ENERGY DELIVERY SYSTEMS ARE VULNERABLE

- Computer systems are rife with security holes and 0-days.
- Embedded systems and ICS can be hard to patch; 0-days become forever days.
- In EDS, consequences can be dire.

RESEARCH VISION

New tools based on new scientific foundations:
- **Prevention** of 0-days in the first place.
- **Mitigation** of damage from holes discovered after deployment.
- **Snap-in patching** preserving availability
- **Evaluation** of effectiveness of these tools when scaled up to long-lived EDI.

RESEARCH ROADMAP: PREVENTION

LangSec: Using formal language theory to:
- specify precisely the input language on an attack surface
- build high-assurance parsers that block crafted input attacks
- build fuzzing tools to test for holes in deployed systems

RESEARCH ROADMAP: MITIGATION

ELFbac: Custom linker/loader and Linux kernel to enforce intra-process memory isolation
- Compatible with current OS and build tools
- Compatible with legacy software

SOME RESULTS FROM OUR WORK

Proof of concept implementations:
- stopping OpenSSH Roaming vulnerability
- stopping Spectre V1

RESEARCH ROADMAP: SNAP-IN PATCHING

Novel approach to permit stakeholders to install **patches without downtime**
- Stakeholders can still test patches
- Stakeholders can control when and how patches are applied

IMPACT ON STATE OF GRID SECURITY

- **Preventing vulnerabilities** in the first place
- **Limiting damage** from them
- **Making patching them easier**

COLLABORATION OPPORTUNITIES

Cooperation, support, and guidance from industry partners in the following areas would benefit this research activity:
- EDS systems with protocols/interfaces at risk of adversarial exposure
- EDS systems whose internal compromise could threaten energy resilience
- EDS systems where continued availability is highly critical

Contact: jenkins@cs.dartmouth.edu, sws@cs.dartmouth.edu
Activity webpage: https://cred-c.org/researchactivity/ResilientScale