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Abstract 
Business analytics has evolved from being a novelty used by a select few, to an accepted facet of conducting 
business. Recommender systems form a critical component of the business analytics toolkit and, by 
enabling firms to effectively target customers with products and services, are helping alter the e-commerce 
landscape. A variety of methods exist for providing recommendations, with collaborative filtering, matrix 
factorization, and association rule based methods being the most common. In this paper, we propose a 
method to improve the quality of recommendations made using association rules. This is accomplished by 
combining rules when possible, and stands apart from existing rule-combination methods in that it is 
strongly grounded in probability theory. Combining rules requires the identification of the best combination 
of rules from the many combinations that might exist, and we use a maximum-likelihood framework to 
compare alternative combinations. As it is impractical to apply the maximum likelihood framework directly 
in real time, we show that this problem can equivalently be represented as a set partitioning problem by 
translating it into an information theoretic context – the best solution corresponds to the set of rules that 
leads to the highest sum of mutual information associated with the rules. Through a variety of experiments 
that evaluate the quality of recommendations made using the proposed approach, we show that (i) a greedy 
heuristic used to solve the maximum likelihood estimation problem is very effective, providing results 
comparable to those from using the optimal set partitioning solution, (ii) the recommendations made by our 
approach are more accurate than those made by a variety of state-of-the-art benchmarks, including 
collaborative filtering and matrix factorization, and (iii) the recommendations can be made in a fraction of 
a second on a desktop computer, making it practical to use in real-world applications. 
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1. Introduction 

A recent International Data Corporation (IDC) report estimates that the business analytics market will grow 

at a compounded rate of 9.8%, and reach 50.7 billion by 2016. This is partly fueled by the growth in the 

amount of customer data readily available to firms, and the potential for businesses to leverage their data 

through the novel use of software-based analytic techniques. Recommender systems form an integral part 

of the business analytics toolkit, and several studies have shown that personalized recommendations can 

enable firms to effectively target customers with products and services (Häubl and Trifts 2000, Tam and 

Ho 2003). For example, Pathak et al. (2010) find that the strength of a recommender system has a positive 

effect on sales and on prices.  
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Recommendations are made on a continuous basis, and can have a substantial impact on the bottom 

line. According to Hosanagar et al. (2014), 60% of Netflix rentals stem from recommendations, while 35% 

of Amazon’s sales originate from their recommendation system. It is easy to see that even a small 

improvement in the quality of recommendations would be worth millions of dollars every year to a retailer. 

A variety of methods exist for providing recommendations, with collaborative filtering, matrix 

factorization, and association rule based methods being the most common.1 In this paper, we focus on 

improving the quality of rule based recommendations by combining information from multiple association 

rules. Rule-based approaches comprise one prominent class of techniques used to provide personalized 

recommendations to customers. Firms such as BroadVision provide rule-based tools to firms that wish to 

implement recommendation systems on their web sites (Hanson 2000). Rules are easy to understand, which 

appeals to marketers interested in cross-selling or product placement. Often, such rule based systems use 

association rules (Hastie et al. 2009).  

Association rules are implications of the form {bread, milk}→{yogurt}, where {bread, milk} is 

called the antecedent of the rule and {yogurt} is called its consequent. While millions of such implications 

are possible in a typical dataset, not all of them are useful for providing recommendations. Agrawal et al. 

(1993) provided a method to identify those rules where the items in the rules appear in a reasonably large 

numbers of transactions (termed the support of the rule), and where a consequent has a high probability of 

being chosen when the items in the antecedent have already been chosen (termed the confidence of the 

rule). Every mined rule must meet minimum thresholds for both support and confidence. 

Association rules compactly express how products group together (Berry and Linoff 2004), and 

have been successfully used for market basket analysis (Gordon 2008, Lewin 2009). Recommendation 

systems based on association rules leverage available rules and a customer’s basket, to recommend items 

as the customer is shopping. Many firms implement association rule based recommender systems as they 

can be used unobtrusively in automated systems to provide recommendations to customers in real time. For 

instance, Forsblom et al. (2009) develop a mobile application for a Nokia smartphone that uses association 

rules to recommend retail products to customers. Prominent companies like IBM promote association rule 

mining capabilities in their business analytics software (IBM 2009a, 2009b, 2010). Moreover, because an 

association rules based system compares alternative items to recommend based on their probabilities of 

                                                      
1 Some researchers consider matrix factorization and rule based systems to be types of collaborative filtering 
techniques. For expositional convenience we refer to them as distinct from collaborative filtering. 
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purchase, the system can be easily adapted to make recommendations based on expected payoffs associated 

with the items2.  

 While there has been considerable work done on mining rules more efficiently (e.g., Ng. et al. 

1998, Bayardo 1998, Bayardo and Agrawal 1999, Zaki 2000, Webb 2000, Webb and Zhang 2005, Webb 

2008, Webb 2010, Calders et al. 2013, Zhou et al. 2013), research into the use of rules to make effective 

recommendations is scarce. Zaïane (2002) proposed a method that finds all eligible rules (rules whose 

antecedents are subsets of the basket and whose consequents are not), and recommends the consequent of 

the eligible rule with the highest confidence. Baralis and Garza (2002) and Baralis et al. (2004) propose 

related approaches (referred to as L3 and L3G, respectively) for classification based on the selective pruning 

and elimination of “harmful” rules; these can be adapted for recommending items as well. Wang and Shao 

(2004) suggest considering only maximal rules, i.e., eligible rules whose antecedents are maximal-

matching3 subsets of the basket. All these approaches focus on identifying a single rule to make the 

recommendation. Often however, the antecedent of the selected rule will not contain all the items in the 

basket. Consequently, the recommendation is made on the basis of partial information – items not present 

in the antecedent of the rule being used for recommendation are effectively ignored. It is not difficult to see 

that the item being recommended could be different had the recommendation system been able to use 

information from all the items in the basket. The set of eligible rules often contains multiple rules with the 

same consequent, and the quality of recommendations could potentially be improved by combining such 

rules effectively.  

The notion of combining rules has been explored in a few studies in the past. Given a customer’s 

basket, Lin et al. (2002) calculate the score for each item as the sum of the products of the supports and 

confidences of all eligible rules with this item as the consequent. The item with highest score is 

recommended to the customer. Wickramaratna et al. (2009) present an approach to identify rules that predict 

the presence and absence of an item, and propose a Dempster-Shaffer based approach for combining rules 

when some rules predict that a customer will purchase an item, while other rules predict the contrary. 

However they note that their approach is not scalable for real-time applications.  

There has also been some work that attempts to combine classification rules. Li et al. (2001) suggest 

classifying customers using Classification based on Multiple Association Rules (CMAR). They group 

eligible rules with the same consequent (class), and evaluate the sum of weighted chi-squares of the rules 

                                                      
2 The system can obtain the expected payoff associated with an item by computing the product of the conditional 
probability of the item being selected by the customer (i.e., the confidence) and the item’s profit margin. The firm can 
then recommend the product with the highest expected margin. 
3 An antecedent is maximal matching if no supersets of it, present as antecedents of other rules, are subsets of the 
basket. 
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in each group. The customer is assigned to the consequent class corresponding to the group with the highest 

sum. Liu et al. (2003) classify customers using a score calculated based on the combination of all the eligible 

rules (determined based on the attributes of the customer). Their scoring formula requires the identification 

of rules with negations and cannot be adapted for selecting items to recommend in a traditional association 

rule mining context. Thabtah (2007) provides a detailed survey on various classification approaches that 

use single and multiple association rules for classification. 

Two other techniques that have been successfully employed in recommendation systems are 

collaborative filtering and matrix factorization. Collaborative filtering based methods are perhaps the best 

known, at least since Amazon.com decided to deploy it as part of their recommender system (Linden et al. 

2003). These methods use the known preferences of a group of users to make recommendations or 

predictions of the unknown preferences for other users. Matrix factorization methods gained recognition 

partly as a result of successes in the Netflix Prize competition. These methods represent users and items 

through factors identified from the data, and an item is recommended to a user when the item and user are 

similar vis-à-vis these factors (Koren et al. 2009). Su and Khoshgoftaar (2009) provide a detailed survey of 

several collaborative filtering and matrix factorization based approaches.  

It is evident from the above discussion that there exists a considerable amount of literature on 

recommendation techniques. However, the literature lacks a principled approach to combine information 

from multiple rules. This paper makes multiple contributions in this regard.  

(i) A common characteristic of the existing works that attempt to combine rules is that all the methods 

proposed are ad hoc in nature. In contrast, we propose a method formally grounded in probability 

theory to combine multiple rules and make recommendations based on as many items in the basket 

as possible. As with other approaches that use association rules, we assume that the rules have 

already been mined (using any of the methods that have been proposed for mining rules) and 

available for use. Given a customer’s basket, we estimate the probability of each item (that can be 

recommended) being selected by the customer.  

(ii) We view the collection of rules being combined as a probability model. When multiple potential 

rule combinations exist for a particular target item, the best combination of rules (i.e., the best 

probability model) needs to be identified. We develop a maximum likelihood approach to 

determine the best model; the problem is framed as one of maximizing the likelihood that the 

observed data (the training data used to mine the rules) is generated from the competing probability 

models represented by the feasible rule combinations. The problem of maximizing likelihood 

requires us to estimate the likelihoods from the training data at the time recommendations are made. 

However, it is not feasible to do this in real time as many probability parameters need to be 

estimated for each probability model, and the training data sets will be large in most practical cases. 
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We show that this problem can be transformed into an equivalent problem of maximizing the 

mutual information (MI) associated with each model, where the mutual information of the model 

is the sum of the mutual information values associated with the rules included in the model. The 

mutual information values associated with the mined rules can be pre-computed. These values 

enable the efficient comparison of alternative probability models in real time.  

(iii) When the number of items in a customer’s basket increases, the number of feasible rule 

combinations can grow rapidly. Therefore, the number of probability models to compare could be 

large for some problem instances. We develop a greedy heuristic that determines good solutions in 

real time regardless of the size of the basket. Experiments comparing the performance of an optimal 

approach with that of the heuristic are conducted on three real datasets. The performance of the 

heuristic is virtually identical to that of the optimal for experiments conducted on one dataset, and 

only marginally worse for experiments conducted on the other two (the differences are not 

statistically significant).    

(iv) The effectiveness of our methodology – termed Maximum Likelihood Recommendations (MLR) – 

is demonstrated through a variety of additional computational experiments that compare it to many 

key benchmarks. We compare the accuracy of recommendations made by MLR to those made by 

(a) the single rule approaches of Zaïane (2002), Wang and Shao (2004) and Baralis et al. 2004 

(L3G), (b) the rule combination approaches of Li et al. (2001) and Lin et al. (2002), (c) item-based 

collaborative filtering, and (d) matrix factorization (FunkSVD). MLR is shown to outperform all 

the benchmarks, and the performance improvements are observed to be robust at various support 

and confidence thresholds used for mining rules in all three datasets. When it is feasible to combine 

multiple rules so that a larger proportion of the basket is covered by the rule antecedents than would 

be possible otherwise, MLR performs particularly well. 

We describe the problem in detail in Section 2, while the methodology is discussed in Section 3. 

Section 4 presents results of the experiments conducted to validate our approach for rule-based 

recommendation environments. Section 5 compares MLR with the collaborative filtering and matrix 

factorization approaches. Section 6 concludes the paper. 

2. Problem Description 

The problem being considered in this paper is best illustrated through an example. Consider a customer 

who has three items i1, i2, and i3 in her basket B, i.e., B = {i1, i2, i3}. The eligible rules for this basket – i.e., 

all available rules whose antecedents are subsets of the basket – are listed in Table 1.  Rules R1 – R4 have 
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item x1 as their consequent, while item x2 is the consequent of rules R5 – R8. Our task is to select one of x1 

or x2 and recommend it to the customer. 

Traditional rule based approaches identify the best rule from the eligible set, and recommends the 

associated consequent. So, for example, Zaïane’s (2002) approach would rank the eligible rules based on 

their confidences, and select the consequent of the rule with the highest confidence as the item to 

recommend. The rule with the highest confidence in our example is R8, and consequently, x2 would be 

recommended to the customer. However, recommending x2 based on R8 ignores some items in the basket 

(i1 and i3), despite the fact that another rule – R5 – exists with these items in the antecedent. This is true in 

general – making a recommendation based on a single rule often disregards items in the basket that are not 

in the antecedent of the rule being used. 

Rule Antecedent Consequent Confidence 
R1 i1,i2 x1 60% 
R2 i2,i3 x1 40% 
R3 i1 x1 53% 
R4 i3 x1 43% 
R5 i1,i3 x2 42% 
R6 i2,i3 x2 50% 
R7 i1 x2 58% 
R8 i2 x2 62% 

Table 1: Eligible rules for basket B = {i1,i2,i3} 
 
If we could effectively combine rules and cover as many items of the basket as possible, our 

recommendation would be more informed. The question then becomes one of determining the best way to 

combine multiple rules. This is the primary objective of this paper – to provide a theoretical basis for 

combining rules. Given the items in a customer’s basket, we combine rules when necessary to estimate the 

probabilities of each relevant consequent being selected by the customer, and recommend the item with the 

highest probability. Note that this is not unlike what the single rule approach would do, had there been a 

rule whose antecedent covered the entire basket – i.e., combinations of rules can be interpreted in much the 

same way as any single rule would be. 

Before we calculate the probabilities associated with each potential recommendation however, we 

need to identify the rules to combine. It is quite possible that there will be multiple potential combinations 

to choose from. For example, we have already seen that rules R5 and R8 could be combined to estimate the 

probability for x2. From Table 1, we can also see that rules R6 and R7 could be used to estimate the same 

probability as well. Different combinations of rules can yield different probability estimates, and we show 

how to choose the best combination from the different alternatives. 



 
 
  

7 
 

3. MLR: Maximum Likelihood Recommendations 

MLR can be viewed as a three step process. The first step identifies all the eligible rules and from them, the 

feasible consequents. For each of these feasible consequents, the best probability estimate conditioned on 

the basket is identified in the second step. The third step selects the consequent with the highest probability.  

3.1 Identifying Eligible Rules and Consequents 

We first find all the eligible rules by ensuring that all items in the antecedent of a selected rule appear in 

the basket while its consequent does not. The consequents of the eligible rules are added to a consequent 

list M. In our example, M contains two consequents {x1, x2}.  

3.2 Computing the Probability of a Consequent  

Given a customer with a basket B, we are interested in estimating P(x | B), the probability that she will 

choose item x from M. While we would ideally like to use a rule that has x as the consequent and an 

antecedent identical to B, such a rule may not exist. It is more likely that we will find several rules with x 

as the consequent, whose antecedents are subsets of B. These rules can be used, with appropriate conditional 

independence assumptions, to arrive at an estimate for P(x | B). Such assumptions have been extensively 

used for estimation when the available data are not sufficient to estimate the full distributions, and have 

been found to be robust in practice (Domingos and Pazzani 1997). 4 For example, Naïve Bayes classifiers 

are known to perform very well in many applications (Han et al. 2012, page 350). According to Shmueli et 

al. (2010, p. 153), techniques using such assumptions often rely on the orderings of the probability estimates 

which are usually close to accurate even if many of these assumptions are violated. 

Specifically, if we have multiple eligible rules with disjoint antecedents and a common consequent 

x, we can estimate P(x | B) by combining the information in these rules under the assumption that the 

antecedents are conditionally independent given the common consequent x. Note that the antecedents of 

the rules being combined have to be disjoint to avoid double counting the impact of the common items in 

the rules5. 

                                                      
4 To examine the implications of making conditional independence assumptions, we conducted experiments where we 
estimated directly from the data the probabilities associated with all feasible consequents given the entire basket (so 
that conditional independence assumptions are not needed). The recommendations from using such estimates were 
much worse compared to when rules are combined with appropriate conditional independence assumptions. This is 
because the number of transactions that support the entire basket reduces drastically as the size of the basket grows, 
and the estimates when considering the full baskets become less reliable.  
5 The following example clarifies why only rules with disjoint antecedents should be combined. Suppose that for a 
basket B = {A1, A2}, there are three eligible rules that could be used for computing the probability of the user selecting 
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Suppose there are r eligible rules with disjoint antecedents that have x as the consequent. Let the 

antecedent of rule Rj be Aj and let A represent ⋃ 𝐴𝐴𝑗𝑗𝑟𝑟
𝑗𝑗=1 . By assuming that the antecedents Aj are conditionally 

independent given x, we can approximate P(x | B) as P(x | A) below. 

P(x | A) =  𝑃𝑃(𝐀𝐀 | 𝑥𝑥)∗𝑃𝑃(𝑥𝑥)
𝑃𝑃(𝐀𝐀)  =  𝑃𝑃(𝐀𝐀 | 𝑥𝑥)∗𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑥𝑥,   𝐀𝐀)+𝑃𝑃(𝑥̅𝑥,𝐀𝐀) =
(∏ 𝑃𝑃�𝐴𝐴𝑗𝑗 � 𝑥𝑥))∗𝑃𝑃(𝑥𝑥)𝑟𝑟

𝑗𝑗=1

(∏ 𝑃𝑃�𝐴𝐴𝑗𝑗  � 𝑥𝑥))∗𝑃𝑃(𝑥𝑥)𝑟𝑟
𝑗𝑗=1 +(∏ 𝑃𝑃�𝐴𝐴𝑗𝑗 � 𝑥̅𝑥))∗𝑃𝑃(𝑥̅𝑥)𝑟𝑟

𝑗𝑗=1
   (1) 

In order to evaluate P(x | A) using (1), we need to know P(x) and P(𝑥̅𝑥), along with P(Aj | x) and P(Aj | 𝑥̅𝑥) for 

each of the r rules Rj. P(x) is simply the support of the consequent x, while P(𝑥̅𝑥) is (1 - P(x)). Each of the 

parameters P(Aj | x) and P(Aj | 𝑥̅𝑥)  can be obtained from the confidences of the rules involved (i.e., P(x | Aj)), 

and the supports of x and Aj  (i.e., P(x) and P(Aj)). All these parameters can be pre-computed from the data 

at the time the rules are mined.  

Consider computing P(x1 | B) for consequent x1 using rules R1 and R4 from the example in Table 1. 

Assume that P(x1) = 0.2, P(A1) = 0.2, and P(A4) = 0.21, for our illustrative example. Using these probabilities 

and the confidences of the two rules, the additional parameters required in (1) can be calculated as: 

𝑃𝑃(𝑥̅𝑥1) = 1 − 𝑃𝑃(𝑥𝑥1) = 0.8, 

 

𝑃𝑃(𝐴𝐴1 | 𝑥𝑥1) = 𝑃𝑃�𝑥𝑥1 � 𝐴𝐴1�∗𝑃𝑃(𝐴𝐴1)
𝑃𝑃(𝑥𝑥1) = 0.6, 𝑃𝑃(𝐴𝐴1 | 𝑥̅𝑥1) = 𝑃𝑃(𝐴𝐴1)−𝑃𝑃�𝑥𝑥1 � 𝐴𝐴1�∗𝑃𝑃(𝐴𝐴1)

(1−𝑃𝑃(𝑥𝑥1))
= 0.1, 

 

𝑃𝑃(𝐴𝐴4 | 𝑥𝑥1) = 𝑃𝑃�𝑥𝑥1 � 𝐴𝐴4�∗𝑃𝑃(𝐴𝐴4)
𝑃𝑃(𝑥𝑥1) = 0.45, 𝑃𝑃(𝐴𝐴4 | 𝑥𝑥�1) = 𝑃𝑃(𝐴𝐴4)−𝑃𝑃�𝑥𝑥1 � 𝐴𝐴4�∗𝑃𝑃(𝐴𝐴4)

(1−𝑃𝑃(𝑥𝑥1))
= 0.15. 

Substituting these values into (1), we get 

 

P(x1 | B) = 0.6∗0.45∗0.2
0.6∗0.45∗0.2+0.1∗0.15∗0.8

 = 0.82. 

 

This example illustrates how the information from the two rules R1 and R4 can be combined. The 

rule with the highest confidence for consequent x1 was R1, with a confidence of 0.6. We see that the 

estimated value of P(x1 | B) is much higher than 0.6. This suggests that the estimate of the probability of the 

customer choosing a particular consequent can be quite different when multiple rules are considered, 

relative to that when single rules are used.  

                                                      
consequent X – R1:{A1}→{X}, R2:{A2}→{X} and R3:{A1, A2}→{X}. If we allow rules with non-disjoint 
antecedents to be combined, we could combine all three rules. However, combining all three rules would result in an 
incorrect estimate, as clearly, R3 provides the correct probability estimate for selecting X when the customer has the 
basket B. 
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3.3 Multiple Ways of Computing the Probability of a Consequent 

While the illustration above combined rules R1 and R4 to estimate the probability that x1 will be chosen 

given the basket B, this probability can also be estimated using the rules R2 and R3. In order to do so, we 

need the estimates of P(x1 | A2) and P(x1 | A3) from Table 1, along with P(A2) and P(A3). Suppose P(A2) = 

0.2 and P(A3) = 0.3. Then P(x1 | B) can be estimated as 0.75 using equation (1). This estimate is different 

from that obtained when R1 and R4 were combined. 

As this example illustrates, there could be many groups of rules that could be combined to estimate 

the probability of a feasible consequent. We call each such group an admissible group. Formally, an 

admissible group is defined as a set of eligible rules with disjoint antecedents that have the same consequent. 

An admissible group to which no other eligible rule can be added while maintaining admissibility 

is called a maximal admissible group. When the union of the antecedents of the rules in the admissible 

group is equal to the basket B, we say that the group fully covers the basket; it partially covers the basket 

otherwise. The collection of all the eligible rules for a given consequent x is called a consequent set, and is 

denoted G(x). In our example, the consequent set G(x1) = {R1, R2, R3, R4} and the two maximal admissible 

groups corresponding to x1 are S1= {R1, R4} and S2 = {R2, R3}. 

3.4 Comparing Maximal Admissible Groups 

As we saw in Section 3.3, it may be possible to compute the confidence of x using one of several admissible 

groups. A natural question is, which admissible group should be used to estimate P(x | B)? In this section, 

we first discuss how to compare maximal admissible groups that fully cover the basket; we then extend our 

findings to maximal admissible groups that partially cover the basket.  

Ideally, we should use that admissible group which can best approximate the true joint distribution 

across the items in the basket B and x, i.e., P(B, x). Therefore, we compare the admissible groups using the 

likelihood of each group generating the true underlying distribution P(B, x). The likelihoods of interest in 

our case are those associated with the probability models implied by the collection of rules for each 

admissible group. Specifically, each admissible group corresponds to a probability model with some 

associated conditional independence assumptions. For example, the admissible group S1 = {R1, R4} assumes 

that the set {i1, i2} is conditionally independent of the set {i3} given x1, while S2 = {R2, R3} assumes that 

the set {i2, i3} is conditionally independent of the set {i1} given x1. Therefore, by comparing the admissible 

groups using their likelihoods, we are essentially checking which conditional independence assumption is 

most likely to hold, given the data. In essence, this problem can be viewed as one of maximizing the 
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likelihood that the observed data is generated from the competing probability models represented by the 

admissible groups. 6  

The maximum-likelihood framework requires the estimation of the likelihoods from training data. 

This is not feasible in real time as training data sets can be large, and many parameters need to be estimated 

for each probability model. Consequently, for this to be a useful approach, we have to transform this into a 

problem that can be solved in real time. We show that the log-likelihood can be conveniently represented 

as a function of the mutual information7 associated with the rules in an admissible group, and the entropies 

of the items in the basket. The mutual information terms can be pre-computed for every rule and kept 

available for use at run-time, which eliminates the need to estimate parameters from the data during the 

recommendation process. 

We consider the mutual information associated with a rule to be the mutual information across all 

the individual attributes in the rule (including the items in both the antecedent and the consequent of the 

rule). Therefore, the mutual information (MI) across attributes i1, …, in is (Kullback 1959): 

𝑀𝑀𝑀𝑀(𝑖𝑖1, … , 𝑖𝑖𝑛𝑛) = � 𝑃𝑃(𝑖𝑖1, … , 𝑖𝑖𝑛𝑛)log
𝑃𝑃(𝑖𝑖1, … , 𝑖𝑖𝑛𝑛)

𝑃𝑃(𝑖𝑖1) ∗. … ∗ 𝑃𝑃(𝑖𝑖𝑛𝑛)
𝑖𝑖1,…,𝑖𝑖𝑛𝑛

. 

Thus, the mutual information associated with a rule Rj having antecedent Aj = {ij1,…, ijk} and 

consequent xm is 

MI(Rj) = MI(Aj, xm) = MI(ij1,…, ijk , xm) = ∑ 𝑃𝑃(𝑖𝑖𝑗𝑗1, … , 𝑖𝑖𝑗𝑗𝑗𝑗 , 𝑥𝑥𝑚𝑚)log 𝑃𝑃(𝑖𝑖𝑗𝑗1,…,𝑖𝑖𝑗𝑗𝑗𝑗,𝑥𝑥𝑚𝑚)
𝑃𝑃�𝑖𝑖𝑗𝑗1�∗.…∗𝑃𝑃�𝑖𝑖𝑗𝑗𝑗𝑗�∗𝑃𝑃(𝑥𝑥𝑚𝑚)𝑖𝑖𝑗𝑗1,…,𝑖𝑖𝑗𝑗𝑗𝑗,𝑥𝑥𝑚𝑚 . 

The entropy of an item i is H(i) = −∑ P(𝑖𝑖) log P(𝑖𝑖)i . 

The mutual information associated with a rule captures the mutual dependency across all the items 

in the antecedent and the consequent of the rule. The entropy of an attribute is a measure of how much 

uncertainty is represented in the probability distribution of the attribute. 

Proposition 1 shows that the log-likelihood associated with a maximal admissible group can be 

represented as the sum of the mutual information terms associated with each participating rule, less the sum 

of the entropies associated with every item in the basket B and the entropy associated with the consequent. 

Proposition 1 helps represent the problem using the mutual information terms associated with rules. This 

has intuitive appeal, as the mutual information term for a rule is higher if the items in the antecedent and 

                                                      
6 Note that the problem of finding the best admissible group can also be viewed as one of minimizing the Kullback-
Leibler distance between the true underlying distribution P(B, x) and the distribution implied by the rules in the 
selected admissible group. Minimizing the Kullback-Leibler distance is equivalent to maximizing the log-likelihood 
of an admissible group generating the true underlying distribution P(B, x) (Aalto 2014). Therefore, all our results 
would still hold. 
7 Mutual information is also called “total correlation” by Watanabe (1960). 
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the consequent are more dependent on each other. The best admissible group therefore, is the one where 

the rules collectively convey as much information about the consequent as possible.  

Proposition 1: Given a consequent and all corresponding admissible groups that fully cover the basket, 

the admissible group that maximizes the likelihood also has the highest sum of the mutual information 

terms associated with the participating rules. 

Proof: We first show that the log-likelihood associated with a maximal admissible group can be represented 

as the sum of the mutual information terms associated with each participating rule, less the sum of the 

entropies associated with the consequent and all the items in the basket.  

Given a basket B = {i1, …, in}, let the consequent of interest be in+1. To estimate the likelihood of 

a probability model associated with an admissible group, we consider the distribution associated with these 

items, based on the absence or presence of each item in every transaction of the data set. We denote the 

binary attributes corresponding to the set of items as I = {i1, …, in, in+1}. Let the dataset T consist of s 

transactions, i.e., T = {t1, t2,…, ts}, where tj is a vector of ones and zeroes corresponding to the presence 

and absence of the items i1,…, in+1 in the jth transaction.  

Let there be r rules in an admissible group under consideration, and let Al denote the attributes 

corresponding to the antecedent Al in the lth rule of the admissible group. The probability distribution 

corresponding to the rules in the admissible group can be written as P(I) = ∏ 𝑃𝑃(𝐀𝐀𝒍𝒍 | 𝒊𝒊𝒏𝒏+𝟏𝟏)𝑟𝑟
𝑙𝑙=1 ∗ 𝑃𝑃(𝒊𝒊𝑛𝑛+1). 

The probability associated with the items appearing in the jth transaction, P(𝒕𝒕𝑗𝑗), is represented as 

∏ 𝑃𝑃�𝐀𝐀𝑙𝑙
𝑗𝑗|𝒊𝒊𝑛𝑛+1

𝑗𝑗 � ∗ 𝑃𝑃�𝒊𝒊𝑛𝑛+1
𝑗𝑗 �𝑟𝑟

𝑙𝑙=1 , and the likelihood for the admissible group is 

𝐿𝐿 = ∏ 𝑃𝑃�𝒕𝒕𝑗𝑗�𝑠𝑠
𝑗𝑗=1  = ∏ (∏ (𝑃𝑃(𝐀𝐀𝑙𝑙

𝑗𝑗|𝒊𝒊𝑛𝑛+1
𝑗𝑗 )𝑟𝑟

𝑙𝑙=1
𝑠𝑠
𝑗𝑗=1 ) ∗ 𝑃𝑃(𝒊𝒊𝑛𝑛+1

𝑗𝑗 ). 

The log-likelihood, L’, is log(𝐿𝐿) = 𝐿𝐿′ = ∑ ∑ log𝑃𝑃(𝑨𝑨𝑙𝑙
𝑗𝑗|𝒊𝒊𝑛𝑛+1

𝑗𝑗 )𝑟𝑟
𝑙𝑙=1

𝑠𝑠
𝑗𝑗=1 + ∑ log𝑃𝑃(𝒊𝒊𝑛𝑛+1

𝑗𝑗 )𝑠𝑠
𝑗𝑗=1  

       = ∑ ∑ log𝑃𝑃(𝐀𝐀𝑙𝑙
𝑗𝑗|𝒊𝒊𝑛𝑛+1

𝑗𝑗 )𝑠𝑠
𝑗𝑗=1

𝑟𝑟
𝑙𝑙=1 + ∑ log𝑃𝑃(𝒊𝒊𝑛𝑛+1

𝑗𝑗 )𝑠𝑠
𝑗𝑗=1 .    (2) 

Each instance (𝐀𝐀𝑙𝑙
𝑗𝑗 , 𝒊𝒊𝑛𝑛+1

𝑗𝑗 ) corresponds to one of the 2(n+1) realizations of the attributes (i.e., the set of 0-1 

values the attributes can assume) comprising the antecedent and the consequent of the lth rule. Let the 

probability for the kth realization of (𝐀𝐀𝑙𝑙 , 𝒊𝒊𝑛𝑛+1) be 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙 , 𝒊𝒊𝑛𝑛+1). 8 Further, let the frequency of occurrences 

for the kth realization of (𝐀𝐀𝑙𝑙 , 𝒊𝒊𝑛𝑛+1) be 𝑓𝑓𝑘𝑘(𝐀𝐀𝑙𝑙 , 𝒊𝒊𝒏𝒏+1), and the frequency of occurrences for the kth realization 

of in+1 be fk(in+1).  Therefore, 

                                                      
8 Depending on the number of items being considered in each distribution, the number of possible realizations will 
vary. Hence, the range for the index k will also vary. For notational simplicity, we do not spell out the range in the 
following expressions, implicitly assuming that k will vary over the appropriate range in each expression. 
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∑ log𝑃𝑃�𝐀𝐀𝑙𝑙
𝑗𝑗�𝒊𝒊𝑛𝑛+1

𝑗𝑗 �𝑠𝑠
𝑗𝑗=1 = ∑ 𝑓𝑓𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)𝑘𝑘 , and ∑ log𝑃𝑃�𝒊𝒊𝑛𝑛+1

𝑗𝑗 �𝑠𝑠
𝑗𝑗=1 =

∑ 𝑓𝑓𝑘𝑘(𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1𝑘𝑘 ). 

Since 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1) = 𝑓𝑓𝑘𝑘(𝑨𝑨𝑙𝑙,𝒊𝒊𝑛𝑛+1)
𝑠𝑠

  and 𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1) =  𝑓𝑓
𝑘𝑘(𝒊𝒊𝑛𝑛+1)
𝑠𝑠

, we have  

∑ log𝑃𝑃�𝐀𝐀𝑙𝑙
𝑗𝑗�𝒊𝒊𝑛𝑛+1

𝑗𝑗 �𝑠𝑠
𝑗𝑗=1 = 𝑠𝑠 ∑ 𝑓𝑓𝑘𝑘(𝑨𝑨𝑙𝑙,𝒊𝒊𝑛𝑛+1)

𝑠𝑠𝑘𝑘 log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1) = 𝑠𝑠 ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)𝑘𝑘 . 

Similarly, ∑ log𝑃𝑃�𝒊𝒊𝑛𝑛+1
𝑗𝑗 �𝑠𝑠

𝑗𝑗=1 = 𝑠𝑠 ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1𝑘𝑘 ).  

Substituting for  ∑ log𝑃𝑃�𝐀𝐀𝑙𝑙
𝑗𝑗�𝒊𝒊𝑛𝑛+1

𝑗𝑗 �𝑠𝑠
𝑗𝑗=1  and ∑ log𝑃𝑃�𝒊𝒊𝑛𝑛+1

𝑗𝑗 �𝑠𝑠
𝑗𝑗=1  in (2) we have, 

𝐿𝐿′ = � 𝑠𝑠�𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙 , 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)
𝑘𝑘

𝑟𝑟

𝑙𝑙=1
+ 𝑠𝑠�𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1

𝑘𝑘

) 

                     = 𝑠𝑠 ∑ ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀l, 𝒊𝒊𝑛𝑛+1)𝑘𝑘
𝑟𝑟
𝑙𝑙=1 log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1) + 𝑠𝑠 ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1𝑘𝑘 )       (3) 

Consider the term ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙 , 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)𝑘𝑘  in the first sum. Let the antecedent Al comprise of the 

m items {i1,…,im}.  

∑ 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)𝑘𝑘 =  ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log �𝑃𝑃
𝑘𝑘(𝒊𝒊1,𝒊𝒊2,…,𝒊𝒊𝑚𝑚,𝒊𝒊𝑛𝑛+1)

𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1) �𝑘𝑘    

                                  =  ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log �𝑃𝑃
𝑘𝑘(𝒊𝒊1,𝒊𝒊2,…,𝒊𝒊𝑚𝑚,𝒊𝒊𝑛𝑛+1)∗𝑃𝑃𝑘𝑘(𝒊𝒊1)∗…∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)

𝑃𝑃𝑘𝑘(𝒊𝒊1)∗…∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1) �𝑘𝑘    

 = ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log � 𝑃𝑃𝑘𝑘(𝒊𝒊1,𝒊𝒊2,…,𝒊𝒊𝑚𝑚,𝒊𝒊𝑛𝑛+1)
𝑃𝑃𝑘𝑘(𝒊𝒊1)∗…∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)�𝑘𝑘   

    +   ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log(𝑃𝑃𝑘𝑘(𝒊𝒊1) ∗ … ∗ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)𝑘𝑘 ) 

 = ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log � 𝑃𝑃𝑘𝑘(𝒊𝒊1,𝒊𝒊2,…,𝒊𝒊𝑚𝑚,𝒊𝒊𝑛𝑛+1)
𝑃𝑃𝑘𝑘(𝒊𝒊1)∗…∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)∗𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)�𝑘𝑘 +  

  +∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊1)𝑘𝑘 + ⋯+ ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)𝑘𝑘    

Over all possible realizations of {𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1},∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘�𝒊𝒊𝑗𝑗�𝑘𝑘  simplifies to 

∑ 𝑃𝑃𝑘𝑘�𝒊𝒊𝑗𝑗�log𝑃𝑃𝑘𝑘�𝒊𝒊𝑗𝑗�𝑘𝑘 , with k now indexing all possible realizations of�𝒊𝒊𝑗𝑗�, i.e., 0 and 1. Therefore,  

�𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)
𝑘𝑘

 =  �𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log�
𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)

𝑃𝑃𝑘𝑘(𝒊𝒊1) ∗ … ∗ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚) ∗ 𝑃𝑃𝑘𝑘(𝒊𝒊𝒏𝒏+𝟏𝟏)�
𝑘𝑘

 

   +∑ 𝑃𝑃𝑘𝑘(𝒊𝒊1)log𝑃𝑃𝑘𝑘(𝒊𝒊1)𝑘𝑘 +⋯+  ∑ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)log𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚)𝑘𝑘   

= �𝑃𝑃𝑘𝑘(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1)log�
𝑃𝑃𝑘𝑘(𝒊𝒊𝟏𝟏, 𝒊𝒊𝟐𝟐, … , 𝒊𝒊𝒎𝒎, 𝒊𝒊𝑛𝑛+1)

𝑃𝑃𝑘𝑘(𝒊𝒊1) ∗ … ∗ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚) ∗ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑛𝑛+1)�
𝑘𝑘

+ �� 𝑃𝑃𝑘𝑘�𝒊𝒊𝑞𝑞�log𝑃𝑃𝑘𝑘�𝒊𝒊𝑞𝑞�
𝑘𝑘𝑞𝑞𝑞𝑞𝑨𝑨𝒍𝒍

 

= 𝑀𝑀𝑀𝑀(𝒊𝒊1, 𝒊𝒊2, … , 𝒊𝒊𝑚𝑚, 𝒊𝒊𝑛𝑛+1) −∑ (𝐻𝐻𝑞𝑞)𝑞𝑞𝑞𝑞𝑨𝑨𝒍𝒍 . 

Therefore, by substituting for ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙, 𝒊𝒊𝑛𝑛+1)log𝑃𝑃𝑘𝑘(𝐀𝐀𝑙𝑙|𝒊𝒊𝑛𝑛+1)𝑘𝑘  in (3) we get  

𝐿𝐿′ = 𝑠𝑠 ∑ 𝑀𝑀𝑀𝑀𝑙𝑙 − 𝑠𝑠 ∑ ∑ (𝐻𝐻𝑞𝑞)𝑞𝑞𝑞𝑞𝑨𝑨𝒍𝒍
𝑟𝑟
𝑙𝑙=1 − 𝑠𝑠𝑠𝑠𝑛𝑛+1𝑟𝑟

𝑙𝑙=1 = 𝑠𝑠(∑ 𝑀𝑀𝑀𝑀𝑙𝑙𝑟𝑟
𝑙𝑙=1 − ∑ (𝐻𝐻𝑞𝑞)𝑛𝑛+1

𝑞𝑞=1 ). 
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The entropy terms in the above expression are the same for every admissible group under consideration. 

Therefore, the admissible group that maximizes the likelihood has the highest sum of mutual information 

terms associated with the participating rules. ∎ 

The mutual information terms can be pre-computed for every rule and kept available for use at run-

time. Comparing admissible groups using mutual information is straightforward. For example, suppose the 

mutual information values of the rules in S1 = {R1, R4} and S2 = {R2, R3} are as in Table 2. Since the sum 

of the mutual information values for the rules in S1 (0.156 + 0.045 = 0.201) is less than the corresponding 

value for the rules in S2 (0.164 + 0.098 = 0.262), S2 will be preferred over S1. 

Rules Items in the rules MI 
R1 i1, i2, x1 0.156 
R2 i2, i3, x1 0.164 
R3 i1, x1 0.098 
R4 i3, x1 0.045 

Table 2: Mutual Information of rules in S1 and S2 

Given a consequent x and associated consequent set G(x), the problem of finding the best admissible 

group – i.e., the admissible group that maximizes the sum of mutual information values – can be formulated 

as the integer program (AG) below 

Max ∑ 𝑀𝑀𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖∈𝐺𝐺(𝑥𝑥) , 

s.t.    ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖 = 1         𝑖𝑖∈𝐺𝐺(𝑥𝑥) ∀ j∈ B,   (AG) 

            𝑦𝑦𝑖𝑖  ∈ {0, 1}                  ∀ i∈G(x), 

where Mi is the mutual information corresponding to Ri∈G(x), aij is 1 if the jth item of the basket is present 

in rule Ri∈G(x) and 0 otherwise, and yi is a binary decision variable that is set to 1 if rule Ri∈G(x) is included 

in the solution and to 0 otherwise. The constraint ensures that an item in the basket can only be present in 

the antecedent of exactly one rule selected for inclusion in the admissible group. We note that AG is a set 

partitioning problem (Balas and Padberg 1976), and therefore NP-Hard. The reason for this intractability is 

the combinatorial number of ways in which rules may be combined, where each combination (admissible 

group) is associated with a unique set of conditional independence assumptions. 

So far we have considered maximal admissible groups that fully cover the basket. However, there 

could exist maximal admissible groups that cover only a subset of the basket; indeed, it is possible that none 

of the maximal admissible groups cover the entire basket. In such cases, when considering an admissible 

group, we assume that the items that are not covered and the consequent are independent of each other, and 

that the corresponding mutual information terms are zero. While this may not be strictly true, the fact that 

such rules were not retained after mining suggests that the dependence is weak. This can be viewed as 
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ensuring that rules of the form {i}→{x} exist for every item i in the basket by adding dummy rules with 

mutual information values of zero wherever necessary.  

3.5 Finding a Good Admissible Group 

As noted earlier, the problem of finding the admissible group that maximizes the sum of the mutual 

information values for the rules is NP-Hard.  When the number of items in a customer’s basket is small, the 

number of possible admissible groups is likely to be small and the problem can be solved easily. However, 

when the basket is large, it may be difficult to determine the best admissible group quickly. We propose a 

greedy heuristic to solve large instances of this problem, as such approaches have been shown to work well 

on set partitioning problems (e.g., Ergun et al. 2007). It is easy to implement, and exploits the properties of 

the optimal solution presented in Proposition 2 and Corollary 1.  

Proposition 2: The mutual information corresponding to a rule A→{x} is always greater than or equal to 

the sum of the mutual information values corresponding to rules {A1}→{x}, {A2}→{x},…, {An}→{x} if 

the antecedents A1, A2,…,An are mutually disjoint and  ⋃ 𝐴𝐴𝑗𝑗𝑛𝑛
𝑗𝑗=1 = A.  

Proof: The mutual information corresponding to the rule {A}→{x} is 

= � 𝑃𝑃𝑘𝑘(𝐀𝐀,𝒙𝒙)log�
𝑃𝑃𝑘𝑘(𝐀𝐀, 𝑥𝑥)

∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴 ) ∗ 𝑃𝑃𝑘𝑘(𝒙𝒙)�𝑘𝑘
 

= � 𝑃𝑃𝑘𝑘(𝑨𝑨,𝒙𝒙)log�
𝑃𝑃𝑘𝑘(𝐀𝐀| 𝑥𝑥)

∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴 )�𝑘𝑘
                                           (4) 

The sum of mutual information values of the rules {A1}→{x}, {A2}→{x},…, {An}→{x}  is 

� � 𝑃𝑃𝑘𝑘(𝑨𝑨𝑙𝑙 ,𝒙𝒙)log�
𝑃𝑃𝑘𝑘�𝐀𝐀𝑗𝑗,𝑥𝑥�

(∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴𝑗𝑗 )) ∗ 𝑃𝑃𝑘𝑘(𝑥𝑥)�𝑘𝑘

𝑛𝑛

𝑗𝑗=1
 

= � � 𝑃𝑃𝑘𝑘�𝑨𝑨𝑗𝑗,𝒙𝒙�log�
𝑃𝑃𝑘𝑘�𝐀𝐀𝑗𝑗|𝒙𝒙𝑖𝑖�

∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴𝑗𝑗 )�𝑘𝑘

𝑛𝑛

𝑗𝑗=1
 

= � � 𝑃𝑃𝑘𝑘(𝑨𝑨,𝒙𝒙)log�
𝑃𝑃𝑘𝑘�𝐀𝐀𝑗𝑗|𝒙𝒙�

∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴𝑗𝑗 )�𝑘𝑘

𝑛𝑛

𝑗𝑗=1
 

= � 𝑃𝑃𝑘𝑘(𝑨𝑨,𝒙𝒙)log�
∏ 𝑃𝑃𝑘𝑘�𝐀𝐀𝑗𝑗| 𝑥𝑥�𝑛𝑛
𝑗𝑗=1

∏ ∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴𝑗𝑗 )𝑛𝑛
𝑗𝑗=1

�
𝑘𝑘

 

= � 𝑃𝑃𝑘𝑘(𝑨𝑨,𝒙𝒙)log�
∏ 𝑃𝑃𝑘𝑘�𝐀𝐀𝑗𝑗| 𝑥𝑥�𝑛𝑛
𝑗𝑗=1

∏ 𝑃𝑃𝑘𝑘(𝒊𝒊𝑚𝑚𝑖𝑖𝑚𝑚∈𝐴𝐴 ) �𝑘𝑘
                                          (5) 
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since ⋃ 𝐴𝐴𝑗𝑗𝑛𝑛
𝑗𝑗=1 = A. 

The denominators in the logarithm expressions are identical in equations (4) and (5), as are the coefficients 

for the logarithm terms. The numerator from equation (4) is  

∑ 𝑃𝑃𝑘𝑘(𝐀𝐀,𝒙𝒙)log𝑃𝑃𝑘𝑘(𝐀𝐀|𝑥𝑥)𝑘𝑘  = ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀|𝒙𝒙)𝑃𝑃𝑘𝑘(𝒙𝒙)log𝑃𝑃𝑘𝑘(𝐀𝐀|𝑥𝑥)𝑘𝑘 . 

Because the distribution 𝑃𝑃𝑘𝑘(𝐀𝐀|𝒙𝒙) is fixed, the expression ∑ 𝑃𝑃𝑘𝑘(𝐀𝐀|𝒙𝒙)log𝑃𝑃𝑘𝑘(𝐀𝐀|𝑥𝑥)𝑘𝑘  is the maximum possible 

for each value of x. Therefore, the numerator from equation (4) is always greater than or equal to that from 

equation (5). It is equal if and only if all the conditional independence assumptions implied by the rules 

{A1}→{x}, {A2}→{x},…, {An}→{x}  hold. ∎ 

When a consequent set includes rules of the form described in Proposition 2, we say that rule {A}→{x} 

subsumes the rules {A1}→{x}, {A2}→{x},…, {An}→{x}.  

Corollary 1: An admissible group S is at least as good as another admissible group T if the antecedent of 

every rule in T is a subset of the antecedent of some rule in S. S is strictly better if any of the conditional 

independence assumptions implied by T but not by S do not hold. 

Proof: The mutual information values corresponding to the identical rules in S and T are the same. If there 

exists at least one rule R in S such that the antecedents of n rules R1,…, Rn in T are proper subsets of the 

antecedent of R , then according to Proposition 2, the mutual information corresponding to R is greater than 

or equal to the sum of the mutual information values corresponding to the rules R1,…, Rn. Hence the sum 

of the mutual information values corresponding to the rules in S is greater than or equal to the sum of the 

mutual information values corresponding to the rules in T. As shown in Proposition 2, the sum of the mutual 

information values corresponding to the rules R1,…, Rn are strictly less if any of the conditional 

independence assumptions implied by S but not T do not strictly hold.            ∎ 

 

Input: (i) Basket B = {i1, …, in}. 

           (ii) Consequent Set G(x) = {R1, …, Rm}. 

Output: An admissible group for x 

Steps: 

1. Set item list Z = B. Initialize admissible group Y = ø. 

2. Sort the rules in G(x) in decreasing order of mutual information. 

3. Repeat steps 3a and 3b till no more rules can be added to Y. 

3a. Add the next rule from G(x) to Y if all items in its antecedent are in Z. This rule 

has the highest mutual information among all rules whose antecedents have items 

in Z. 

3b. Remove the items from Z that are present in the antecedent of the added rule. 
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Figure 1: Heuristic for finding a good admissible group 

The heuristic to find an admissible group for a consequent x is shown in Figure 1. The intuition is 

to keep adding rules with high mutual information into the admissible group without violating admissibility 

until no more rules can be added. Hence, the rules are arranged in decreasing order of mutual information 

and are added to the admissible group starting from the rule with highest mutual information until all the 

items in the basket are covered or all the rules have been considered. By selecting rules with higher mutual 

information, the heuristic ensures that the solution does not include two or more rules from the consequent 

set that are subsumed by a single rule from that set. 

3.6 Computational Complexity of MLR 

As mentioned earlier, the first step when recommending an item using MLR is to identify eligible rules. 

This requires the items in the basket to be sorted in some pre-determined order (e.g., lexicographic), and 

given n items in the dataset, can be done in O(nlog(n)) in the worst case. The eligible rules are then identified 

by verifying whether the items in the antecedents and consequents of the rules are present in the basket. 

This can be done via binary search, in O(log(n)). Therefore, the presence of all items in the antecedent can 

be checked in O(nlog(n)). If there are a total of m rules, then the complexity of checking their eligibilities 

therefore, is mnlog(n).  

Once the set of eligible rules is created, potential items for recommendation are identified from the 

consequents of these rules, along with the consequent sets of each. This is done by scanning the eligible 

rules and adding the consequent x of each rule into M if it is not present already, and by adding the rule to 

the appropriate consequent list G(x). The presence of an item in M can be checked using binary search, 

while binary insertion can be used to add a new consequent into M. The complexity of checking for the 

presence of an item or adding an item in M is O(log(n)). Thus, given n items in the data set, the complexity 

of identifying potential recommendations and creating the consequent sets is O(nlog(n)). When all the rules 

in the set of eligible rules have been considered, M contains all items x that can potentially be recommended 

and the corresponding lists G(x) are their consequent sets. 

 The next step is to apply the heuristic proposed in Figure 1 to each consequent in M. Creating the 

admissible group for a consequent requires checking whether the items in the antecedents of rules in the 

associated consequent set are present in the basket; this is of complexity O(nlog(n)) for each rule. In the 

worst case, items in the antecedents of all m rules may have to be checked for their presence in the basket; 

this is of complexity O(mnlog(n)). This procedure has to be repeated for every possible consequent, and 

therefore the worst case complexity of the heuristic is O(mn2log(n)).  
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The probabilities can be estimated for each item in M using the rules in the admissible groups in 

O(m). Across all items therefore, the complexity is O(mn). The item with highest estimated probability can 

be identified in O(n), through a single scan of M. 

Thus, the overall complexity of MLR is O(mn2log(n)), which is linear in the number of rules mined, 

and has a low-order polynomial complexity in the number of items in the dataset. Since the size of a typical 

basket is much smaller than n, the average complexity should be much better. Note that the complexity 

does not depend on the size of the dataset – once the rules are mined, MLR does not use the dataset to find 

items to recommend.  

4. Experiments 

We conduct a large number of systematic experiments on several real data sets to investigate the quality of 

recommendations made by MLR. First, we conduct experiments comparing recommendations made using 

the optimal approach to identify admissible groups (i.e., formulation AG) with those made by the greedy 

heuristic presented in Figure 1. Then, we conduct experiments comparing recommendations made using 

MLR with various benchmarks including the single rule approaches of Zaïane (2002), Wang and Shao 

(2004) and Baralis et al. (2004) (called L3G), and the rule combination methods of Li et al. (2001) and Lin 

et al. (2002) (comparison with non-rule based approaches are presented in Section 5). All the experiments 

are performed using code written in Java, on a Pentium Dual Core machine (2.6 GHz) with 32 GB of RAM.  

4.1 Data 

We use three real datasets in our experiments. Datasets Retail and BMS-POS are obtained from the FIMI 

repository (http://fimi.cs.helsinki.fi/data/), while the third dataset comScore2013 is obtained from Wharton 

Research Data Services (WRDS). Retail is a market basket data set collected from a Belgian retail store 

(Brijs et al. 1999), BMS-POS is a point-of-sales dataset collected from a large electronics retailer (Zheng et 

al. 2001), and comScore2013 is a transactional dataset consisting of items purchased by customers from 

various online e-retailers in the year 2013. The basic characteristics of the datasets are shown in Table 3.  

Characteristics Retail BMS-POS comScore2013 
Number of items 16,470 1,657 60 
Number of transaction_id-item pairs 908,069 3,351,381 84,963 
Number of transactions 88,162 515,597 22,963 
Average transaction length 10.3 6.5 3.7 

Table 3: Dataset characteristics 

One point of clarification is needed here with regard to dataset size. There are two conventions 

used to represent market basket datasets. In one, a basket is a record of items that are purchased together, 

http://fimi.cs.helsinki.fi/data/
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and would essentially comprise a list of items along with the id of the transaction – this is the convention 

we have followed in our paper. However, there is another commonly used convention where datasets 

(including the comScore2013 dataset used in our experiments) represent a basket as transaction id-item 

pairs, breaking up a single transaction across many rows of data. For example, a transaction i involving the 

purchase of items A, B and C would be represented as a single row (record) {i, A, B, C} if the first convention 

was followed, while it would be represented as three separate records {i, A}, {i, B}, and {i, C} in the 

alternate representation. The former representation will contain as many records as transactions, while the 

latter will have as many records as transaction-item pairs. When comparing dataset size in terms of records, 

we need to make sure that the same convention is used. The row labeled “Number of transaction_id-item 

pairs” provides the dataset size using the latter approach (after eliminating duplicate/redundant records), 

while the row titled “Number of transactions” provides the number of transactions based on the former 

representation. The BMS-POS dataset is by far the largest, having 515,597 transactions, and over 3 million 

transaction-item pairs. The comScore2013 dataset is the most current, and involves 22,963 transactions and 

about 85,000 non-redundant transaction-item pairs. The retail dataset is in between in size using either 

metric, with 88,162 transactions and approximately 900,000 pairs. 

As can be seen from Table 3, Retail is the least dense of the three datasets we have used – customers 

purchase an average of 10.3 items from a maximum possible 16,470, resulting in a dataset density of 

(10.3/16,470) = 0.0625%. comScore2013, with a density of (3.7/60), or 6.17% is the densest, and the density 

of BMS-POS falls in between (0.39%).  

All datasets have the items in the transactions ordered lexicographically based on their labels. We 

randomize the ordering of items in each transaction in order to avoid any bias that might result from this 

pre-ordering of the items. Eighty percent of the transactions from each dataset are used for training (e.g., 

generating rules or learning models) with the rest used for testing purposes. 

4.2 MLR vs Rule-based Systems: Experimental Setup 

The experiments involve performing five-fold cross validation tests using these datasets. In the experiments, 

baskets are provided to the recommender systems (MLR and the relevant benchmark) and the number of 

successful recommendations made by each approach is tracked. The experiments are designed to mimic the 

interactions of a customer at a web site to the extent possible. The recommender system can recommend 

items every time a customer adds an item to the basket. In order to replicate this process, each transaction 

in the test dataset is used to create multiple test baskets iteratively. The first basket created from a 

transaction contains the first item in the transaction. Each recommender system recommends an item for 

potential addition into the basket. If the recommended item is present in the remainder of the transaction, 
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the recommendation is considered successful, and the recommended item is then added to the basket to 

create the next basket. If both systems recommend different items successfully, both the items are added to 

the basket to avoid any potential bias from the addition of just one of them.9 If neither recommendation is 

successful, a randomly selected item from the remainder of the transaction is added to the basket. This 

process is repeated for the transactions until at least half of the items in the transactions are included in the 

basket.10 This is repeated for every transaction in the test dataset. The approaches are compared based on 

average accuracy of recommendations. The results reported are for baskets for which both approaches 

(MLR and the benchmark) provide recommendations.11 

4.3 Finding the Best Admissible Group: Optimal vs Heuristic Approaches 

As part of the MLR process, we need to identify the best admissible group from the many combinations 

that might exist. We had shown in Section 3.4 that this problem is NP-Hard, and can be represented as the 

set-partitioning problem AG. Further, we proposed a heuristic to achieve the same end (Figure 1). In our 

first set of experiments, we compare these two versions of MLR – one using the optimal solution from the 

set partitioning problem AG, and the other from the heuristic to understand the practical impact on 

recommendation accuracy of using the heuristic. Table 4 shows the results of the experiments for a support 

threshold of 0.2%12 and confidence thresholds of 30%, 40%, 50% and 60% (increasing the confidence 

threshold beyond 60% generates very few rules).  

These results show that while using the optimal admissible groups sometimes does lead to more 

successful recommendations, the improvement in performance is very small. For the experiments 

conducted on the Retail dataset, the results are virtually identical. The differences are greater for the 

experiments conducted on the datasets BMS-POS and comScore2013. However, none of the differences are 

statistically significant. We also found that the number of instances when the heuristic and optimal 

approaches choose different admissible groups is also very small. At the same time, the time taken by the 

heuristic for making recommendations is a fraction of the time taken by the optimal approach. Incorporating 

an integer programming solver into a recommender system is worthwhile only if the benefits over easily 

implemented procedures are substantial. Given the results of these experiments, that does not seem to be 

the case. Consequently, all the other results reported in this paper are based on using the heuristic. Of course, 

                                                      
9 Experiments conducted by randomly adding one of the items to the basket yielded similar results. 
10 The results were similar when baskets are created until all items of a transaction but one are included in the basket.  
11 This is true for the results of all the experiments reported in the paper. 
12 This was one of the support thresholds used by Zheng et al. (2001). 
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in situations where the optimal approach is viable, the results are likely to be better than those currently 

being reported. 

Dataset Confidence # of Rules 
Mined # of baskets # of Successful Recommendations 

Optimal Heuristic 

Retail 

30% 2,136 52,246 13,036 13,036 
40% 2,022 46,720 12,837 12,837 
50% 1,954 44,767 12,793 12,793 
60% 1,512 37,144 10,970 10,969 

BMS-POS 

30% 69,207 301,100 97,362 96,902 
40% 56,795 275,274 93,586 93,174 
50% 45,517 231,700 86,571 86,321 
60% 32,019 179,756 76,604 76,542 

comScore2013 

30% 168,392 7,166 2,487 2,471 
40% 141,035 7,166 2,373 2,355 
50% 111,719 7,168 2,147 2,128 
60% 84,954 7,171 1,703 1,695 

Table 4: Comparing optimal and heuristic approaches 

The number of rules generated for the same set of support and confidence thresholds depends on 

the dataset density. Therefore, mining Retail results in the fewest number of rules and mining 

comScore2013 results in the most. The average number of rules generated from each dataset (for each of 

the parameter settings used in our experiments) is also provided in Table 4. 

4.4 MLR vs Single-Rule Based Approaches 

Several experiments are conducted to compare MLR with the single rule based approaches of Zaïane 

(2002), Wang and Shao (2004) and Baralis et al. (2004). The approach proposed by Baralis et al. (2004), 

called L3G, is for classification. We have adapted it to the item recommendation context − in a transactional 

data set, the consequents of eligible rules are analogous to classes to which a customer may belong. The 

performances of all the single-rule based approaches are similar, and therefore, we present only the results 

comparing MLR with the approach of Zaïane (2002). As in the previous section, the first set of experiments 

are performed with rules mined from the training datasets using a support threshold of 0.2% and confidence 

thresholds of 30%, 40%, 50% and 60%. 

4.4.1 MLR Uses Multiple Rules 
When making recommendations using MLR, the admissible group corresponding to the recommended item 

may contain one or multiple rules. When an item is recommended using an admissible group with only one 
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rule, it is typically the same as that recommended by the single-rule based benchmark. However, significant 

improvements in performance are observed when MLR recommends items using admissible groups with 

multiple rules. Table 5 presents the results for those instances for which items are recommended using 

multiple rules. The results are averaged over five cross validation experiments. The number of rules 

combined usually ranged between two and three. 

Dataset 

Conf. 
thres-
hold  

Baskets 
where 
MLR 

used ≥ 2 
Rules  

MLR 
Single-Rule Approach 

(Zaïane 2002) 

Improve-
ment (%) 

Accuracy  
# (%)  

Time  
(sec) 

Accuracy 
# (%) 

Time 
(sec) 

Retail 

30% 16,929 917 (5.42%) 0.00054 776 (4.58%) 0.00048 18.20%*** 
40% 15,975 914 (5.72%) 0.00053 773 (4.84%) 0.00048 18.24%*** 
50% 15,761 881 (5.59%) 0.00051 742 (4.71%) 0.00045 18.71%*** 
60% 9,214 233 (2.53%) 0.00050 211 (2.29%) 0.00045 10.43% 

BMS-POS 

30% 103,718 9,865 (9.51%) 0.00853 8,523 (8.22%) 0.00762 15.74%*** 
40% 64,689 4,838 (7.48%) 0.00798 4,277 (6.61%) 0.00754 13.14%*** 
50% 32,107 1,776 (5.53%) 0.00779 1,495 (4.66%) 0.00757 18.78%*** 
60% 17,398 492 (2.83%) 0.00631 428 (2.46%) 0.00620 14.90%** 

comScore2013 

30% 689 91 (13.27%) 0.01638 54 (7.9%) 0.01303 68.01%*** 
40% 494 56 (11.38%) 0.01437 29 (5.87%) 0.01282 93.79%*** 
50% 291 25 (8.72%) 0.01360 14 (4.67%) 0.01286 86.76%** 
60% 129 10 (7.45%) 0.01273 6 (4.5%) 0.01226 65.52% 

***: Significant at 1% level   **: Significant at 5% level 
Table 5: MLR vs. Single Rules: MLR uses multiple rules 

The first column of Table 5 identifies the dataset. The second column shows the confidence 

threshold used for mining. The third column shows the numbers of baskets where MLR recommended items 

using multiple rules. The fourth and fifth columns show the number (and percentage) of successful 

recommendations with MLR, and the average time taken; the sixth and seventh columns present similar 

information for the single rule approach. The last column shows the percentage improvement using MLR. 

Table 5 shows that MLR performs substantially better than the single rule approach when items 

are recommended using multiple rules. The improvements in performances by using MLR are statistically 

significant at the 1% level or better in most of the experiments. While the absolute improvements may 

appear small, the relative improvements are substantial – given the very large number of 

recommendations that are typically made every day, the net impact on revenues will be substantial as 

well. The time taken to make recommendations are in the milliseconds for both approaches – as these 

times are possible even on the basic desktop machines we have used to conduct the experiments, making 

recommendations using either of these approaches will not have any perceptible impact on the load times 
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of web pages. In addition, the standard deviations are also very low –in the worst case they are 0.00229 

for Retail, 0.00853 for BMS-POS, and 0.01638 for comScore2013. This makes MLR a very viable 

approach for real-time situations. 

For a given dataset and support threshold, there are fewer eligible rules for each consequent when 

a higher confidence threshold is used for mining. Consequently MLR requires less time to recommend 

items as the confidence threshold increases. Similarly, the average times required by the two approaches 

are highest for comScore2013 and least for Retail, as a result of the difference in the number of rules mined.  

When MLR recommends items using multiple rules, the rules used cover a much larger proportion 

of items in the baskets compared to the coverages of the rules used by the single rule approach. In Table 6, 

we show the average percentages of items in the baskets covered by the two approaches for each dataset. 

Combining the results in Tables 5 and 6, it is clear that increasing the coverage of items in the baskets 

substantively improves the performance of the recommender system. Since all the items in these baskets 

rarely co-occur simultaneously in transactions, they do not appear as antecedents of any rule. The rules that 

exist – which get used by the benchmark – cover a relatively small percentage of items in the baskets.  By 

combining rules, MLR is able to improve the coverage and thereby perform better than the benchmark. 

 

Dataset 
Confidence 
Threshold 

% of Items Covered when MLR Uses 
Multiple Rules 

MLR Single-Rule Approach 

Retail 

30% 56.26% 26.95% 
40% 56.76% 26.83% 
50% 56.46% 26.67% 
60% 46.84% 23.42% 

BMS-POS 

30% 85.90% 53.22% 
40% 78.01% 48.34% 
50% 76.86% 44.84% 
60% 83.70% 45.59% 

comScore2013 

30% 98.09% 65.38% 
40% 97.06% 63.25% 
50% 95.53% 60.23% 
60% 93.68% 57.45% 

Table 6: Fraction of basket covered when MLR uses multiple rules 

The coverage of items is smallest in Retail and largest in comScore2013 when either of the 

approaches is used. This is again a direct result of dataset density - the rules generated from Retail have 

only a few items, while those from comScore2013 have many more relative to the number of items in the 
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dataset. Even when MLR combines rules, only about half the items in the baskets are covered in the case 

of Retail, whereas more than 90% of the baskets are covered in the case of comScore2013.  

4.4.2 MLR Uses One Rule 
As mentioned earlier, MLR may provide a recommendation using a probability model consisting of a single 

rule. For completeness, we present the results for instances when MLR uses single rules in Table 7. Given 

that both approaches recommend the same item often, the results are as expected – the qualities of the 

recommendations provided by the approaches are quite similar.  

Dataset 

Conf. 
thres-
hold 

Baskets 
where 
MLR 
used 1 
Rule  

MLR 
Single-Rule Approach 

(Zaïane 2002) 

Improve
ment (%) 

Accuracy 
# (%) 

Time 
(secs) 

Accuracy 
# (%) 

Time 
(secs) 

Retail 

30% 35,278 12,058 (34.18%) 0.00036 12,054 (34.17%) 0.00039 0.04% 
40% 30,705 11,862 (38.63%) 0.00036 11,856 (38.61%) 0.00038 0.05% 
50% 28,966 11,852 (40.92%) 0.00033 11,845 (40.89%) 0.00035 0.06% 
60% 27,904 10,693 (38.32%) 0.00034 10,690 (38.31%) 0.00035 0.03% 

BMS-
POS 

30% 199,542 86,977 (43.59%) 0.00563 86,968 (43.58%) 0.00509 0.01% 
40% 213,461 88,707 (41.56%) 0.00582 88,657 (41.53%) 0.00531 0.06% 
50% 201,471 84,883 (42.13%) 0.00600 84,765 (42.07%) 0.00579 0.14% 
60% 163,312 76,400 (46.78%) 0.00561 76,279 (46.71%) 0.00529 0.16% 

comScore
2013 

30% 6,457 2365 (36.63%) 0.00968 2362 (36.58%) 0.00944 0.14% 
40% 6,087 2287 (37.58%) 0.00977 2286 (37.56%) 0.00961 0.04% 
50% 5,473 2089 (38.17%) 0.00970 2086 (38.12%) 0.00964 0.13% 
60% 3,921 1666 (42.48%) 0.00998 1661 (42.36%) 0.00990 0.28% 

Table 7: MLR vs. Single Rules: MLR also uses single rules 

The performances of both approaches are much better when MLR recommends items using single 

rules (the fourth column of Table 7) as compared to when it recommends items using multiple rules (the 

fourth column of Table 5). This is because the baskets for which MLR makes recommendations using 

multiple rules are typically larger (than baskets for which single rules are used), and the items in the baskets 

for which MLR makes recommendations using multiple rules co-occur less frequently in transactions. 

Therefore, it is less likely that there would be reliable probability estimates for many of the potential target 

items given the entire basket. As a result, it is far more difficult to recommend items that are likely to be 

purchased in the former case than in the latter; this difficulty is reflected in the marked differences in 

successful recommendations. When single rules are used for recommending items for the baskets included 

in Table 5, recommendations are significantly worse than when MLR is used. Also, as expected, MLR 

requires less time to recommend items when using single rules (the fifth column of Table 7) than when 
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using multiple rules (the fifth column of Table 5) because the available numbers of eligible rules are fewer 

in the former case.  

Table 8 shows the percentages of items in the baskets covered by the rules used by the two 
approaches.   

Dataset 
Confidence 
Threshold 

% of Items Covered When MLR Uses 
Single Rules 

MLR Single-Rule Benchmark 

Retail 

30% 60.58% 58.86% 
40% 62.51% 60.71% 
50% 63.67% 61.88% 
60% 56.48% 54.86% 

BMS-POS 

30% 93.91% 93.08% 
40% 88.13% 87.18% 
50% 82.52% 81.56% 
60% 81.49% 80.76% 

comScore2013 

30% 99.14% 98.42% 
40% 98.34% 97.58% 
50% 97.05% 96.06% 
60% 94.59% 93.12% 

Table 8: Fraction of basket covered when MLR uses single rules 

It is clear that the percentages are very close, and furthermore, the majority of items in the baskets 

are covered. Hence, the accuracies of both the approaches are similar. The effect of density is clear here as 

well – the fraction of the baskets covered is lowest for Retail and highest for comScore2013 irrespective of 

the approach used. 

4.4.3 Experiments with Different Supports 

We perform additional experiments on Retail at support thresholds 0.1% and 0.3% to analyze the robustness 

of the two approaches to changes in the support threshold. The results are shown in Table 9. We present 

results only for those instances where MLR recommends items using multiple rules, as the performances 

of MLR and the benchmark are again quite similar for the other instances. 

MLR performs better when items are recommended using multiple rules regardless of the support 

and confidence thresholds used for mining. The improvements are statistically significant, with an 

exception only when rules mined at 60% confidence thresholds are used. The improvement in performance 

is smaller when the rules mined at higher support thresholds are used. For example, the improvement 

achieved by using MLR is 23.25% when rules mined at support and confidence thresholds of 0.1% and 

30%, respectively, are used, compared to 14.83%, when rules mined at 0.3% support threshold and 30% 
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confidence threshold are used. One possible reason could be the more frequent use of rules with higher 

supports by the single rule approach when rules mined at higher support thresholds are used. Rules with 

higher supports are more reliable. Hence, the scope for improvement by using MLR is smaller.  

Sup. 
threshold 

Conf. 
threshold  

Baskets 
where 
MLR 

used ≥ 2 
Rules 

MLR 
Single-Rule 
Approach 

Improvement 
(%)  

Accuracy  
# (%) 

Time 
(sec) 

Accuracy  
# (%) 

Time 
(sec) 

0.1% 

30% 24,616 1141 (4.63%) 0.013 926 (3.76%) 0.004 23.25%*** 
40% 22,818 1106 (4.85%) 0.012 901 (3.95%) 0.004 22.80%*** 
50% 22,212 1006 (4.53%) 0.012 818 (3.68%) 0.004 22.99%*** 
60% 14,380 340 (2.37%) 0.010 298 (2.08%) 0.004 14.08%* 

0.3% 

30% 12,494 780 (6.25%) 0.002 680 (5.44%) 0.001 14.83%*** 
40% 12,020 780 (6.49%) 0.002 679 (5.65%) 0.001 14.87%*** 
50% 11,884 761 (6.40%) 0.002 661 (5.56%) 0.001 15.16%* 
60% 6,467 171 (2.64%) 0.002 159 (2.46%) 0.001 7.28% 

    ***: significant at 1% level or better, *: significant at 10% level 

Table 9: Multiple support levels on Retail: MLR uses multiple rules 

As evident from Table 9, the performance of association rule based recommender systems varies 

with the support and confidence thresholds used for mining the rules. No established theoretical basis exists 

for the selection of appropriate thresholds (Goh and Ang 2007). The thresholds to use depend on the 

application characteristics (e.g., the data density, the number of items being sold, the size of the database, 

etc.). They can be empirically determined by examining the performances of rules mined from 

representative historical data with different sets of thresholds (Liu and Hsu 2005, Goh and Ang 2007, Witten 

et al. 2011). Domain experts can also help determine acceptable thresholds (Schiaffino and Amandi 2005). 

4.4.4 Rules Mined Using Lift and Leverage instead of Confidence 

Although confidence13 is the most widely used metric for rule generation, other metrics like lift and leverage 

are also used occasionally. Given a rule {A}→{X}, lift is defined as the ratio of the confidence of the rule 

to the support of its consequent, i.e., �𝑃𝑃(A 𝑎𝑎𝑎𝑎𝑎𝑎 X)
𝑃𝑃(A)𝑃𝑃(X)

�. Lift measures how much greater is the probability that A 

and X occur together relative to if they had been independent. Leverage is the difference between the actual 

frequency of co-occurrence of A and X and the expected frequency if A and X were independent, i.e., 

leverage is 𝑃𝑃(A 𝑎𝑎𝑎𝑎𝑎𝑎 X)−  𝑃𝑃(A) ∗ 𝑃𝑃( X). In a sales setting, this would translate to the number of extra items 

                                                      
13 Support is always used to filter reliable rules along with confidence, lift or leverage. 
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sold than the number expected under independence. We conducted additional experiments to assess the 

performance of MLR when rules mined using lift and leverage are used for making recommendations.  

We first compared recommendation accuracies using each of the three metrics (confidence, lift and 

leverage). We found confidence based rules to perform significantly better than lift based rules on all three 

datasets. We know from Table 5 that MLR significantly outperforms the single rules based approach when 

rules generated using confidence are used. Therefore MLR using rules based on confidence clearly 

dominate rules generated using lift. While confidence based rules significantly outperform leverage-based 

rules on Retail, the improvements are not significant on BMS-POS and comScore2013. We then compared 

the performance of MLR with the single rule approach when the rules available are mined using leverage. 

As was the case earlier (with confidence based rules), we find that using MLR on leverage based rules 

significantly outperforms the (leverage based) single rules approach. Therefore, MLR is preferable over all 

the single rules based approaches. 

4.4.5 Recommending Multiple Items 

We also conduct experiments where two items are recommended for each basket by both approaches. We 

consider a recommendation to be successful when at least one of the two recommended items is present in 

the remainder of the transaction. BMS-POS is used for the experiments and the rules are mined at a support 

threshold of 0.2% and confidence thresholds of 15%, 20%, 25%, 30% and 35%, respectively. The reason 

for using rules mined at these thresholds is that the average number of items that can be recommended per 

basket is four or more when rules mined at these thresholds are used.  

Confidence # of 
baskets 

MLR 
Accuracy 

#(%) 

Single Rule 
Accuracy 

#(%) 

Improvement 
(%) 

15% 43,360 4,407 (10.16%) 3,569 (8.23%) 23.49%*** 
20% 41,916 3,851 (9.19%) 3,236 (7.72%) 18.99%*** 
25% 38,338 3,137 (8.18%) 2,745 (7.16%) 14.26%*** 
30% 30,474 2,086 (6.84%) 1,891 (6.20%) 10.31%*** 
35% 19,886 1,080 (5.43%) 1,002 (5.04%) 7.70% 

      ***: significant at 1% level or better 

Table 10: MLR vs. Single Rule when two items are recommended (BMS-POS) 

Table 10 shows the results of the experiments for those baskets for which MLR recommends both 

items using multiple rules; the performance improvement is significant. The differences in the performances 

of the two approaches are not significant when either one or both items are recommended by MLR using 

single rules. The times taken to make the multiple recommendations are virtually identical to that when 

single items are recommended (i.e., as shown in Table 5). 
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4.5 MLR vs Rule-Combination Approaches 

Various experiments were conducted comparing MLR with the rule combination approach of Lin et al. 

(2002) and the CMAR approach of Li et al. (2001). The improvement from using MLR compared to the 

approach of Lin et al. (2002) was more than the improvement over CMAR. Therefore, we only report results 

comparing MLR with CMAR. 

CMAR was developed for classification, and therefore we had to adapt it to work in a product 

recommendation context (as discussed for L3G).  CMAR works as follows. When a basket is provided to 

CMAR, it evaluates the sums of the weighted chi-squares of the rules in the individual consequent sets, and 

the item corresponding to the consequent set with the highest sum is recommended. The chi-square of a 

rule indicates the correlation between the items in the rule. Rules in a consequent set with the highest sum 

of weighted chi-square have the highest correlation with each other, and the consequent corresponding to 

that consequent set is expected to have the highest probability of occurrence (Li et al. 2001). The sum of 

the weighted chi-squares of the rules in a consequent is ∑ 𝜒𝜒2𝜒𝜒2

𝑚𝑚𝑚𝑚𝑚𝑚𝜒𝜒2
, where 𝜒𝜒2 is the chi-square statistic of a 

rule with antecedent P and consequent c, and maxχ2 is evaluated as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝜒𝜒2 = �min{sup(𝑃𝑃) , sup(𝑐𝑐)} −
sup(𝑃𝑃) sup(𝑐𝑐)

|𝑇𝑇| �
2

|T|𝑒𝑒 

where  𝑒𝑒 = 1
𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃)sup (𝑐𝑐)

+ 1
sup(𝑃𝑃)(|𝑇𝑇|−sup(𝑐𝑐))

+ 1
(|𝑇𝑇|−sup(𝑃𝑃)) sup(𝑐𝑐) + 1

(|T|−sup(𝑃𝑃))(|𝑇𝑇|−sup(𝑐𝑐)), 

      sup(P) = number of transactions with items in P, 

      sup(c) = number of transactions with consequent c, and 

      |T| = total number of transactions. 

Readers are referred to Li et al. (2001) for additional details of their approach. 

As with the previous comparison, experiments are first performed using rules mined at a support 

threshold of 0.2% and confidence thresholds of 30%, 40%, 50% and 60% on all the datasets. Table 11 

shows the results of the experiments over all the baskets.14 Each individual recommendation is made within 

a fraction of a second by both approaches. For the Retail and BMS-POS datasets, the improvements in the 

performances achieved by using MLR are statistically significant except when rules mined at 60% 

confidence threshold are used. In the case of comScore2013, while MLR consistently performs better than 

CMAR, the improvements achieved by MLR are not statistically significant.  

                                                      
14 We provide results aggregated over all the baskets here because, unlike in previous experiments, both MLR and 
CMAR use multiple rules whenever possible. 
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 Confidence 
threshold 

# of 
Baskets 

MLR Accuracy 
#(%) 

CMAR Accuracy 
#(%) 

Improvement 
(%) 

Retail 

30% 51,417 12,058 (23.45%) 11,635 (22.63%) 3.64%*** 
40% 45,909 11,840 (25.79%) 11,515 (25.08%) 2.82%** 
50% 43,974 11,804 (26.84%) 11,498 (26.15%) 2.66%** 
60% 36,751 10,506 (28.59%) 10,439 (28.40%) 0.65% 

BMS-POS 

30% 59,111 17,727 (29.99%) 15,617 (26.42%) 13.51%*** 
40% 54,366 17,317 (31.85%) 16,958 (31.19%) 2.12%** 
50% 45,671 16,153 (35.37%) 15,753 (34.49%) 2.54%*** 
60% 35,352 14,547 (41.15%) 14,347 (40.58% 1.40% 

comScore2013 

30% 6,882 2,203 (32.00%) 2,152 (31.27%) 2.36% 
40% 6,346 2,102 (33.12%) 2,055 (32.38%) 2.27% 
50% 5,576 1,911 (34.27%) 1,890 (33.89%) 1.10% 
60% 3,937 1,554 (39.46%) 1,539 (39.08%) 0.96% 

      ***: significant at 1% level or better   **: significant at 5% level 

Table 11: MLR vs. CMAR 

We conducted additional experiments on the Retail dataset using rules mined at support thresholds 

of 0.1% and 0.3%. The relative performances of the two approaches are very similar for those experiments 

as well, and are not reported here for brevity.  

5. Comparisons with Collaborative Filtering and Matrix Factorization 

While rule based recommender systems are commonly used in the retail domain (e.g., Forsblom et al. 2009) 

and form integral components of many commercial software (IBM 2009a, 2009b, 2010), no individual 

system has been found to be universally better than others. In this section, we provide evidence of the broad 

applicability of MLR by comparing it to two state-of-the-art techniques – collaborative filtering and matrix 

factorization. Both approaches are widely used for providing recommendations and have been shown to 

perform well in general (Linden 2003, Deshpande and Karypis 2004, Koren et al. 2009, Ekstrand et al. 

2011). We present results from several experiments conducted on the three datasets, comparing the quality 

of recommendations from MLR with those generated using these approaches.   

While two approaches to collaborative filtering are popular, Jannach et al. (2011) point out that the 

need to handle millions of users in large e-commerce systems makes user-based collaborative filtering 

impractical in real time environments. Item-based collaborative filtering on the other hand makes 

predictions based on the similarity between items. These can be computed offline, which makes item-based 

collaborative filtering a viable approach for making real-time recommendations. Also, item-based 

collaborative filtering is designed to generate recommendations using transactional data (Linden et al. 

2003). Therefore, we use item-to-item collaborative filtering in our experiments.  
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The Netflix Prize competition revealed that matrix factorization methods can also be very effective 

in making recommendations. These methods represent users and items via latent factors identified from the 

data, with an item being recommended to a user when the item and user are similar vis-à-vis these factors 

(Koren et al. 2009). A well-known matrix factorization technique for recommender systems is singular 

value decomposition (SVD), and one version of which, called FunkSVD, has been popularized by Simon 

Funk (2006). We use FunkSVD (Funk 2006) in our experiments.  

We use the collaborative filtering and FunkSVD implementations provided by Ekstrand et al. 

(2011) in an open source project named Lenskit (lenskit.grouplens.org). As noted by the authors, Lenskit 

provides carefully tuned implementations of these leading algorithms (all the implementations are in Java). 

We note that in their experiments on three separate datasets, Ekstrand et al. (2011) find FunkSVD to 

perform the best on two datasets and the item-to-item collaborative filtering approach to perform the best 

on the third. We provide brief descriptions of the two methods below; specific details about the 

implementations can be found in Ekstrand et al. (2011).15  

The idea behind the item-based approach is to find items that are rated as similar to the items that 

have been liked by a target user. Given a dataset involving m items, the item-based collaborative filtering 

procedure implemented by Ekstrand et al. requires two parameters as inputs – a model size (k) and a 

neighborhood size (l). The system computes scores for the items being considered for recommendation by 

multiplying an m×m similarity matrix (model) with a column vector representing the current basket of the 

user (the vector has a 1 for all items present in the basket and a 0 for the other items). The model size is the 

number of similarities retained in each column of the model; other similarities are set to 0. The 

neighborhood size is the number of similarities used to calculate the score of an item; other similarities are 

ignored. The item with the highest score is recommended. 

The matrix factorization technique determines latent factors, associates each user with a user-factor 

vector and each item with an item-factor vector, and makes predictions using the inner product of such 

vectors. The parameters of the model are learned with the objective of minimizing the differences between 

predicted and actual ratings while avoiding over-fitting (Koren et al. 2009). FunkSVD accomplishes this 

using a stochastic gradient descent learning algorithm.  

We perform, as before, five-fold cross validation experiments on all the datasets. We use a support 

threshold of 0.2% and confidence thresholds of 30%, 40%, 50% and 60% for MLR. We experimented with 

various values of model sizes (up to 500) and neighborhood sizes (up to 150) for collaborative filtering.  

                                                      
15 Interested readers are directed to Deshpande and Karypis (2004) for additional details on collaborative filtering, and 
to Funk (2006) and Koren et al. (2009) for details on FunkSVD. 
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While FunkSVD was originally designed for ratings of user-item pairs (like any matrix 

factorization technique), it has been observed to work well for binary data if all the zero values are replaced 

with a small number like 0.1 (XLVector 2012). Therefore, we modify the datasets in this manner to run 

FunkSVD. The resulting datasets are completely dense; in fact those corresponding to Retail and BMS-POS 

cannot be used in their entirety by Lenskit. Therefore, for each original training dataset from Retail, we 

randomly select 2,000 transactions for model building. We are able to use 10,000 transactions (again 

randomly selected) as the training datasets for BMS-POS, because this dataset has much fewer items than 

Retail. We experimented with other numbers of randomly selected transactions for creating ratings datasets 

– the results do not differ significantly.16 We were able to use all the transactions in comScore2013 as the 

training datasets are relatively small. The modified datasets for Retail and BMP-POS have more than ten 

million values for user-item pairs (the largest dataset used by Ekstrand et al. has ten million values), whereas 

the modified datasets for comScore2013 have more than a million user-item pairs.  

In these experiments, the training datasets are used to create the models for the non-rule based 

systems. The basket creation scheme is slightly different from the one described in Section 4. In the interest 

of time, the baskets are created from each transaction in the test datasets by randomly selecting half the 

items in the transaction – the test baskets are identical for all the approaches. This does not affect the results 

significantly as we still get enough instances (baskets) to draw statistically reliable conclusions. The results 

presented are for those transactions for which all the approaches generate recommendations and are 

averaged over all cross-validation experiments. The performance of the collaborative filtering system is not 

very sensitive to changes in the model and neighborhood sizes. We report the results for the experiments 

with model size 500 and neighborhood size 150 since the system’s performance is a little better with these 

settings. For FunkSVD, we use the default settings of the implementation – other settings provided similar 

or inferior performances. Table 12 presents the quality of recommendations provided by each approach for 

each dataset and confidence threshold. 

The relative improvements achieved by MLR over collaborative filtering are statistically significant 

for every experiment on each of the datasets. MLR consistently outperforms FunkSVD as well, although 

the improvements in the case of comScore2013 are not statistically significant. These results show that 

MLR is not only superior to other rule-based approaches for the datasets we have examined, but 

outperforms other state-of-the-art approaches for our datasets as well.  

 

                                                      
16 We also experimented with randomly assigning a percentage (5%, 10%, 15%, and 25%) of unpurchased items to 
have the value 0.1 and leaving the rest of the unpurchased items as unrated on all the transactions in the dataset (i.e., 
no sampling). The results remained very similar with no qualitative differences. 
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Dataset Confidence 
Threshold 

Accuracy (%)  Improvement 
over CF 

(%) 

Improvement 
over FunkSVD 

(%) CF FunkSVD MLR 

Retail 

30% 32.90% 43.91% 47.27% 43.65%*** 7.64%*** 
40% 33.85% 45.01% 48.41% 43.00%*** 7.55%*** 
50% 34.42% 45.44% 48.87% 41.98%*** 7.55%*** 
60% 36.10% 47.64% 52.12% 44.40%*** 9.41%*** 

BMS-POS 

30% 45.21% 47.30% 50.07% 10.76%*** 5.86%*** 
40% 48.16% 50.43% 53.48% 11.04%*** 6.05%*** 
50% 50.21% 52.74% 55.71% 10.96%*** 5.64%*** 
60% 52.18% 55.24% 57.93% 11.02%*** 4.86%*** 

comScore2013 

30% 33.82% 36.03% 36.39% 7.60%** 0.99% 
40% 35.69% 38.18% 38.69% 8.41%** 1.36% 
50% 37.31% 39.93% 40.55% 8.70%** 1.56% 
60% 43.33% 46.22% 47.11% 8.73%** 1.92% 

    ***: significant at 1% level or better, **: significant at 5% level or better 
Table 12: MLR vs. Collaborative filtering (CF) and FunkSVD 

As an additional robustness check, we conducted experiments where we included in each basket 

all but one randomly selected item from a transaction, and provided such baskets to MLR and the 

benchmark systems. MLR again performs significantly better than both collaborative filtering and matrix 

factorization in these experiments on the Retail and BMS-POS datasets. While MLR performs better than 

collaborative filtering and FunkSVD on comScore2013, the improvements are not statistically significant. 

6. Conclusions and Managerial Implications 

Traditional approaches that use only a single rule for recommending items typically ignore items in the 

baskets of the customer that may be present in the antecedents of other rules. We propose an approach – 

Maximum Likelihood Recommendations (MLR) – to combine multiple rules to recommend items in order 

to cover as many items of the basket as possible. While a few methods have been proposed to combine 

rules, these are all ad hoc, without a robust theoretical basis. In contrast, MLR has a strong theoretical 

foundation – it recommends items using rules that maximize the likelihood of generating the true underlying 

distribution of the dataset used for generating the rules. This process identifies the best set of rules to 

combine when estimating the probability that a customer will add a recommended item to her basket. Our 

approach tries to preserve as many important dependencies as possible based on the available rules (this 

typically leads to making as few conditional independence assumptions as possible across items in a 

basket). 
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It is not practical to solve the problem of maximizing likelihood directly however, as it requires the 

estimation of parameters from the dataset during run-time. We show that maximizing the likelihood is 

equivalent to maximizing the sum of the mutual information values of the participating rules – this result 

makes the real-time use of this approach feasible.  

We conduct extensive experiments to test the viability of the proposed approach. Comparisons are 

made with several traditional single-rule based approaches, two methods that have been proposed to 

combine rules, and two other state-of-the-art recommendation approaches – collaborative filtering and 

matrix factorization. The experiments show that MLR consistently outperforms all the other approaches, 

particularly when rules are available for combination. We also find that the performance improvements are 

robust across datasets at various support and confidence thresholds.  

While the absolute improvements may seem small at first glance, it is important to remember that 

recommendations are made on a continuous basis. For instance, during the holiday season in 2012, 

Amazon.com sold 306 items per second (Clark 2012). The 2012 annual report for Amazon.com mentions 

that their net sales for the fourth quarter of 2012 amounted to $21.27 billion. If 35% of these revenues are 

generated from recommendations (as mentioned in Hosanagar et al. 2014), even a 1% increase in success 

rate would amount to an increase in revenues of approximately $70 million every quarter. Such 

improvements can lead to increasing revenues by millions of dollars every year for smaller firms as well.  

Several characteristics of MLR make it suitable for firms that provide personalized 

recommendations to their online customers. The use of probability calculus provides semantic clarity in an 

environment that is naturally fraught with uncertainty – at the same time, the approach is able to deliver 

recommendations effectively. The robust theoretical basis of MLR makes it very versatile. Because it 

compares alternative items to recommend based on their probabilities of purchase, it can be easily adapted 

to make recommendations based on expected payoffs associated with the items. This is not possible with 

any of the existing approaches, i.e., rule combination, collaborative filtering, or matrix factorization. The 

use of probability theory also allows MLR to be easily adapted to use lift-based approaches to make 

recommendations if needed – again this is not possible with any of the other approaches. While we use 

association rules mined from historical data in our experiments, the approach can easily accommodate rules 

provided by human experts. Such rules may be available from marketing experts for new items that are 

being offered and for which transactional data are not yet available. MLR can also use association rules 

with negations if such rules are found to improve the quality of recommendations. MLR is computationally 

quite efficient, taking only a fraction of a second per recommendation on average – further, this is 

accomplished using a simple desktop computing environment. As a result, using MLR instead of the single-

rule based approach should not affect the quality of service during regular operation in commercial 

environments.  



 
 
  

33 
 

While the results of our experiments with MLR are very encouraging, we note that the 

performances of different approaches can be sensitive to the application domain and data characteristics. 

For example, our results are consistent with those of Mobasher et al. (2001) with regard to collaborative 

filtering – they also found an association rule based approach to outperform a collaborative filtering based 

one. However, Sarwar et al. (2000) found evidence to the contrary. Similarly, FunkSVD is shown to 

perform better than item-based collaborative filtering on two MovieLens datasets but worse on a Yahoo! 

Music dataset (Ekstrand et al. 2011). Given the differences in performances of alternative approaches for 

different application domains, firms would be prudent to evaluate the different types of available 

approaches in order to identify the best one for their specific context.  

Our work opens up several avenues for future research. MLR can serve as a valuable new method 

to consider for ensemble-based approaches as its theoretical basis is quite different (and therefore 

independent) from those of memory-based approaches such as collaborative filtering and matrix 

factorization. It would be useful to develop ways to combine MLR with other extant approaches to 

determine which techniques best complement each other. Another interesting opportunity is to examine 

how MLR could be extended to incorporate probabilistic context-based approaches that account for item 

metadata, user demographics, etc. An important issue that has emerged in recent years is the extent to which 

a recommendation technique is vulnerable to manipulations that are often referred to as shilling attacks 

(Mobasher et al. 2007). It will be useful to examine in future research how robust MLR is to such attacks, 

as compared to extant techniques. Finally, it would be useful to extend recommendation query languages 

like REQUEST (Adomavicius et al. 2011) by incorporating a probability-based query interface that will 

allow end users to generate recommendations in a flexible and user-friendly manner.              
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