidences and distinct consequent items are used to compose the 

recommendation list. Since the rules used are based on their confidences, rules with multiple 

conjunctive items in their consequents are always dominated by rules with consequents that 

 
8 We also considered the approach in Zaïane (2002). Our preliminary analysis provided results similar to Wang and 

Shao’s approach (differences were not statistically significant). We do not consider the approach suggested by Kim 

and Kim (2004) because that approach is restricted to using rules with single items in the antecedents as well as in 

the consequents. The other approaches consider rules that can have multiple items in both the antecedents and the 

consequents – therefore the rules used by such approaches are a superset of the rules used by Kim and Kim. 
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include exactly one of those items – therefore, only rules with singleton consequents get used. In 

case there are only j (j< i) eligible rules available for making recommendations, the remaining i−j 

items are drawn from the singleton list based on the item supports while ensuring that these items 

are not in the basket or already in the recommendation list. 

The consequents of disjunctive rules are combined when the number of items to be 

recommended exceeds the highest cardinality of the consequents of the mined rules.9 We use a 

combination approach analogous to that for the benchmark. The eligible rules are those whose 

antecedents are maximal subsets of the basket. The items first included in the recommendation 

list are those that are in the consequent of the eligible rule that has the highest confidence and a 

consequent with no overlap with the basket. Let j be the cardinality of the consequent of the 

chosen rule and (y1,…,yj) its consequent list, where j <i. We then add to the recommendation 

list, in an iterative manner, the items in the consequent of the eligible rule with the next highest 

confidence provided the consequent is (i) disjoint with (y1,…,yj) and the basket, and (ii) it has a 

cardinality no more than the space available in the recommendation list. If enough items are not 

identified in this manner, we consider consequents of eligible rules (in decreasing order of their 

confidences) that include some items not yet part of the recommendation list or the basket – 

these items are added next.10 This process continues until i items have been identified. If i 

distinct items have not been identified, the singleton list is used to fill the gap.  

Although the above approach is not guaranteed to provide the set of items that minimizes 

the bounce rate, it is very efficient (it is linear in the number of available rules) and easy to 

implement. It also has a desirable property. If the consequents of rules that are being combined 

are conditionally independent of each other given the basket, then it can be shown that picking 

consequents in this sequence dominates picking other consequents of the same cardinality.  

 
9 It is possible that even when the cardinality of mined rules is equal to the number of items to be recommended in 

an interaction, the rule with the highest confidence may have fewer than the desired number of items. This occurs if 

a rule reaches the mining threshold with a consequent consisting of items fewer than the target cardinality. While 

this is infrequent, when this occurs we use the same approach as discussed for larger recommendation lists. As is 

also true for such situations, the approach is not guaranteed to be optimal. 
10 An alternative approach is to not look for disjoint consequents in the first place, and add to the recommendation 

list those items in the consequent of the next eligible rule that have not already been included in the list. We find this 

approach does not perform as well as the one we have adopted. 
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5.2 Experimental Setup 

We describe here how the experiments are conducted on the dataset Retail. We create a training 

set and a test set using the original dataset where the training set contains 80% of the transactions 

chosen randomly from the dataset and the remaining 20% constitute the test set.11 The training 

datasets are used to mine the traditional association rules and disjunctive consequent rules at pre-

specified thresholds. The transactions from the corresponding test datasets are used to create 

baskets and provide recommendations. We remove the transactions with only one item from the 

test datasets, and randomize the sequence of items in the remaining transactions. 

We set up the experiment in such a way that it mimics the interactions of a customer at a 

web site during a session. In practice, every time a customer at a retail web site adds an item to 

her basket, the site recommends additional items based on the current contents of the basket. In 

order to replicate this process as well as possible, each transaction in a test dataset is used to 

create multiple test baskets iteratively. The first test basket created from a transaction contains 

the first item in the transaction. Each recommendation system makes recommendations for the 

basket, which are then compared with the remaining items in the test transaction. A 

recommendation is counted as successful if at least one of the recommended items is present in 

the remainder of the transaction. In the case of a success, one of the correctly recommended 

items is randomly selected for addition to the basket to create the next test basket for the 

recommender system. In case the recommendation does not lead to a success, an item is chosen 

randomly from the rest of the transaction and added to the existing basket to create the next 

basket. This process is repeated until the new test basket includes half the items in the 

transaction.12 This is done for every transaction in a test dataset. We ensure that the same 

approach is used for creating baskets for both the recommender systems. 13  

 
11 We created multiple such training and testing datasets and conducted experiments on all of them (random 

subsampling). The results are very similar across all the datasets. Therefore, we report the results obtained from one 

such training and test dataset. 
12 We have also conducted experiments by creating baskets until all but one item (instead of half the items) of the 

test transaction are included in the basket. The relative improvement achieved by our approach remains very similar. 
13 Because the two systems are independent, a transaction from the test dataset may generate different baskets for the 

two recommender systems. For example, when a recommendation leads to a failure, the item added to the existing 

basket for creating the new one is picked randomly from the items remaining in the transaction. Therefore, a new 

basket for the two systems may be different even when the previous baskets are identical. 
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In the experiments, the confidence threshold for disjunctive consequent rules (DCRs) is 

fixed at 90%. Three different support thresholds are considered: 0.1%, 0.3%, and 0.5%. The 

traditional association rules (TARs) are also mined at these three support levels. For each support 

level, five confidence thresholds are considered: 30%, 40%, 50%, 60%, and 70%. We consider 

multiple confidence thresholds for traditional association rules because these thresholds do not 

directly correspond to that of the disjunctive consequent rules. For TARs, a confidence threshold 

greater than 70% results in very few rules while a threshold less than 30% generates many rules 

with little predictive power. The performance of the disjunctive consequent rules mined with a 

specific support threshold is compared with the performances of traditional association rules 

mined with the same support threshold and the five different confidence thresholds. 

The worst-case complexity of identifying eligible rules is O(n×l) where n is the number 

of items and l is the total number of available rules (this can be achieved by keeping the items of 

the basket in a hashtable and checking the presence of items of the antecedents and consequents 

of the rules in the basket). Given the eligible rules, the complexity of determining items to 

recommend is O(l). Therefore, the overall complexity is O(nl).    

5.3. Results for the Dataset Retail 

Table 5 shows the results for our experiments when rules are mined at support thresholds of 

0.1% and 0.5%, and confidence thresholds of 30% and 40%, respectively (results for other 

support and confidence thresholds are provided in Part V of the online supplement). The table 

shows the percentages of successes when disjunctive consequent rules (DCRs) are used, the 

percentages of successes when traditional association rules (TARs) are used, and the relative 

improvement from using the disjunctive rules. The first set of results corresponds to when 

traditional association rules mined at a confidence threshold of 30% are used for comparison 

with disjunctive rules. The four rows show the results when two, three, four and eight items were 

recommended, respectively. Similarly, the other rows correspond to the results when traditional 

association rules mined at a confidence threshold of 40% are used to recommend items. The 

number of baskets for which recommendations are made in each experiment is 86,630. 

We find that the disjunctive rules consistently outperform traditional association rules in 

every experiment. This holds for the entire range of confidence thresholds considered for 
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traditional association rules. The improvements are statistically significant at the 99.5% 

confidence level. The improvement from using disjunctive rules is always higher with an 

increase in the number of recommended items up to four item recommendations. This is 

expected as the mined rules explicitly consider consequents of these cardinalities, and items are 

usually recommended using the rule consequent with the highest probability. As the cardinality 

of the consequent increases, this probability also increases. On the other hand, such a 

consideration is not possible when using traditional association rules.  

 

Table 5: Recommendation accuracy from using disjunctive rules (DCR) and traditional rules 

(TAR). All differences are statistically significant at the 99% confidence level 

Confi-

dence 

# Items 

Recom-

mended 

Support Threshold - 0.1% Support Threshold - 0.5% 

% 

Success: 

DCR 

% 

Success: 

TAR 

Relative 

Improv-

ement 

% 

Success: 

DCR 

% 

Success: 

TAR 

Relative 

Improv-

ement 

30% 

2 25.25% 23.95% 5.44% 23.95% 23.22% 3.14% 

3 28.25% 26.38% 7.09% 26.70% 25.69% 3.93% 

4 30.55% 28.11% 8.69% 28.56% 27.42% 4.17% 

8 35.18% 31.35% 12.20% 31.93% 30.69% 4.03% 

40% 

2 

Same as 

above 

23.72% 6.49% 

Same as 

above 

23.14% 3.50% 

3 26.16% 8.00% 25.65% 4.07% 

4 27.90% 9.50% 27.39% 4.28% 

8 31.17% 12.85% 30.67% 4.10% 

 

The improvement is also higher for eight item recommendations (relative to fewer 

recommendations) when rules are mined with a support threshold of 0.1%. When rules mined at 

0.5% support thresholds are used the improvement in performance is smaller compared to when 

four items are recommended. On close examination we find that the fewer rules obtained using 

the high support threshold leads to considerably more items being recommended using the 

singleton list on average (instead of from the mined disjunctive rules). This phenomenon (i.e., 

larger numbers of items being picked on average from the singleton list when higher support 

thresholds are used) is not observed using traditional rules. As a result, the difference between 

the performances of the two systems reduces.  
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The relative improvement from using disjunctive rules falls systematically when the 

support threshold increases from 0.1% to 0.5%. The reason is similar to that discussed above, 

i.e., at higher support thresholds fewer rules are available for use in both approaches. This leads 

to an increased use of the singleton list in making recommendations which negatively impacts 

the performance of both the approaches. In the extreme case, if no eligible rules were available to 

either approach, the performance of both approaches would converge to using the singleton list 

to recommend every item. 

We conduct similar experiments on the datasets BMS-2 and BMS-POS; the results are 

reported in Part VI of the online supplement. 

6. Comparisons with Collaborative Filtering and Matrix 

Factorization 

We compare the quality of recommendations obtained using the disjunctive consequent rules 

approach with those obtained when using collaborative filtering and matrix factorization, two 

other prominent techniques that are commonly used for making recommendations. For 

collaborative filtering, we use as our benchmark the item-to-item collaborative filtering approach 

which is suitable for binary (e.g., transactional) data.14 For matrix factorization, we use the 

algorithm popularly known as FunkSVD (Funk 2006). We vary the different design parameters 

(e.g., model size for collaborative filtering, etc.) when conducting experiments using these two 

approaches, and report the best results obtained. Training and test datasets are created as 

discussed in Section 5. We report in Table 6 the results obtained for the dataset Retail; additional 

details of the two approaches and detailed results of experiments conducted on datasets BMS-

POS and BMS2 are provided in Part VII of the online supplement.  

 

 

 

 
14 The user-to-user collaborative filtering approach is designed for ratings data. The unrated items are treated as 

missing data and ignored for predicting ratings of users. Therefore, it is not typically used for transactional data. 
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Table 6: DCR vs. Collaborative Filtering and Matrix Factorization 

Dataset 

# of 

items 

recomm

-ended 

DCR Collaborative Filtering (CF) Matrix Factorization (MF) 

% Success % Success 

Relative 

Improvement of 

DCR over CF 

% Success 

Relative 

Improvement of 

DCR over MF 

Retail 

2 25.25% 18.87% 33.83% 23.72% 6.45% 

3 28.25% 22.00% 28.43% 27.79% 1.66% 

4 30.55% 24.64% 24.00% 29.63% 3.11% 

8 35.18% 30.00% 17.25% 32.31% 8.89% 

 

DCR provides better recommendations than either collaborative filtering or matrix 

factorization for all the cardinalities considered (i.e., number of items recommended) on the 

Retail dataset. The improvement over collaborative filtering is statistically significant at the 99% 

confidence level for all the cardinalities. The improvement over matrix factorization is 

statistically significant at the 99 % confidence level when the number of items recommended is 

two, four or eight; the improvement is statistically significant at the 95% confidence level when 

three items are recommended.  

For the dataset BMS-POS, DCR improves upon collaborative filtering when up to four 

items are recommended – the improvements are significant at the 99% confidence level when 

two or three items are recommended, and at the 95% confidence level when four items are 

recommended (details are provided in Table A4 of the online supplement). Collaborative 

filtering performs better when eight items are recommended – this difference is statistically 

significant at the 99% confidence level. DCR performs better than matrix factorization for all 

cardinalities considered – these differences are all statistically significant at the 99% confidence 

level.  

The collaborative filtering based system performs significantly better (at the 99% 

confidence level) than both DCR and matrix factorization in the experiments conducted on the 

dataset BMS-2. We speculate that the inferior performance of DCR is because of the nature of 

this dataset – it consists of click-stream data (instead of transactional data) and is much sparser 

than the transactional datasets. This sparsity leads to few rules being mined. The traditional 

association rule approach (TAR) also performed poorly for this dataset (details are in Table A3 
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of the online supplement). While DCR improves on the performance of TAR considerably, its 

performance still falls short of collaborative filtering. Matrix factorization performs very poorly 

on this dataset – its performance is significantly inferior (at the 99% confidence level) compared 

to DCR as well. The ability of the matrix factorization approach to generate reliable item-factor 

and user-factor vectors is likely hampered because of the very sparse nature of BMS-2.  

Overall, these experiments show that the performance of DCR matches up very well with 

two very prominent recommendation techniques in the literature, collaborative filtering and 

matrix factorization. In particular, its performance is superior to these techniques on the two 

transactional datasets for all but one experimental setting (where it is superior to matrix 

factorization but inferior to collaborative filtering). We note that the relative performances of all 

the approaches vary considerably with the datasets used. Therefore, in addition to considering 

implementation related issues (e.g., ease of deployment, response times, explanation capabilities, 

etc.), firms should carefully evaluate the success rates from using different viable 

recommendation techniques in order to identify the best one for their specific context. 

7.  Conclusions and Future Research 

Traditional rule-based recommendation systems do not consider the risk of losing a user if the 

user does not find any of the recommended items to be interesting. This can be an important 

consideration for many sites. In this research, we propose the use of rules to recommend a set of 

items such that they address the objective of minimizing the above risk. The goal, then, is that in 

each interaction (i.e., web page delivered by a site) the site will make product recommendations 

in an attempt to maximize the probability that the user will find at least one of the recommended 

items to be interesting. Such an objective is closely related to the bounce rate, an important 

metric to evaluate the quality of pages delivered by a site. To accomplish this goal, we consider 

rules that have in their consequents disjunctions of items (i.e., disjunctive rules). Such rules 

provide semantics that map naturally to the stated goal.  

We have developed an algorithm that mines such rules from transactional data. Finding 

disjunctive rules is hard in general. To make the mining task computationally viable, we develop 

pruning rules to avoid enumerating all possible disjunctive consequents. Experiments to evaluate 

the effectiveness of our pruning rules show that when the number of items to be recommended 
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increases, the proportion of disjunctive sets explored reduces drastically. The improvement is 

most marked for very high confidence thresholds, which are the scenarios where the mining is 

relatively more time consuming. We show that the mining problem is tractable for most retail 

firms, since such firms often recommend only a few items in each interaction. For firms that 

wish to recommend a large number of items in each interaction, we develop an efficient 

approach to combine the consequents of disjunctive rules with lower cardinalities.    

Experiments are conducted on three real-world datasets to compare the recommendation 

performance of disjunctive rules with those of traditional association rules for a range of design 

parameters. We find the system using disjunctive rules significantly outperforms the system 

using traditional rules in every experiment. The improvement is higher when more items are 

recommended. These experiments demonstrate that the proposed methodology is robust across 

datasets and has the potential to substantially improve firm performance. We also compare the 

performance of the proposed approach with two other prominent recommendation techniques in 

the literature – collaborative filtering and matrix factorization. Its performance is generally 

superior (with one solitary exception) to both these techniques on the two transactional datasets 

considered for our experiments. The relative performance on the click-stream dataset (which is 

very sparse) is mixed. Its performance is inferior to that of collaborative filtering and superior to 

that of matrix factorization for that dataset. We should point out that rule-based systems, by 

virtue of their ease of comprehension, have an important advantage over collaborative filtering 

systems which may be perceived as a black box by managers. Rules can also be relatively easily 

modified to incorporate contextual knowledge directly by practitioners/experts – this flexibility 

makes such systems very versatile.  

A limitation of our mining algorithm is its inability to obtain optimal rules in a 

reasonably small time when a large number of items are desired in the consequent. The problem 

becomes even more challenging if the minimum confidence threshold is also very high. While 

our current methodology is able to make recommendations with a larger number of items by 

combining the consequents of rules with lower cardinalities, future research could consider 

developing heuristics in the mining process itself that are computationally efficient and still 

provide good (if not optimal) solutions.  
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A limitation with the objective we have studied is that it is myopic in nature, i.e., it does 

not explicitly consider the possible actions of the user beyond the immediate interaction. For 

example, the set of links offered in one interaction could impact the choice of the user on pages 

delivered in subsequent interactions. Also, it is possible that a user may use the back button to 

revisit a previously viewed page, and click on another link on that page. Future research could 

model this dynamic aspect of making recommendations in order to improve the conversion rates 

across an entire session (or even multiple sessions over a given timeframe).  

Finally, further research is needed to establish what factors determine which kind of a 

recommender system will perform better than others. Our experiments clearly demonstrate that 

the relative performances can be greatly impacted by the application domain. A systematic 

approach is needed that considers both the underlying theoretical basis for the different 

approaches and the data characteristics.  
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Part I. Proofs of Propositions 

Proof of Proposition 1: We know that D-Sup(y1) ≤ D-Sup(y2) ≤…≤ D-Sup(yi). So items with a 

higher support may appear as ancestors of items with a lower support but not as descendants. 

Consider any node corresponding to an item yj. The count corresponding to that node represents 

the number of transactions where yj and its ancestors appear. Thus, if any ancestor yk of yj is a 

part of the unionset, then all the transactions corresponding to yk have already been accounted for 

and should not be double counted. Otherwise, the count for the node gets added to the disjunctive 

support for the unionset.                                                                                                                   • 

Proof of Proposition 2: The proof for each rule is provided separately. 

Rule 1a: We know that D-Sup((w1, w2,…, wi)) ≤ D-Sup ((w1, w2,…, wi-1))+ Support(wi)  

           ≤ max-supi-1 + Support(wi).         (i) 

The RHS of equation (i) is thus an upper bound for the disjunctive support for W. Hence, if this 

upper bound is smaller than the current lower bound, then the disjunctive support of the unionset 

must be smaller than the lower bound. 

Rule 1b: If a unionset W’ contains wj’ such that Support(wj’) < Support(wi), then, since we know 

that D-Sup(W-wj’) ≤ max-supi-1, it follows that 

D-Sup(W-wj’) + Support(wj’) < max-supi-1 + Support(wi). 

Hence, all unionsets that contain at least one item with support less than or equal to the support 

of wi cannot have disjunctive support more than the lower bound. So we do not need to generate 

any unionset having items with support less than or equal to the support of wi. 

Rule 2a: D-Sup((w1, w2,…, wi)) ≤ ∑ Support(𝑤𝑗)𝑖
𝑗=1 .                                                           (ii) 

As was the case for Rule 1, the RHS of (ii) is an upper bound for D-Sup(W). Hence, if 

∑ Support(𝑤𝑗)𝑖
𝑗=1 ≤ 𝐿𝐵𝑖 , then D-Sup(W) < LBi. 
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Rule 2b: This is analogous to the proof for Rule 1b. If a unionset W’ is such that the W-wj’ =    

W-wi and Support(wi) > Support(wj’), then W’ cannot have support more than LBi. Therefore, we 

do not need to generate any unionset containing an item wj’ with individual support less than that 

for wi, when all the other items in the unionsets are same as in (W-wi). 

Rule 3a: The sub-unionsets of W of cardinality i-1are W – (w1), W – (w2),…, W – (wi).  

D-Sup(W) ≤ D-Sup(W-wj) + Support(wj)   j=1 to i.                                                             (iii) 

For each value of j the RHS of equation (iii) becomes an upper bound for D-Sup(W). Hence, if 

there exists some j, such that D-Sup(W-wj) + Support(wj) < LBi, then D-Sup(W) < LBi. 

Rule 3b: If W is such that D-Sup(W-wi) + Support(wi) < LBi and a subset W’ of W exists such that 

W’-
'

jw = W-wi  and Support(wi) > Support(wj’), then it follows that D-Sup(W-wj’) + Support(wj’) 

< D-Sup(W-wi) + Support(wi) < LBi. Thus, W’ can be pruned. Hence, all the unionsets that differ 

from W only in the last item and are dominated lexicographically can be pruned.      •                       

Proof of Proposition 3: The proof is by reduction using the Partial Vertex Cover problem 

(Kneis et al. 2008). The Partial Vertex Cover problem is: 

Input: A graph G = (V, E), positive integers k, t 

Question: Is there a C  V, |C| ≤ k, such that C covers at least t edges? 

Given an arbitrary instance of the Partial Vertex Cover problem, we now describe a construction 

of an instance of our problem.  

• V is the set of items in the dataset, 

• E is the set of transactions (i.e., the dataset), 

• C is an unionset, 

• k is the user specified maximum cardinality of the unionsets, and 

• t = minimum disjunctive support threshold. 

The decision question for our problem then is:  

“Does there exist a unionset C V, |C|k, such that at least one item in the unionset is present in 

at least t transactions in the antecedent dataset?” 

It is easy to verify that the construction of the decision problem from an instance of Partial vertex 

cover can be done in polynomial time. We show that a unionset with k or fewer items in it and 
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disjunctive support greater than or equal to the threshold can be found from a dataset with 

transactions E if and only if we can find a partial vertex cover for the graph G= (V,E). 

 

If Part: If we identify a partial vertex cover C, then we also identify a unionset C of k or fewer 

items. Since the vertices in C cover at least t edges, the corresponding items in C are present in at 

least t transactions. Hence, the disjunctive support of the unionset C is greater than or equal to t 

which is the minimum disjunctive support threshold. Thus, we obtain a unionset from the dataset 

E that has k or fewer items and has disjunctive support greater than or equal to the threshold. 

 

Only if part: If we identify a unionset C that has k or fewer items in it and has a disjunctive 

support greater than or equal to t, then we have also found a set of k or fewer vertices that covers 

at least t edges. Therefore, we have a partial vertex cover.   

 

Part II. Related Work 

We review the extant literature focusing on those works that are closely related to ours. The 

discussion is divided in two parts. The first part describes those works that study rules with 

disjunction in antecedents and/or consequents. The second part reviews works that focus on 

providing multiple recommendations.  

Starting with Agrawal et al. (1993), an enormous amount of research has been conducted 

on mining association rules where both the antecedent and consequent comprise of conjunctions 

of items. We are interested in rules that contain disjunctions of items in their consequents and 

restrict our discussion to research that considers such rules.15 Fukuda et al. (1999) developed an 

algorithm for creating rules where the antecedent is a range of values (i.e., an interval). While an 

interval can also be viewed as a disjunction, in their approach intervals are present only in the 

antecedents. Rastogi and Shim (2002) developed algorithms to find association rules on 

categorical and numerical data, again with disjunctions only in the antecedents of rules. Zelenko 

(1999) also studied rules with disjunctions in the antecedents. 

 
15 There is a vast amount of literature on how to improve the efficiency of mining process of conjunctive association 

rules. Since they are not related to our work, we do not discuss those papers. 
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Kryszkiewicz and Gajek (2002) developed a procedure for concisely representing 

frequent itemsets (patterns). In the process they create disjunctive rules whose confidences are 

found using an exhaustive search strategy; naturally it does not scale well for large datasets. 

Nanavati et al. (2001) developed an algorithm to generate rules that include disjunctions between 

itemsets in the consequent for a predefined antecedent. They call such rules generalized 

disjunctive association rules. Their objective is to identify disjunctive rules that maximize a 

criterion  which is defined as: 
𝑃((𝐼1∪𝐼2)∩𝐴)

𝑃(𝐼1∩𝐴)+𝑃(𝐼2∩𝐴)
, where A is the pre-specified antecedent and I1 and 

I2 are two itemsets (itemsets can be singletons) mined from the transactions in which the items in 

A also occur. For example, consider finding a disjunctive rule with antecedent A and a 

consequent with two items. Their objective would prefer a pair of items X1 and X2 over another 

pair X3 and X4 when X1 and X2 never co-occur in any transaction and X3 and X4 do, even if  

𝑃((𝑋1 ∪ 𝑋2) ∩ 𝐴) < 𝑃((𝑋3 ∪ 𝑋4) ∩ 𝐴). In contrast, we would prefer X3 and X4 over X1 and X2 

since the probability of choosing at least one out of X3 and X4 is higher than the probability of 

choosing at least one out of X1 and X2, given the antecedent A. Therefore, the algorithm proposed 

by Nanavati et al. does not generate the type of rules we are interested in.  

As discussed earlier, Wang and Shao (2004) have presented a method to recommend 

multiple items based on conjunctive association rules. Zaïane (2002) suggests multiple items be 

recommended by sorting the rules based on their confidences and selecting the requisite number 

of distinct consequences of rules with highest confidences. In an analogous manner, Mobasher et 

al. (2001) recommend multiple web pages to visitors based on the visitor’s sessions, using rules 

with highest confidences comprising of single consequents and antecedents that are subsets of a 

customer’s session history. Kim and Kim (2003) consider rules with single items in both 

antecedents and consequents and use a greedy heuristic to recommend multiple items using these 

rules. None of these papers consider disjunction in rules, and consequently their 

recommendations do not result from disjunctive rules satisfying some confidence threshold. 

 

Part III. FP Tree Creation 

FP trees were originally proposed by Han et al. (2004) for mining traditional itemsets. Such trees 

can compactly represent a dataset, and are traditionally used to speed up the process of counting 
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the (conjunctive) support of itemsets. We adapt Han et al.’s approach to determine the 

disjunctive support of unionsets in an efficient manner. We illustrate how an FP tree is created 

using the example in Section 2 (Han et al. provide the formal procedure for creating the FP tree).  

To create the tree, items in every transaction of the antecedent database are sorted in decreasing 

order of their supports in that database. Table A1 shows the transactions in Table 2 sorted in this 

manner16 and Figure A1 (which is the same as Figure 2) shows the FP tree for Table A1. 

Row ID Transaction ID Items Row ID Transaction ID Items 

1 1 I1 I3 5 6 I1 I3 I5 

2 2 I1 I3 I4 6 8 I1 I3 

3 3 I1 I5 7 9 I1 I4 

4 4 I3 I2 8 10 I4 I2 

Table A1: Dataset for antecedent (I6, I7) with items sorted in transactions  

For ease of exposition, we refer to Row ID in Table A1 as the transaction number for 

creating the FP tree. The FP tree starts from a root node labeled 1, creating a path starting from 

the root node for each distinct transaction. The first transaction contains {I1, I3}. A node labeled 

I1 is added as a child to the root node and a node labeled I3 as a child to node I1. Counters for 

these new nodes are set to one. Transaction 2, consisting of {I1, I3, I4}, shares the path from the 

root to nodes I1 and I3 with the first transaction. A node corresponding to I4 is added as a child 

node to I3. The count associated with all the nodes I1, I3, and I4 are incremented by one; thus, 

the counts for nodes I1 and I3 become two each and the count for I4 becomes one. Transaction 3, 

which consists of {I1, I5}, leads to adding a child node I5 to node I1, and incrementing the 

counts of these two nodes by one. For the fourth transaction with {I3, I2}, a new node I3 is 

created as a child of the root node. A node corresponding to I2 is created as a child to the new 

node corresponding to I3 and counts are incremented for both these nodes by one. This process is 

repeated for all remaining transactions. Addresses of all nodes corresponding to an item are 

stored in the Node column of an index table.  

  

 
16  The items in a transaction are sorted while creating the FP tree, thereby requiring only one pass of the database. 
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Figure A1: FP tree for dataset in Table A1 

 

Every path starting from the root of the FP tree represents a set of transactions. At each 

node, the count represents the number of transactions in which that item is present within the set 

of transactions represented by the path. For each node, its parent corresponds to an item that co-

occurs in at least one transaction and has equal or higher support than the child node.  

 

Part IV. Example Illustrating the Pruning Rules 

We illustrate the pruning process using the following example. Consider a list Z with items {I1, 

I2, I3, I4, I5, I6, I7}, where the items are arranged in decreasing order of support. The individual 

supports are assumed to be as follows: 

 Support(I1)=12 Support(I2)=10   Support(I3)=8   Support(I4)=7  

 Support(I5)=6   Support(I6)=5    Support(I7)=3. 

List U2 contains the support of the cardinality-two unionsets that have been explicitly computed 

and stored. It is assumed to include: 

 D-Sup((I2, I3))=10   D-Sup((I3, I4))=12  D-Sup((I2, I4))=15. 

The other relevant parameters are assumed to be 

 max-sup2 = 17   LB3 = 22. 

We further assume that at the current stage we are considering unionset (I1, I6, I7). The 

pruning process proceeds as follows. 
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Rule 1a: max-sup2 + Support(I7) = 17+3 = 20 < LB3. Therefore, Rule 1a helps prune unionset 

(I1, I6, I7). Furthermore, from Rule 1b, we do not need to consider any unionset with item I7 

hereafter. 

The next unionset to consider is (I2, I3, I4).  

Rule 1a: max-sup2 + Support(I4) = 17 + 7 = 24 > LB3. So Rule 1 cannot prune this unionset. 

Rule 2a: Support(I2) + Support(I3) + Support(I4) = 10 + 8 + 7 = 25 > LB3. So Rule 2 cannot 

prune this unionset either.  

Rule 3a: This rule generates all the sub-unionsets of (I2,I3,I4), and for each sub-unionset, it 

calculates the sum of the support of the sub-unionset and the support of the remaining item. 

Since D-Sup((I2, I3)) + Support(I4) = 17 < LB3, the unionset can be pruned. 

Rule 3b further prunes the unionsets (I2, I3, I5) and (I2, I3, I6). It is not necessary to consider 

(I2, I3, I7) as all unionsets with I7 have already been pruned.  

The next unionset for consideration is (I2, I4, I5). Neither Rule 1 nor Rule 2 can prune this 

unionset. However, since D-Sup((I2, I4)) + Support(I5) = 15 + 6 = 21 < LB3, the unionset is 

pruned by Rule 3a. Rule 3b helps prune (I2, I4, I6). 

Next up for consideration is the unionset (I2, I5, I6). This is pruned by Rule 2a. 

Unionset (I3, I4, I5) is considered next. Rule 1 is not able to prune this unionset. However, 

Rule 2a does prune this since Support(I3) + Support(I4) + Support(I5) = 8 + 7 + 6 = 21 < LB3. 

From Rule 2b, we do not need to consider any unionset containing items I5, I6 or I7 along with 

items I3 and I4, and no more cardinality three unionsets remain. 

 

Part V. Detailed Results of Experiments on Dataset Retail Comparing Disjunctive 

Consequent Rules and Conjunctive Consequent Rules 

Table A2 provides detailed results of all the experiments conducted to compare the recommender 

systems using disjunctive consequent rules and the conjunctive association rules. The support 

thresholds used for mining rules are 0.1%, 0.3% and 0.5%, respectively. The confidence 

thresholds used for mining conjunctive association rules are 30%, 40%, 50%, 60% and 70%, 

respectively. The confidence threshold used for mining disjunctive consequent rules is 90%. All 

improvements are statistically significant at the 99% confidence level.
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Confi-

dence  

# Items 

Recom-

mended 

Support Threshold - 0.1% Support Threshold - 0.3% Support Threshold - 0.5% 

% 

Success: 

DCR 

% 

Success: 

TAR 

Relative 

Improv-

ement 

% 

Success: 

DCR 

% 

Success: 

TAR 

Relative 

Improv-

ement 

% 

Success: 

DCR 

% 

Success: 

TAR 

Relative 

Improv-

ement 

30% 

2 25.25% 23.95% 5.44% 24.36% 23.39% 4.17% 23.95% 23.22% 3.14% 

3 28.25% 26.38% 7.09% 27.12% 25.79% 5.14% 26.70% 25.69% 3.93% 

4 30.55% 28.11% 8.69% 29.10% 27.54% 5.68% 28.56% 27.42% 4.17% 

8 35.18% 31.35% 12.20% 32.98% 30.77% 7.20% 31.93% 30.69% 4.03% 

40% 

2 

Same as 

above 

23.72% 6.49% 

Same as 

above 

23.27% 4.69% 

Same as 

above 

23.14% 3.50% 

3 26.16% 8.00% 25.73% 5.40% 25.65% 4.07% 

4 27.90% 9.50% 27.46% 5.97% 27.39% 4.28% 

8 31.17% 12.85% 30.71% 7.41% 30.67% 4.10% 

50% 

2 

Same as 

above 

23.58% 7.09% 

Same as 

above 

23.22% 4.91% 

Same as 

above 

23.10% 3.66% 

3 26.06% 8.42% 25.69% 5.58% 25.62% 4.21% 

4 27.79% 9.93% 27.41% 6.15% 27.36% 4.39% 

8 31.04% 13.33% 30.66% 7.59% 30.62% 4.27% 

60% 

2 

Same as 

above 

23.45% 7.68% 

Same as 

above 

23.21% 4.95% 

Same as 

above 

23.11% 3.66% 

3 25.89% 9.13% 25.66% 5.68% 25.63% 4.17% 

4 27.63% 10.59% 27.40% 6.19% 27.36% 4.38% 

8 30.87% 13.94% 30.65% 7.62% 30.62% 4.27% 

70% 

2 

Same as 

above 

23.32% 8.30% 

Same as 

above 

23.20% 5.00% 

Same as 

above 

23.13% 3.56% 

3 25.75% 9.73% 25.66% 5.67% 25.62% 4.22% 

4 27.47% 11.23% 27.40% 6.20% 27.37% 4.36% 

8 30.72% 14.52% 30.65% 7.62% 30.62% 4.26% 

Table A2: Recommendation accuracy from using disjunctive rules (DCR) and traditional rules (TAR). All differences are statistically 

significant at the 99% confidence level.
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Part VI. Comparing Disjunctive Consequent Rules and Conjunctive Consequent Rules on 

Datasets BMS-2 and BMS-POS  

We also performed experiments on the other two datasets (BMS-POS and BMS-2) in order to 

ascertain if using disjunctive consequent rules led to improved performance for those datasets as 

well. As was done for the Retail dataset, each of these datasets were divided into training and 

testing datasets (i.e., 80% of randomly selected transactions from a dataset are included in the 

training dataset and rest in the testing dataset). The support threshold used for generating rules 

was set at 0.5% for both approaches. The confidence thresholds used for mining traditional rules 

were 30%, 40%, 50%, 60%, and 70%, respectively, and it was 90% for disjunctive rules. 

The results of these experiments are shown in Table A3. The performance of the 

recommender system using disjunctive consequent rules is significantly better than the system 

using traditional association rules in every experiment for each dataset. The relative 

improvement for dataset BMS-POS is similar in magnitude to that observed for the dataset 

Retail. Interestingly, the improvements achieved for the dataset BMS-2 are considerably higher. 

We examined these performances in further detail and observed the following. First, the dataset 

BMS-2 is much more sparse compared to BMS-POS, which makes it relatively more difficult to 

obtain reliable rules – this is reflected in the relatively poorer recommendations of both the 

traditional approach as well as our approach. In addition, because of the fewer rules obtained by 

the traditional approach (especially at higher confidence thresholds), it ends up using items from 

the default singleton list far more often than does our approach. These two factors lead to the 

considerable difference in the performances of the two approaches. We have conducted 

experiments on BMS-2 at several other support levels, and found the relative improvements to 

remain about the same. 
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Confidence 

Threshold 

for TAR 

# of Items 

Recom-

mended 

BMS-POS BMS-2 

% Success - 

DCR 

% Success 

- TAR 

Relative 

Improv-

ement 

% 

Success 

- DCR 

% 

Success 

- TAR 

Relative 

Improv-

ement 

30% 

2 39.07% 37.67% 3.71% 17.91% 10.50% 70.58% 

3 44.98% 43.30% 3.87% 21.36% 12.10% 76.56% 

4 49.80% 47.67% 4.47% 23.89% 13.29% 79.76% 

8 62.53% 59.15% 5.72% 28.85% 16.57% 74.13% 

40% 

2 

Same as 

above 

36.89% 5.90% 

Same as 

above 

9.77% 83.33% 

3 42.41% 6.05% 11.34% 88.39% 

4 46.70% 6.64% 12.29% 94.39% 

8 57.92% 7.96% 15.24% 89.33% 

50% 

2 

Same as 

above 

35.78% 9.18% 

Same as 

above 

8.37% 113.99% 

3 41.29% 8.93% 9.78% 118.44% 

4 45.40% 9.70% 10.62% 124.96% 

8 57.27% 9.19% 13.64% 111.54% 

60% 

2 

Same as 

above 

33.62% 16.20% 

Same as 

above 

7.41% 141.72% 

3 39.29% 14.47% 8.58% 148.99% 

4 43.96% 13.29% 9.50% 151.48% 

8 56.30% 11.07% 12.52% 130.46% 

70% 

2 

Same as 

above 

32.38% 20.65% 

Same as 

above 

6.61% 170.97% 

3 38.59% 16.55% 7.78% 174.60% 

4 43.36% 14.86% 8.76% 172.72% 

8 56.00% 11.66% 11.98% 140.85% 

Table A3: Comparing disjunctive consequent rules with traditional rules: BMSPOS and BMS-2. 

All differences are statistically significant at the 99% confidence level. 

 

Part VII. Comparisons with Collaborative Filtering and Matrix Factorization 

We use the implementations provided by Ekstrand et al. (2011) in an open source project named 

Lenskit (lenskit.grouplens.org). The implementations are refinements of the approaches proposed 

by Deshpande and Karypis (2004) for collaborative filtering and by Funk (2006) for FunkSVD. 

As noted by Ekstrand et al., Lenskit provides carefully tuned implementations of the leading 

algorithms. We should mention that in their experiments on three separate datasets, Ekstrand et 

al. find FunkSVD to perform the best on two datasets and the item-to-item collaborative filtering 

approach to perform the best on the third.  
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We provide here brief descriptions of the collaborative filtering and matrix factorization 

(FunkSVD) approaches. Additional details for collaborative filtering are available in Deshpande 

and Karypis (2004), for FunkSVD in Funk (2006) and Koren (2009), and for the 

implementations in Ekstrand et al. (2011). For collaborative filtering, given a dataset involving m 

items, the process requires two parameters as inputs – a model size (k) and a neighborhood size 

(l). The system computes the scores for items by multiplying an mm similarity matrix (model) 

with a column vector representing the basket that contains 1 for items present in the basket and 0 

for other items. The model size is the number of similarities retained in each column of the 

model; other similarities are set to 0. The neighborhood size is the number of similarities used to 

calculate the score of an item; other similarities are ignored. The item with the highest rating is 

recommended. 

The matrix factorization technique determines latent factors (characteristics) using a 

technique analogous to singular value decomposition (SVD). It associates each user with a user-

factor vector and each item with an item-factor vector, and makes predictions using the inner 

product of such vectors. Parameters of the model are learned with the objective of minimizing 

the differences between predicted and actual ratings while avoiding over-fitting (Koren et al. 

2009). FunkSVD accomplishes this using a stochastic gradient descent learning algorithm. 

We conduct experiments on all the three datasets discussed earlier. The experimental 

setup, i.e., creating training and test datasets and the corresponding baskets, is the same as for the 

experiments in Section 6. For the dataset Retail, we conduct experiments by mining disjunctive 

consequent rules at three different support thresholds: 0.1%, 0.3% and 0.5%. We conduct 

experiments on the dataset BMSPOS by mining rules at 0.2% and 0.5% support thresholds, 

respectively. Experiments on the dataset BMS-2 are conducted using rules mined at support 

thresholds of 0.1% and 0.5%. The confidence threshold for mining disjunctive rules is set at 90% 

in all the experiments for each dataset. For the dataset Retail, the best results were obtained when 

rules were mined at the support threshold 0.1. The best results for BMSPOS and BMS-2 were 

obtained when the rules were mined at support thresholds 0.2% and 0.1%, respectively.  We 

report the results for these support thresholds.  

For the collaborative filtering system, we experimented with values of model sizes up to 

500 and neighborhood sizes up to 150 for all the datasets (larger model and neighborhood sizes 

could not be accommodated in memory). The performance of the collaborative filtering system 
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was not very sensitive to changes in the model and neighborhood sizes. We report the results for 

the experiments with model size 500 and neighborhood size 150 since the system’s accuracies 

are a little better with these settings than with the other settings. The similarity between items is 

measured using cosine similarity metric. 

While FunkSVD was originally designed for non-zero ratings for user-item pairs (like 

any matrix factorization technique), it has subsequently been found to work well for binary data 

by replacing all zeros with a small number (XLVector 2012). Therefore, we modify the datasets 

in this manner to run FunkSVD. The resulting datasets are dense and cannot be used in their 

entirety by Lenskit. Therefore, from the training part of the Retail dataset, we randomly select 

two thousand transactions for model building. Similarly, from the training part of BMS-2, we 

randomly select four thousand transactions and from that of BMS-POS, we are able to use twelve 

thousand transactions (again randomly selected) as the training datasets for model building. We 

are able to select more transactions for BMS-POS because this dataset has much fewer items 

than the other two. All the modified training datasets have more than ten million values for user-

item pairs (the largest dataset used by Ekstrand et al. has ten million values). We experimented 

with other (smaller) numbers of randomly selected transactions for creating ratings datasets – the 

results do not differ significantly. 

Table A4 provides the results of experiments conducted on BMS-POS and BMS-2. 

Dataset 

# of 

items 

recomm

-ended 

DCR Collaborative Filtering (CF) Matrix Factorization (MF) 

% Success  % Success 

Relative 

Improvement by 

DCR over CF 

% Success 

Relative 

Improvement by 

DCR over MF 

BMS-

POS 

2 40.09% 38.37% 4.49% 32.15% 24.72% 

3 45.93% 45.15% 1.74% 38.31% 19.91% 

4 50.88% 50.17% 1.41% 43.13% 17.97% 

8 63.26% 64.69% -2.20% 56.12% 12.72% 

BMS-2 

2 32.33% 34.42% -6.08% 4.99% 548.46% 

3 37.77% 41.00% -7.89% 6.42% 488.26% 

4 41.83% 45.77% -8.60% 7.78% 437.71% 

8 50.07% 57.00% -12.16% 11.39% 339.60% 

Table A4: DCR vs. Collaborative Filtering and Matrix Factorization 
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